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• Overview of high-accuracy Monte Carlo event generators 
(NNLO+PS)

• MiNNLOps and GENEVA: similarities and differences

• Shower interface: status and  challenges for new NLL showers

• Extension to processes with jets:  roadmap and preliminary 
results
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topics



What is a precision MC ?

‣ Fully differential event generator 
producing hadronic final states, 
at high accuracy 

‣ Precision enters in multiple 
ways: 

• Perturbative accuracy of integrated 
total xs ( )  

• Perturbative description of radiation 
pattern (resumm./shower) 

• Description of hard tails (multi-jet)

NnLO
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Why accuracy is important for SMC ?

Already the dominant 
source of uncertainty for 
Jet Energy Scale. 
Everything involving jets is 
affected !

SMC are used to extrapolate 
theoretical predictions to fiducial 
regions. 

LHC affected by 1-2% luminosity unc. 
but ratios cancels luminosity & other 
common systematics 

At this level of precision need to start 
questioning every ingredient:  perturbative 
calculations, nonperturbative PDFs, 
hadronization corrections … SIMONE ALIOLI  -  ZPW 6/1/2025



NNLO matched to parton showersMotivation

I The increasing experimental precision of LHC measurements challenges
existing generators, pushing the request for higher accuracy

I The state-of-the-art is the inclusion of NNLO corrections into
parton-shower Monte Carlo

I Three main approach to the problem:

UNNLOPS
MiNNLOPS GENEVA

Simone Alioli | GENEVA | Oxford 27/5/2021 | page 3 Also NNLO+PS  with sector showers available  for             and e+e−

[Campbell et al. 2108.07133]

H → bb̄

[Hoeche et al. ‘15]

[Nason et al. ‘12 - ‘24] [SA et al. ‘15 - ‘24 ]
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‣ NNLO accuracy for observables inclusive over extra radiation, 
e.g.  

‣ NLO accuracy for H+1 jet observables   

‣ LO accuracy for H+2 jet observables    or    

dσ/dyH

dσ/dpj1
T

dσ/dpj2
T dσ/dmj1, j2

Accuracy goals - Example for  gg → H

‣ Resumm. accuracy (or 
Shower Sudakov) for 
small   

‣ Further emissions only 
in shower soft/coll 
approximation.  

pH
T
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Timeline of NNLO + PS results
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[Adapted from table by M.Wiesemann LoopFest’24]

WW (pT,j)

gg → H(mt)

bb̄H

Z (𝒯0)
gg → H (𝒯0)
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MiNNLOps 

Originally formulated for  , now 
extended to use  and  hardest-jet  as 
primary resolution variable 

Employs higher-order resummation  
( NNLL’) of primary resolution variable 

 Used   as secondary resolution 

variable. Now also extended to  

Resummation done analytically at NLL 

Mostly implemented with additive 
matching between resummation  
and fixed-order

𝒯0
qT pT

≥

𝒯1

pj
T,2nd

Geneva and MiNNLOps :  comparison

Originally formulated with   as primary 
resolution variable, now extended to  

POWHEG-inspired Sudakov factor perform 
the resummation of primary resolution 
variable 

Actual POWHEG Sudakov factor perform 
the resummation of secondary resolution 
variable 

Multiplicative matching between 
resummation and fixed-order to achieve  
NNLO accuracy

qT
𝒯0

GENEVA 



‣ Need a set of resolution parameters to measure hardness of 
first  emission .  For second emission  pH

T , pj1
T , 𝒯0 pj2

T , 𝒯1…

How to build a NNLO + PS : GENEVA example

‣ Dependence is resummed either 
explicitly or by the shower 
Sudakov 

‣ Results at partonic level 
can be further evolved 
by different shower 
matching and 
hadronization models

‣ Partonic fixed-order weights 
have  a log dependence on the 
resolution parameters 
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Final GENEVA partonic formulae 
combine resummation and matching to 
fixed-order  

Lacking multi-differential resummation 
at this order, resummed results in 
need to be made more differential via 
splitting functions, capturing the 
singular behaviour of different 
resolution variables as best as they can. 

