$\chi {\rm PT}$ & dispersion relations

A personal view on open challenges

Gilberto Colangelo

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Zürich Phenomenology Workshop

January 7.2025

Outline

Introduction

SU(2) χ PT Quark-mass dependence Momentum dependence Dispersion relations and matching to χ PT

SU(3) χ PT

Summary

Outline

Introduction

SU(2) χ PT Quark-mass dependence Momentum dependence Dispersion relations and matching to χ PT

SU(3) χ PT

Summary

Chiral Perturbation Theory

- Chiral symmetry of QCD spontaneously broken
 ⇒ Goldstone Bosons = π's (and K's and η)
- ► all other QCD particles: $M = O(\Lambda_{QCD})$ ⇒ for $E \ll \Lambda_{QCD}$ QCD ⇔ GB dynamics
- ► GB interact weakly for $p \to 0$ $\Rightarrow \mathcal{L}_{eff} = \sum \mathcal{L}_{2n}$ 2*n* =n. of derivatives
- ► m_q break chiral symmetry explicitly $\Rightarrow m_q \ll \Lambda_{\text{QCD}}$ expansion param. in \mathcal{L}_{eff} , $m_q = \mathcal{O}(p^2)$

$$\mathcal{L}_{\chi \mathrm{PT}} = \sum_{n=1}^{\infty} \mathcal{L}_{2n}$$

with \mathcal{L}_{2n} the most general, chiral invariant Lagrangian of $\mathcal{O}(p^{2n})$

χ PT: technical implementation

Aim: provide a faithful low-energy representation of QCD Green's functions ⇔ Generating Functional

$$e^{iZ[j_k]}:=\int [dG][dq][dar{q}]e^{iS_{ ext{QCD}}+i\int d^4x\,(ar{q}{\Gamma}^kq)j_k}$$

 $Z[j'_k] = Z[j_k]$ with j'_k chirally rotated sources $j_k = v_\mu, a_\mu, s, p$, expanded around

$$v_{\mu} = a_{\mu} = p = 0, \quad s = \operatorname{diag}(m_u, m_d, m_s)$$

Effective Lagrangian approach:

$$e^{iZ[j_k]} = \int [dU] e^{i \int d^4 x \, \mathcal{L}_{\chi^{\mathrm{PT}}}(U, j_k)}$$
 with $U = \mathrm{GB}$ fields

provides $Z[j_k] = Z_2[j_k] + Z_4[j_k] + Z_6[j_k] + \dots$

satisfying: $Z_{2n}[j'_k] = Z_{2n}[j_k]$

Introduction SU(2) χ PT SU(3) χ PT Summary

χ PT: technical implementation

Gasser and Leutwyler (84)

Remark:

While

$$S_{2n}[U,j_k] = \int d^4x \, \mathcal{L}_{2n}(U,j_k)$$

only contain powers of p and m_q

 $Z_{2n}[j_k]$

also show non-analytic dependence on p and m_q .

This remains true for the effective vertices

Effectiveness of χPT

How well does this approach work?

Since $m_{u,d} =: m_{\ell} \sim \mathcal{O}(\text{MeV})$ and $m_{\ell} \ll m_s$ \Rightarrow split the question in two:

1. How well does the expansion in $(m_{\ell}, p)/\Lambda_{QCD}$ work?

2. How well does the expansion in $(m_s, p)/\Lambda_{QCD}$ work?

Outline

Introduction

SU(2) χ PT Quark-mass dependence Momentum dependence Dispersion relations and matching to χ PT

SU(3) χPT

Summary

Effectiveness of SU(2) χ PT

Address this question by splitting it again in two

1a How well does the expansion in $m_{\ell}/\Lambda_{\rm QCD}$ work?

Need to consider "static" observables, e.g. M_{π} and F_{π}

1b How well does the expansion in p/Λ_{QCD} work?

Can we define a p_{max} such that for $p < p_{max}$ we are sure to reach a certain precision?