Φ0

From resummation to event generation
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Figure 2: Comparison of the fixed-order, singular, and nonsingular distributions at

NNLO+NNLL0, both for T0 (left) and pH
T

(right). We show the singular and nonsin-

gular distributions both for the original and improved versions of the splitting function

implementation in Geneva.

mic behaviour of the NLO1 result, as it appears to miss a single logarithmic contribution

⇠ 1/pH
T
. This is implied by the fact that the improved nonsingular contribution converges

to a nonzero constant at low values of pH
T
. This must however be compared with the orig-

inal approach, Porig, where the divergent behaviour of the nonsingular plot suggests that

that implementation also fails to capture the logarithmic structure up to ⇠ ln2(pH
T
)/pH

T
.

We examine the e↵ects of the Pimpr implementation on the Drell-Yan process in App. A,

where we compare di↵erent Geneva results with the ATLAS experimental data.

3.2 Independent scale variations

In traditional implementations of fixed-order QCD calculations, a di↵erentiation is made

between the factorisation scale µF and the renormalisation scale µR. The former is associ-

ated with the scale of collinear factorisation, while the latter is introduced in dimensional

regularisation in order to render the strong coupling dimensionless.

To date, implementations of Geneva have assumed these scales to be equal. Doing

so facilitated the matching to the resummed calculation, where a sole “nonsingular” scale

µNS appears as the endpoint of the RGE running, typically taken to be a hard scale Q of

the problem. The two scales were then varied in a correlated fashion (“diagonal” in the

{µR, µF } space) when probing the higher order uncertainties. This approach, however,

can hinder a complete and thorough uncertainty estimation as it neglects those variations

– 15 –



Implemented color-singlet processes
Method has been tested and validated with several color singlet production processes: 
 DY, ZZ, , VH, , ggH, ggHH, WW using both   ,          and  

   

Wτ ττ Φ0 qT pjet
T

Method  also extended to top-quark pair production with 
zero-jettiness resummation  SIMONE ALIOLI  -  LFC24 17/9/2024SIMONE ALIOLI  -  ZPW 6/1/2025



SIMONE ALIOLI  -  ZPW 6/1/2025

MiNNLOps
To draw the parallel with GENEVA, let’s start from an additive approach

The resummed component is recasted as a total derivative (exact up to the 2nd order)

  in terms of a luminosity function and a Sudakov form factor

  i.e. the ingredients of a  resummation (one needs them up to NNLL’ accuracy)qT
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MiNNLOps
Turned into a multiplicative approach by factoring out the Sudakov 

Re-expanding up to  gives the MiNNLOps formula𝒪(α3
s )
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MiNNLOps

MiNLO’ formula = NLO F+j generator which is also NLO accurate for F

Additional terms that give NNLO accuracy upon 
integration over qT

Terms beyond 
NNLO accuracy

Sudakov factor 
exp. suppression 
when   qT → 0
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MiNNLOps
The actual implementation starts from POWHEG implementation of F+j production  

Where the MiNNLOps normalization is obtained spreading the integrated formula over F+J ps    

The second emission is generated with the standard POWHEG mechanism



SIMONE ALIOLI  -  ZPW 6/1/2025

MiNNLOps results - color singlets

Many color singlet production processes implemented: diboson, 
Higgs, Drell-Yan etc.



SIMONE ALIOLI  -  ZPW 6/1/2025

MiNNLOps results - heavy quarks pair
Method extended to top-quark (and bottom-quark)  pairs relying on 
transverse momentum resummation expansion up to NNLO 
 (no need to resum color matrices in Sudakov factor) 

[Mazzitelli et al. ‘20-‘21, ‘23 ]
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MiNNLOps results - heavy quarks plus boson
Recently extended to 2->3 processes with massive colored partons 
(  and ) Zb̄b Hb̄b

Massification procedure for double virtual amplitudes.  
State-of-the-art NNLO calculations immediately available as NNLO+PS

[Mazzitelli et al. ‘24 ]

[Biello et al. ‘24 ]
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MiNNLOps: extension to N-jettiness
Using a different resolution variable allows to study the robustness 
of the method and assess the uncertainties associated to its choice