Gasser and Leutwyler (84)

$$M_{\pi}^{2} = M^{2} \left[1 - \frac{M^{2}}{32\pi^{2}F_{\pi}^{2}} \bar{\ell}_{3} + \mathcal{O}(M^{4}) \right]$$
$$F_{\pi} = F \left[1 + \frac{M^{2}}{16\pi^{2}F_{\pi}^{2}} \bar{\ell}_{4} + \mathcal{O}(M^{4}) \right]$$

with

$$M^2 = B(m_u + m_d)$$
 and $B = -\langle 0|\bar{q}q|0
angle/F^2$

NNLO expressions are also available

Bijnens, GC, Ecker, Gasser, Sainio (96)

Vector and scalar form factors:

$$egin{aligned} &\langle \pi^i(p_2) | ar{q} q | \pi^j(p_1)
angle &= \delta^{ij} F_{\mathcal{S}}(s) \qquad s = (p_1 + p_2)^2 \ &\langle \pi^i(p_2) | rac{1}{2} ar{q} au^3 \gamma_\mu q | \pi^j(p_1)
angle &= i arepsilon^{i3j} (p_1 + p_2)_\mu F_V(s) \end{aligned}$$

and their NLO expressions:

 $N = 16\pi^{2}$

$$F_{S}(s) = F_{S}(0) \left[1 + \frac{s}{NF_{\pi}^{2}} (\bar{\ell}_{4} - 1) + \frac{2s - M_{\pi}^{2}}{F_{\pi}^{2}} \bar{J}(s) + \mathcal{O}(p^{4}) \right]$$

$$F_{V}(s) = 1 + \frac{s}{6NF_{\pi}^{2}} \left(\bar{\ell}_{6} - \frac{1}{3} \right) + \frac{s - 4M_{\pi}^{2}}{6F_{\pi}^{2}} \bar{J}(s) + \mathcal{O}(p^{4})$$

$$[\bar{J}(s) = \text{loop function}] \quad \text{Gasser, Leutwyler (84)}$$

1a. How well can we predict the value at s = 0? 1b. How well do we understand the *s* dependence?

Vector and scalar form factors:

$$\langle \pi^i(\boldsymbol{p}_2) | \bar{\boldsymbol{q}} \boldsymbol{q} | \pi^j(\boldsymbol{p}_1) \rangle = \delta^{ij} F_{\mathcal{S}}(\boldsymbol{s}) \qquad \boldsymbol{s} = (\boldsymbol{p}_1 + \boldsymbol{p}_2)^2$$

 $\langle \pi^i(\boldsymbol{p}_2) | \frac{1}{2} \bar{\boldsymbol{q}} \tau^3 \gamma_\mu \boldsymbol{q} | \pi^j(\boldsymbol{p}_1) \rangle = i \varepsilon^{i3j} (\boldsymbol{p}_1 + \boldsymbol{p}_2)_\mu F_V(\boldsymbol{s})$

1a. Value at s = 0

$$\hat{m} = (m_u + m_d)/2$$

$$F_{\mathcal{S}}(0) = 2B \left[1 + \frac{M^2}{NF_{\pi}^2} \left(\bar{\ell}_3 - \frac{1}{2} \right) + \mathcal{O}(M^4) \right] = \frac{\partial M_{\pi}^2}{\partial \hat{m}}$$

$$\Rightarrow \text{ understood as well as } M_{\pi}^2$$

 $F_V(0) = 1 \qquad \Leftrightarrow \quad \bar{q} \vec{\tau} \gamma_\mu q = \text{conserved current}$ $\Rightarrow \text{ protected from } m_\ell - \text{effects}$

Vector and scalar form factors:

$$egin{aligned} &\langle \pi^i(p_2) | ar{q} q | \pi^j(p_1)
angle &= \delta^{ij} F_{\mathcal{S}}(s) \qquad s = (p_1 + p_2)^2 \ &\langle \pi^i(p_2) | rac{1}{2} ar{q} au^3 \gamma_\mu q | \pi^j(p_1)
angle &= i arepsilon^{i3j} (p_1 + p_2)_\mu F_V(s) \end{aligned}$$

1b. s-dependence

 $\overline{F}_{\mathcal{S}}(s) = F_{\mathcal{S}}(s)/F_{\mathcal{S}}(0)$

$$ar{F}_{S}(s) = 1 + rac{s}{NF_{\pi}^{2}}(ar{\ell}_{4} - 1) + rac{2s - M_{\pi}^{2}}{F_{\pi}^{2}}ar{J}(s) + \mathcal{O}(p^{4})
onumber \ F_{V}(s) = 1 + rac{s}{6NF_{\pi}^{2}}\left(ar{\ell}_{6} - rac{1}{3}
ight) + rac{s - 4M_{\pi}^{2}}{6F_{\pi}^{2}}ar{J}(s) + \mathcal{O}(p^{4})$$

LEC FLAG values: $\bar{\ell}_4 = 4.02(45)$ $\bar{\ell}_6 = 15.1(1.2)$

Momentum dependence: Pion form factors Re($F_{\pi}^{\circ}(s)/F_{\pi}(0)$)

Momentum dependence: Pion form factors Im $(F^{\circ}_{\pi}(s)/F^{\circ}_{\pi}(0))$

Momentum dependence: Pion form factors $Re(F_{\pi}^{2}(s)/F_{\pi}(0))$

Space like $|F'_{\pi}|^2$

Time Like $|F_{\pi}|^{2}$

Analytic properties of pion form factors

Mathematical problem:

- 1. F(s) is an analytic function of *s* in the whole complex plane, with the exception of a cut for $4M_{\pi}^2 \le s < \infty$;
- 2. approaching the real axis from above $e^{-i\delta(s)}F(s)$ is real on the real axis, where $\delta(s)$ is a known function.

Omnès ('58) found an exact solution to this problem:

$${m F}({m s}) = {m P}({m s}) \Omega({m s}) = {m P}({m s}) \exp\left\{rac{{m s}}{\pi} \int_{4M_\pi^2}^\infty rac{d{m s}'}{{m s}'} rac{\delta({m s}')}{{m s}'-{m s}}
ight\} \;\;\;,$$

where P(s) is a polynomial which can only be constrained by the behaviour of F(s) for $s \to \infty$, or by the presence of zeros. $\Omega(s)$ is called the Omnès function

Omnès representation:

(assuming no zeros)

$$F_{\mathcal{S}}(s) = F_{\mathcal{S}}(0)\Omega_{\mathcal{S}}(s) \qquad \ln \Omega_{\mathcal{S}}(s) = rac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' rac{\delta_{\mathcal{S}}(s')}{s'(s'-s)}$$

Unitarity \Rightarrow Watson's theorem:

$$\delta_{\mathcal{S}}(s) = \delta_0^0(s) \,\,\, {
m for}\,\, s < 4 M_K^2 \,\,\,\, {
m negligible inelasticity \,\, due \,\, to}\,\, 4\pi$$

Omnès representation:

(assuming no zeros)

$$F_{\mathcal{S}}(s) = F_{\mathcal{S}}(0)\Omega_{\mathcal{S}}(s)$$
 $\ln \Omega_{\mathcal{S}}(s) = rac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' rac{\delta_{\mathcal{S}}(s')}{s'(s'-s)}$

Unitarity \Rightarrow Watson's theorem:

$$\Rightarrow \Omega_{\mathcal{S}}(s) = \Omega_0^0(s) \cdot \exp\left[\frac{s}{\pi} \int_{4M_{\mathcal{K}}^2}^{\infty} \frac{\delta_{\mathcal{S}}(s') - \delta_0^0(s')}{s'(s'-s)}\right] \simeq \Omega_0^0(s) \left(1 + c_1 \frac{s}{4M_{\mathcal{K}}^2} + \ldots\right)$$

Chiral vs. dispersive representation

Replace $\delta_0^0(s)$ with its chiral expansion; expand the exponential \Rightarrow chiral expansion of $F_S(s)$

Matching the chiral and the dispersive representation: \Rightarrow sum rules for the LECs

Conclusions:

- the low-energy behaviour of F_S(s) is determined to a large extent by the ππ phase shift δ₀⁰(s)
- F_S(0) (⇔ the σ-term of the pion) has a fast converging chiral expansion
- inelastic effects (*KK* channel) may be sizeable, but are well described by a polynomial at low energy (LECs)

Conclusions:

- the low-energy behaviour of F_S(s) is determined to a large extent by the ππ phase shift δ₀⁰(s)
- F_S(0) (⇔ the σ-term of the pion) has a fast converging chiral expansion
- inelastic effects (*KK* channel) may be sizeable, but are well described by a polynomial at low energy (LECs)
- to have the latter under control a coupled-channel analysis is necessary
 Donoghue, Gasser, Leutwyler, 1990
- this leads to an accurate prediction for the scalar radius of the pion GC, Gasser, Leutwyler, 2001

$$\langle r^2 \rangle_s^{\pi} = \frac{6}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds \, \delta_S(s)}{s^2} = 0.61 \pm 0.04 \, \text{fm}^2$$

Scalar form factor: dispersive representation

 $\delta_{\Gamma} = \delta_{S}$

Ananthanarayan, Caprini, GC, Gasser, Leutwyler, 2004

Scalar form factor: dispersive representation

 $\delta_{\Gamma} = \delta_{S}$

Ananthanarayan, Caprini, GC, Gasser, Leutwyler, 2004

Vector form factor of the pion

A similar discussion can be made for the vector form factor

• the normalization (subtraction constant) is fixed by gauge invariance:

 $F_{V}^{\pi}(0) = 1$

• for this form factor there are data coming from $e^+e^- \rightarrow \pi^+\pi^-$ which allow one to pin down the free parameters in the Omnès representation

Omnès representation including isospin breaking

Omnès representation including isospin breaking

Omnès representation

$$F_V^{\pi}(s) = \exp\left[rac{s}{\pi}\int_{4M_{\pi}^2}^{\infty} ds' rac{\delta(s')}{s'(s'-s)}
ight] \equiv \Omega(s)$$

Split elastic ($\leftrightarrow \pi\pi$ phase shift, δ_1^1) from inelastic phase

$$\delta = \delta_1^1 + \delta_{\mathrm{in}} \quad \Rightarrow \quad F_V^{\pi}(s) = \Omega_1^1(s)\Omega_{\mathrm{in}}(s)$$

Eidelman-Lukaszuk: unitarity bound on δ_{in}

$$\begin{split} \sin^2 \delta_{\text{in}} &\leq \frac{1}{2} \Big(1 - \sqrt{1 - r^2} \Big) , \ r = \frac{\sigma_{e^+e^- \to \neq 2\pi}^{l=1}}{\sigma_{e^+e^- \to 2\pi}} \Rightarrow s_{\text{in}} = (M_\pi + M_\omega)^2 \\ \rho - \omega - \text{mixing} & F_V(s) = \Omega_{\pi\pi}(s) \cdot \Omega_{\text{in}}(s) \cdot G_\omega(s) \\ G_\omega(s) &= 1 + \epsilon \frac{s}{s_\omega - s} & \text{where} & s_\omega = (M_\omega - i \Gamma_\omega/2)^2 \end{split}$$

Essential free parameters

Estimated range ($\pi N \rightarrow \pi \pi N$):

Caprini, GC, Leutwyler (12)

 $\phi_0 = 108.9(2.0)^\circ \qquad \phi_1 = 166.5(2.0)^\circ$

GC, Hoferichter, Stoffer (18)

Fit result for the VFF $|F_{\pi}^{V}(s)|^{2}$

GC, Hoferichter, Stoffer (18)

GC, Hoferichter, Stoffer (18)

Phase difference due to inelasticity, N - 1 = 4

GC, Hoferichter, Stoffer (18)

Relative difference between data sets and fit result

GC, Hoferichter, Stoffer (18)

Result for $a_{\mu}^{\pi\pi}|_{\leq 1 \text{ GeV}}$ from the VFF fits to single experiments and combinations

$\pi\pi$ scattering

Partial waves:

 $t_{\ell}^{I}(s)$ with $I = ext{isospin}, \ \ell = ext{angular momentum}$

$$\chi$$
PT: $t_{\ell}^{I}(s)$ known up to $\mathcal{O}(p^{6})$ (NNLO)
 $t_{0}^{0}(s) = \frac{2s - M_{\pi}^{2}}{32\pi F_{\pi}^{2}} + \mathcal{O}(p^{4})$ LEC values?