MiNNLOps recently has been extended to use  as primary resolution𝒯0

The choice has important consequences for the interface with the 
parton shower and for the extension to more complicated processes 

[Ebert et al. ‘24]

MiNNLOps  for V+j using   as primary resolution formulae presented.𝒯1
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MiNNLOps: extension to zero-jettiness

Good agreement for 
transverse momentum 
and integrated  NNLO 
distributions 

NLO F+j quantities seem more 
problematic and dependent on the 
details of the implementation (e.g. on 
how the  resummation and the higher-
order terms are spread out to the full 
F+j phase space) 



Shower interface
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Interfacing to the shower is one of the most dedicated points of NNLO+PS, 
even for simple LL showers.  The problem starts already at NLO+PS. 
Calculating the cumulant 

OPS ∼
kT

Q
e−βPS|η|

OEG ∼
kT

Q
e−βEG|η|

Correct LL given by area in  black triangle  
Event generator ordering  vetoes red area ( ) 
Parton shower vetoes green area ( )

βEG = 1
βPS = 0

Σ(O < eL), L = log ( kt

Q )



Shower interface
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Mismatch of ordering could spoil LL 
accuracy.  

In MiNNLOps-qT (POWHEG) or GENEVA 
with pT jet no such mismatch because 
ordering variables are similar 

For NLL showers things get more 
complicated ! Boundaries in the hard-
collinear regions have to match as well 

In Geneva   explicit veto is 
required after shower to avoid 
double counting (simulating a 
truncated-vetoed shower) 

MiNNLOPS-  formally breaks  LL 
because a change in the POWHEG 
mapping is required to handle 2nd 
emission  

𝒯0

𝒯0

Boundaries 
mismatch 
spoils NLL



‣ Focus of color-singlet plus jet production 

‣ To remove energy-dependence and minimize only along directions 
’s must be frame-dependent Qi = 2Ei

‣ The choice of the ’s determines the frame in which the one-jettiness 
resummation is performed. Possible choices:                                                                  
LAB or  CS-frame 

ρi

YV = 0

Extension to processes with jets
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Derive factorization theorem and perform the resummation of the 
main  resolution variable (at least at NNLL’)

Construct the maps that preserve the main resolution variable ( ), 
building a true NNLO event generator with events whose weights are 
IR-finite and properly resummed. 

Φ1

GENEVA to-do list for color-singlet plus jet:

Implement GENEVA formula and validate NNLO accuracy of 
results for fully differential distributions (NNLO integrator) 

Add (N)LL resummation of secondary resolution variable and 
interface with the shower.

SIMONE ALIOLI  -  LFC24 17/9/2024



Resummation of one-jettiness for Z+jet
Factorization formula in the region   hard scale:𝒯1 ≪ Q ,  s, Mℓ+ℓ−, MT,ℓ+ℓ− 𝒯0

SIMONE ALIOLI  -  ZPW 6/1/2025

Hard, beam and jet functions all known

The  2-loop Soft provided by SoftSERVE 
collaboration in the form of an 
interpolation grid  

Reproduces leading power behavior at 
extreme angles, important for N3LL and 
for N3LO singular contribution



 Hard evolution 
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 N3LL resummed formula
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Resummed results
‣ Summing in quadrature profile scales variations and fixed-order ones

‣ Nice convergence and reduction of theoretical uncertainties
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‣ Nonsingular divergent for . Joint   resummation required to 
handle both divergencies  

𝒯0 → 0 (𝒯0, 𝒯1)

Matched results dσmatch.

dΦ1d𝒯1
=

dσres.

dΦ1d𝒯1
+

dσf.o.

dΦ1d𝒯1
−

dσres.exp.

dΦ1d𝒯1

‣  gives sizable contribution, important to 
include it for small values of    
𝒪(α3

s )
𝒯0
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NNLO validation  -  1-jettiness slicing
‣ Crucial to check the NNLO accuracy: expand matching formula to 

NNLO (  slicing) and compare with NNLOJET the pure  coeff.Φ1≥ →(τ3
s )

OσNNLO1(𝒯1) = dαN3LL

d𝒯1
(Φcut

1 )
→(τ3s )

O(𝒯1) + ∫
Φmax

1

Φcut
1

d𝒯2
d𝒯1

dασNLO2

d𝒯2
O(𝒯{2,3})

Analytic cumulant expanded NLO with local FKS subtraction
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NNLO differential distributions  slicingΦ1≥

‣ Small  needed to correctly capture the low  behaviour, but 
increased stat errors at large  due to larger numerical cancellations

Φcut
1 qT

qT
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- slicing and subtraction with dynamic cutsΦ1

‣ Solution is to dynamically adapt the  value according to the kinematics (multi-
scale problem).  

           One can use 

Φcut
1

mZ
T , Φ0, qT, …

Φcut
1 = min{10≥4 f(qT), Φ0/2}

f (qT)

10 20 30 40

20

40

60

80

100

qT

‣ Additionally we can subtract the singular spectrum locally in   Φ1

+∫
Φcut

1

ΦIR
1

d→2
d→1

dτσNLO2

d→2
O(→{2,3}) ≥ dτN3LL

d→1dΦ1 𝒯(α3s )

≪(z, γ) O(→1)
Allows for larger  while 
still providing complete 
inclusive power corrections 
down to 

Φcut
1

ΦIR
1 − Φcut

1

OσNNLO1(→1) = dτN3LL

d→1
(Φcut

1 )
𝒯(α3s )

O(→1) + ∫
Φmax

1

Φcut
1

d→2
d→1

dτσNLO2

d→2
O(→{2,3})

 normalized splitting functions ≪(z, γ) ∫ dzdγ≪(z, γ) 𝒪 1
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 slicing and subtraction with dynamic cutsΦ1

‣ Complete agreement with NNLOJET and statistical errors comparable 
with similar running times (~ 80k CPU hours)
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slicing —   subtraction —
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Validation with  and  singular spectra Φ0 qT

‣ Comparison with  singular spectra in  and  tells us how much we can push 
our approach before it breaks down, due to internal technical cuts or just by large 
numerical cancellations.

≥(τ3
s ) Φ0 qT

‣ GENEVA nonsingular well behaved for  down to 0.5 GeV,  this NNLOJET run has 
generation cut at 1 GeV. 

‣ Both approached more demanding for  , seems OK down to ~ 1 GeV but singular 
still decreasing….

Φ0

qT
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Inclusion of fiducial power corrections

SIMONE ALIOLI  -  ZPW 6/1/2025

• Using P2B it is possible to completely capture all fiducial power corrections 
of any observable  and only neglect the dynamical (inclusive) ones below 
the IR cutoff 

𝒪
𝒯δ

FPC captured by P2B

Neglected inclusive  
pwr corr. 

N-jettiness subtraction 
between  and  
 

𝒯δ 𝒯cut
N

Standard NLO N+1 
calculation with 
higher cutoff  
 

𝒯cut
N

Resummed-expanded 
cumulant



Inclusion of fiducial power corrections
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• Using P2B it is possible to completely capture all fiducial power corrections 
and only remain with the dynamical (inclusive) ones

NNLO Z+j Drell-Yan Z

• Drell-Yan can use FKS mapping for P2B, but for Z+j one needs a defining-
cut-preserving mapping.
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Conclusion and outlook

‣ The inclusion of state-of-the-art theoretical predictions in SMC generators  is 
mandatory to match the experimental precision and fully exploit the 
discovery potential of LHC measurements 

‣ MiNNLOps and GENEVA methods allow for event generation with NNLO 
accuracy matched to parton showers.  