Dispersive representation:

Roy eqs. (1971)

$$t'_{\ell}(s) = k'_{\ell}(s) + \sum_{l'=0}^{2} \sum_{\ell'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{\ell\ell'}^{ll'}(s,s') \operatorname{Im} t_{\ell'}^{l'}(s')$$

with $\mathcal{K}_{\ell\ell'}^{ll'}(s,s')$ analytically known kernels and

$$k_\ell'(s) = a_0'\delta_\ell^0 + rac{s - 4M_\pi^2}{72M_\pi^2}(2a_0^0 - 5a_0^2)\left(6\delta_0'\delta_\ell^0 + \delta_1'\delta_\ell^1 - 3\delta_2'\delta_\ell^0
ight)$$

In the elastic region:

$$t_\ell^I(s) = rac{\sin \delta_\ell^I(s) e^{i \delta_\ell^I(s)}}{\sqrt{1-4M_\pi^2/s}}$$

 \Rightarrow Roy eqs. become coupled, nonlinear, integral eqs. for $\delta'_{\ell}(s)$

For:

- a given input $\operatorname{Im} t_{\ell}^{\prime}(s)$, for $\sqrt{s} \geq \mathcal{O}(1 \, \mathrm{GeV})$
- a fixed value for a_0^0 and a_0^2 (inside the universal band)

they can be solved numerically

Ananthanarayan, GC, Gasser, Leutwyler (00)

Ananthanarayan, GC, Gasser, Leutwyler (00)

Ananthanarayan, GC, Gasser, Leutwyler (00)

Ananthanarayan, GC, Gasser, Leutwyler (00)

$Roy + \chi PT$

- at fixed input above 1 GeV, the only free parameters in the Roy eqs. are a₀⁰ and a₀²
- chiral perturbation theory predicts these
- the most reliable χ PT prediction is below threshold
- fixing the two subtraction constants in this way leads to a very precise prediction

$Roy + \chi PT$

Roy+ChPT: final results

GC, Gasser and Leutwyler (01)

Phase shifts:

Roy+ChPT: final results

GC, Gasser and Leutwyler (01)

Phase shifts:

Roy+ChPT: final results

GC, Gasser and Leutwyler (01)

Scattering lengths: convergence of the direct χ PT calculation:

convergence with the matching below threshold

$$egin{array}{rcl} a_0^0 = & 0.197 &
ightarrow & 0.220 &
ightarrow & 0.220 \ 10 \cdot a_0^2 = & -0.402 &
ightarrow -0.446 &
ightarrow -0.444 \ p^2 & p^4 & p^6 \end{array}$$

Final prediction

$$a_0^0 = 0.220 \pm 0.005$$

 $10 \cdot a_0^2 = -0.444 \pm 0.01$

Experimental confirmation

"all data" refers to Ke4 data, isospin correction from GC, Gasser, Rusetsky (09)

Experimental confirmation

Figure from NA48/2 Eur.Phys.J.C64:589,2009

Outline

Introduction

SU(2) χ PT Quark-mass dependence Momentum dependence Dispersion relations and matching to χ PT

SU(3) χ PT

Summary

Effectiveness of SU(3) χ PT

Address this question by splitting it again in two

- 1a How well does the expansion in $m_s/\Lambda_{\rm QCD}$ work? Many more "static" observables available! $M_{\pi,K,\eta}$ and $F_{\pi,K,\eta}$
- 1b How well does the expansion in p/Λ_{QCD} work? With $p \sim O(M_K)$ in the S = 1 sector