‣ Several color-singlet processes implemented, using different resolution 
variables: N-jettiness, qT, jet veto… 

‣ The availability of multiple approaches is crucial to get an handle on 
theoretical uncertainties  

‣ Next challenges are the interface to more accurate parton-showers (NLL and 
beyond) and the extension to more complicated processes with jets. Work in 
progress …

Thank you for your attention.
SIMONE ALIOLI  -  ZPW 6/1/2025



BACKUP



Partitioning phase space with resolution cuts

dτ
dΦ2

(r0 > rcut
0 , r1 > rcut

1 )

r0 > rcut
0

r1 > rcut
1

SIMONE ALIOLI  -  LFC24 17/9/2024

When emissions become unresolved, cuts must be resummed.   
Differential information below cut is lost during projection. 
No difference for preserved quantities, in general can be 
made a power correction. 
Mapping that preserves singular behavior is required for 
correct event definition.

dτ
dΦ0

(rcut
0 )

r0 < rcut
0

r0 < rcut
0

r0 < rcut
0

r0 = 0

r0 = 0

r1 < rcut
1

r0 = 0

r0 > rcut
0

r0 > rcut
0

r0 > rcut
0

r1 < rcut
1

r1 = 0

r1 = 0

r1 = 0
r1 = 0

dτ
dΦ1

(r0 > rcut
0 , rcut

1 )

2 jets

1 jet

0 jets
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Resumming resolutions parameters not really a new idea, SMCs have been doing  it since 
the ‘80s with Sudakov factors 

Using resummation at higher orders has several  benefits:  systematically improvable 
(NLL,NNLL,N3LL,…), lowering theoretical uncertainty at each step.  

Higher accuracy allows to lower the cuts without risking missing higher logarithms being 
numerically relevant.  
The lower the cut the smaller the nonsingular power corrections due to phase-space 
projections will affect the results differentially. 

For NNLO event generation 
one needs at least                    
NNLL’  + NNLO accuracy to 

control the full  singular 
contributions. 

r0

τ2
s gg Φ HH

LHC 13 TeV

Resummation of resolution parameters
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Using the jet pT as resolution variable
GENEVA recently extended to jet veto resummation in [Gavardi et al. 2308.11577].  

Factorization most easily derived for cumulant of the cross-section. SCET II problem. 
Numerical derivative to get the spectrum. For hardest-jet we have 
   

Two loop Beam and Soft functions recently computed in [Abreu  et al. 2207.07037, 2204.02987] 

Focus on  with jet veto, in 4-flavor scheme to avoid top contaminations.  
Massless two-loop hard function taken from qqVVamp [Gehrmann et al.  1503.04812] 

Interface to SCETlib  [Tackmann et al.] allows to perform also resummation also for pT of the 
second jet at the cumulant level. Refactorization of soft sector into global soft, soft-coll and 
nonglobal contributions [Cal et al.]

W+WΦ ≥ τ+στeΦσ̄e

[Banfi et al. hep-ph/0206076]SIMONE ALIOLI  -  LFC24 17/9/2024SIMONE ALIOLI  -  ZPW 6/1/2025



Resumming second jet resolution at NLL’ in GENEVA
Extension of the GENEVA approach to include resummation of  to NLL’ accuracyrcut1

NLL’ accuracy of the second jet only maintained 
in presence of an hard first jet.  

Resummation formula not able to handle the 
 hierarchy, double resummation 

required there.  
r0 Φ r1 ≥ τH

Now truly capturing the correct 
nonsingular behaviour when 
approaching the single-jet limit 
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 Validation of WW production
We include the resummation of the  
channel at NNLL’ and the  channel 
at NLL 

Jet veto resummation available in 
MCFM up to partial N3LL accuracy. 
Different treatment of uncertanties.

qq̄
gg

[Campbell et al. 2301.11768]

NNLO validation 
against MATRIX
[Grazzini et al. 1711.06631]
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 Showering

Inclusive quantities well-preserved by the shower, pT of the hardest jet is extremely 
sensitive to shower effects and gets mildly shifted. Few percent effect at 30 GeV.  

This is entirely due to FSR emissions (the shower splits the hardest jet above pT cut into 
2 jets below  pT cut). Placing constraints to avoid this preserves  pT1st but not physically 
motivated.   

Investigating resummation of different 1-jet resolution variable            (SCET II fact.)    ΦkT
1SIMONE ALIOLI  -  ZPW 6/1/2025



 Data comparison

Inclusion of  
channel necessary for  
agreement with data.  