Lattice determination of LECs relevant for M_P and F_P

Lattice determination of LECs relevant for M_P and F_P

Lattice determination of LECs relevant for M_P and F_P

Bijnens-Ecker (14) fits

Fit	BE14	Free fit
$10^3 L_A^r$	0.24(11)	0.68(11)
$10^{3}L_{1}^{r}$	0.53(06)	0.64(06)
$10^{3}L_{2}^{r}$	0.81(04)	0.59(04)
$10^{3}L_{3}^{r}$	-3.07(20)	-2.80(20)
$10^{3}L_{4}^{r}$	≡0.3	0.76(18)
$10^{3}L_{5}^{r}$	1.01(06)	0.50(07)
$10^{3}L_{6}^{r}$	0.14(05)	0.49(25)
$10^{3}L_{7}^{r}$	-0.34(09)	-0.19(08)
$10^{3}L_{8}^{r}$	0.47(10)	0.17(11)
χ ²	1.0	0.5
F_0 (MeV)	71	64

Table 3 Next-to-next-to-leading-order fits^a for the low-energy constants L_i^r

^aThe second column contains our preferred fit (BE14) with fixed $L_4^r = 0.3 \times 10^{-3}$; the third column contains the general free fit without any restrictions on the L_i^r . Numerical values are in units of 10^{-3} . No estimate of the error due to higher orders is included.

Bijnens-Ecker (14) fits

Analysis of the convergence of the SU(3) chiral series

$$\begin{split} \frac{F_K}{F_\pi} &= 1 + 0.176(0.121) + 0.023(0.077), \\ \frac{F_\pi}{F_0} &= 1 + 0.208(0.313) + 0.088(0.127), \\ \frac{M_\pi^2}{M_\pi^2 \, \text{phys}} &= 1.055(0.937) - 0.005(+0.107) - 0.050(-0.044), \\ \frac{M_K^2}{M_{K\,\text{phys}}^2} &= 1.112(0.994) - 0.069(+0.022) - 0.043(-0.016), \\ \frac{M_\eta^2}{M_{\eta\,\text{phys}}^2} &= 1.197(0.938) - 0.214(-0.076) + 0.017(0.014). \end{split}$$

Introduction SU(2) χ PT SU(3) χ PT Summary

Bijnens-Ecker (14) fits

The $\pi\pi$ scattering lengths show a very good convergence for both

$$a_0^0 = 0.160 + 0.044(0.046) + 0.012(0.012),$$

$$a_0^2 = -0.0456 + 0.0016(0.0017) - 0.0001(-0.0003).$$

The πK scattering lengths have a worse convergence:

$$a_0^{1/2} = 0.142 + 0.031(0.027) + 0.051(0.057),$$

$$a_0^{3/2} = -0.071 + 0.007(0.005) + 0.016(0.019).$$

Bad convergence of πK scattering lengths due to m_s or to p?

πK scattering

Calculated in χ PT up to $\mathcal{O}(p^6)$

Bijnens, Dhonte, Talavera (04)

Roy-Steiner equation solved numerically

Büttiker, Descotes-Genon, Moussallam (04)

Matching below threshold to disentangle *m_s* from *p* dependence not yet done work in progress, GC, Ruiz de Elvira, Hermansson-Truedsson

K_{e4} decays

Analogous to πK scattering are K_{e4} decays:

Calculated in χ PT up to $\mathcal{O}(p^6)$ Amoros, Bijnens, Talavera (00)

Dispersion relations solved numerically

GC, Passemar, Stoffer (15)

Radiative corrections calculated in χ PT

Stoffer (14)

Matching below threshold to disentangle *m_s* from *p* dependence also done GC, Passemar, Stoffer (15)

GC, Passemar, Stoffer (15)

GC, Passemar, Stoffer (15)

	NA48/2	NA48/2, jso	NA48/2 and E865	NA48/2 and E865, زەھ
$10^{3} \cdot L_{1}^{r}$	0.69 (03)	0.71 (04)	0.62 (03)	0.64 (04)
$10^{3} \cdot L_{2}^{r}$	1.88 (07)	1.80 (08)	1.79 (06)	1.70 (06)
$10^{3} \cdot L_{3}^{r}$	-3.89(13)	-3.93 (14)	-3.62(11)	-3.60(12)
$10^3 \cdot L_4^r$	≡0.04	≡0.04	≡0.04	≡0.04
$10^{3} \cdot L_{5}^{r}$	≡0.84	≡0.84	≡0.84	≡0.84
$10^{3} \cdot L_{9}^{r}$	≡5.93	≡5.93	≡5.93	≡5.93
χ^2	159.4	67.5	199.9	117.1
dof	27	27	39	39
χ^2/dof	5.9	2.5	5.1	3.0

GC, Passemar, Stoffer (15)

	Ref. [45]	Ref. [45]	NA48/2	NA48/2 & E865	NA48/2	NA48/2 & E865
C_i^r	≡0	BE14	≡0	≡0	BE14	BE14
$10^3 \cdot L_1^r$	0.67 (06)	0.53 (06)	0.34 (03)	0.28 (02)	0.33 (03)	0.27 (02)
$10^{3} \cdot L_{2}^{r}$	0.17 (04)	0.81 (04)	0.42 (06)	0.35 (05)	0.95 (06)	0.89 (05)
$10^{3} \cdot L_{3}^{r}$	-1.76(21)	-3.07 (20)	-1.54 (14)	-1.25(11)	-3.06(14)	-2.80(11)
$10^3 \cdot L_4^r$	0.73 (10)	≡0.3	≡0.04	≡0.04	≡0.04	≡0.04
$10^3 \cdot L_5^r$	0.65 (05)	1.01 (06)	≡0.84	≡0.84	≡0.84	≡0.84
$10^{3} \cdot L_{6}^{r}$	0.25 (09)	0.14 (05)	≡0.07	≡0.07	≡0.07	≡0.07
$10^3 \cdot L_7^r$	-0.17 (06)	-0.34 (09)	$\equiv -0.34$	$\equiv -0.34$	$\equiv -0.34$	$\equiv -0.34$
$10^{3} \cdot L_{8}^{r}$	0.22 (08)	0.47 (10)	≡0.36	≡0.36	≡0.36	≡0.36
$10^{3} \cdot L_{9}^{r}$			≡5.93	≡5.93	≡5.93	≡5.93
χ^2	26	1.0	81.3	128.7	52.5	91.2
dof	9		27	39	27	39
χ^2/dof	2.9		3.0	3.3	1.9	2.3

K_{e4} decays: fit results

Table 7 Matching results for the LECs at NLO and NNLO. The scale is $\mu = 770 \text{ MeV}$

	NLO	NNLO
$10^3 \cdot L_1^r(\mu)$	0.51 (02) (06)	0.69 (16) (08)
$10^3 \cdot L_2^r(\mu)$	0.89 (05) (07)	0.63 (09) (10)
$10^3 \cdot L_3^r(\mu)$	-2.82 (10) (07)	-2.63 (39) (24)

Introduction SU(2) χ PT SU(3) χ PT Summary

Nonleptonic and radiative *K* decays

Rich phenomenology

Complex chiral Lagrangian

Kambor, Missimer, Wyler (90)

Ecker, Kambor, Wyler (93)
Introduction SU(2) χ PT SU(3) χ PT Summary

Nonleptonic and radiative *K* decays

Nonleptonic and radiative K decays

Rich phenomenology

Complex chiral Lagrangian

Kambor, Missimer, Wyler (90)

Ecker, Kambor, Wyler (93)

Convergence of the chiral series even more difficult to assess

Matching with a dispersive representation would be very interesting and useful $$\rightarrow$ talk by G. D'Ambrosio $\ensuremath{\mathsf{G}}$$

Outline

Introduction

SU(2) χ PT Quark-mass dependence Momentum dependence Dispersion relations and matching to χ PT

SU(3) χΡΤ

Summary

Summary

- A detailed understanding of the SM at low energy is a fascinating challenge and we have the tools to tackle it
- Lattice, χPT and dispersion relations are complementary approaches, all necessary to reach that goal as in SU(2) χPT
- SU(3) χ PT: despite huge progress, much remains to be done
- There is a clear physics case for new Kaon experiments
- Moreover, they would provide motivation to bring SU(3) χPT closer to the success level of SU(2) χPT