Extension of  
channel to NLO+NLL’ 
ongoing 

gg

gg
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Zero-jettiness factorization for top-quark pairs

dτ
dΦ0dσB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, α) Bj(tb, zb, α) Tr[Hij(Φ0, α) Sij(MσB ≥ ta + tb
M

, Φ0, α)]

FactorizaMon formula derived using SCET+HQET in the region where  are all 
hard scales.   [SA et al. 2111.03632] 

In case of boosted regime  one would instead need a modified two-jeQness  
[Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21]

Mtt̄ → mt → 𝒯s

Mtt̄ ≪ mt

Hard funcMons  
(color matrices)

SoU funcMons  
(color matrices)

Beam funcMons [Stewart, Tackmann, 
Waalewijn, [1002.2213], known up to N LO3

It is convenient to transform the soU and beam funcMons in Laplace space to solve the 
RG equaMons, the factorizaMon formula is turn into a product of (matrix) funcMons

−[ dτ
dΦ0dσB ] = M ∑

ij={qq̄,q̄q,gg}
B̃i(ln Mγ

α2 , za) B̃j(ln Mγ
α2 , zb) Tr[Hij(ln M2

α2 , Φ0) S̃ij(ln α2

γ2 , Φ0)]

−[ dτ
dΦ0dσB ] = M ∑

ij={qq̄,q̄q,gg}
B̃i(ln Mγ

α2 , za) B̃j(ln Mγ
α2 , zb) Tr[Hij(ln M2

α2 , Φ0) S̃ij(ln α2

γ2 , Φ0)]
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Zero-jettiness resummation for top pairs
Resummed formula valid up to NNLL’ accuracy  

the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)
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where

and , ,  and Ls = ln(M2/τ2
s ) Lh = ln(M2/τ2

h) LB = ln(M2/τ2
B) σtot = 2σS + σB + σBΦ 
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⇢
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1
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B
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�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)
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1
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The final accuracy depends on the availability of the perturbaMve ingredients
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NNLL   is our best predicMon, it includes NNLO beam funcMons, all mixed NLO x NLO terms, NNLL evoluMon 
matrices, all NNLO soU logarithmic terms. ResummaMon is switched off via profile scales

Φ a

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.

– 21 –

Resummed results
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Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.

– 22 –

Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.

– 20 –

Matched results

Matching to  @NLO improves the 
perturbaMve accuracy across the whole 

spectrum

t t̄ + j

Extension to full NNLL’ and to event generaMon is in progress.
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Interface with the parton shower

 measures the  hardness of the 
N+1-th emission 

‣ If shower ordered in , start from 
largest value allowed by N-jettiness 

‣ Let the shower evolve unconstrained. 
‣ At the end veto an event if after                  

shower emissions   
 and 

retry the whole shower.

ΦN(≥N+1)

kT

ΦN(≥N+M) > ΦN(≥N + 1)

M → 1

0-jet and 1-jet bins are treated differently: starting scale is resolution cutoff.

Ensures the relevant phase space is correctly covered to avoid spoiling the 
resummation accuracy for .  Shower accuracy for other observables is more 
delicate for dipole shower, effects numerically negligible .

Φ

 Method rather independent from shower used: PYTHIA8, DIRE & SHERPA.

z
=

1

ln
T

c N
ln

k ?
(T

c N
)

Ve
to

Resummation

Shower

ln
Q

ln 1
µΦN+M𝒯1(≥N+M) ≪ ΦN+M𝒯2(≥N+M) ≪ … ≪ ΦN(≥N+M)
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Interface with the parton shower

Effect of shower on  resolution variables different from what is resummed more marked,  
albeit shower accuracy is maintained. 
GENEVA framework allows this comparison for DY when resumming  or  

Best approach here would be joint  resummation, avoids need of splitting func. 
   

qT Φ0

(Φ0, ≥qT)
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Nonsingular behavior
‣ Different  choices have different subleading power corrections𝒯1

‣ Investigated for one-jettiness subtraction at LL NLP [Boughezal, Isgro’, Petriello `20] 

‣ CS frame better than LAB across different cuts. 
UB frame delicate for IR safety.  

Dimensionless definition 

 τ1 = 2𝒯1/ M2
ℓ+ℓ− + q2

T

𝒪(α2
s ) 𝒪(α3

s )
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Two dimensional profile scales
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