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An oeuvre of enormous breadth and impact

Superalgebras and 
finite groups

B-meson physics 
and CP violation              
(many directions!)

Fermion masses 
and mixing angles

QFT: QCD and EW interactions, 
anomalies, phase transitions, 
axions, topological charge …

Higgs physics 

(incl. d=6 effective 

Lagrangian)
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Kaon physics and 
effective chiral 

Lagrangian

Neutrino physics

Soft-collinear  
effective theory

SUSY: broken global symmetries, 
CP violation, radiative fermion 

masses, flavor physics …

Lepto-quarks

EDMs and dipole 
moments

QCD sum rules

BSM models: SUSY, little Higgs 
with T parity, unparticles in 

astrophysics, axino dark matter …
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The Power of Effective Field Theories

PUSHING THE LUMINOSITY FRONTIER - GOLDEN AGE OF HEAVY-QUARK THEORY

▸ Tremendous experimental advances: 

▸ 1. generation: ARGUS & CLEO, LEP expts. 

▸ 2. generation: BaBar & Belle, LHCb, CMS, … 

▸ 3. generation: Belle II, LHCb upgrade, … 

▸ Precise measurement of CKM elements 
 involving third-

generation quarks 

▸ Precise determinations of angles (CP violation) 

▸ New-physics searches using FCNC processes

|Vcb | , |Vub | , |Vtd | , |Vts |

CP- Violation in the Renormalizable Theory of Weak Interaction 657 

Next we consider a 6-plet model, another interesting model of CP-violation. 
Suppose that 6-plet with charges (Q, Q, Q, Q -1, Q -1, Q -1) is decomposed into 
SUweak (2) multiplets as 2 + 2 + 2 and 1 + 1 + 1 + 1 + 1 + 1 for left and right com-
ponents, respectively. Just as the case of (A, C), we have a similar expression 
for the charged weak cur;rent with a 3 X 3 instead of 2 X 2 unitary matrix in Eq. 
(5). As was pointed out, in this case we cannot absorb all phases of matrix 
elements into the phase convention and can take, for example, the following 
expression: 

( 
cos 81 -sin 81 cos 8a 
sin 81 cos 82 cos 81 cos 82 cos 83 - sin 82 sin 83ei3 

sin 81 sin 82 cos 81 sin 82 cos 8a +cos 82 sin 8aeio 

-sin 81 sin 8a ) 
cos 81 cos 82 sin 8a +sin 82 cos 83eia . 
cos 81 sin 82 sin 8a- cos 82 sin 8aeio 

(13) 

Then, we have CP-violating effects through the interference among these different 
current components. An interesting feature of this model is that the CP-violating 
effects of lowest order appear only in L1S'?"=O non-leptonic processes and in the 
semi-leptonic decay of neutral strange mesons (we are not concerned with higher 
states with the new quantum number) and not in the other semi-leptonic, L1S=O 
non-leptonic and pure-leptonic processes. 

So far we have considered only the straightforward extensions of the original 
Weinberg's model. However, other schemes of underlying gauge groups and/ or 
scalar fields are possible. Georgi and Glashow's model4l is one of them. We 
can easily see that CP-violation is incorporated into their model without introduc-
ing any other fields than (many) new fields which they have introduced already. 

References 

1) S. Weinberg, Phys. Rev. Letters 19 (1967), 1264; 27 (1971), 1688. 
2) Z. Maki and T. Maskawa, RIFP-146 (preprint), April 1972. 
3) P. W. Higgs, Phys. Letters 12 (1964), 132; 13 (1964), 508. 

G. S. Guralnik, C. R. Hagen and T. W. Kibble, Phys. Rev. Letters 13 (1964), 585. 
4) H. Georgi and S. L. Glashow, Phys. Rev. Letters 28 (1972), 1494. 
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▸ Matching the incredible precision of the       
B-factories required a revolution in theory 

▸ Concerted effort of theory community 
was an important consequence 
Breakthrough came from using effective 
field theories (EFTs): 

▸ , HQET, NRQCD, QCDF, SCET 

▸ SCET later became a versatile tool for 
addressing difficult QCD problems

ℋweak
eff

3

PUSHING THE LUMINOSITY FRONTIER - GOLDEN AGE OF HEAVY-QUARK THEORY
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EFFECTIVE WEAK HAMILTONIAN

▸ Systematic method to separate short-
distance effects (weak scale and beyond) 
from long-distance hadronic dynamics  

▸ Nowadays embedded into SMEFT and its 
low-energy variant LEFT 

▸ But: challenge is to evaluate hadronic 
matrix elements of the quark-gluon 
operators  in all but simplest casesQi(μ)
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FIG. 4. Typical diagrams in the full theory from which the operators (IV.1)–(IV.10) originate. The cross
in diagram (d) means a mass-insertion. It indicates that magnetic penguins originate from the mass-term on
the external line in the usual QCD or QED penguin diagrams.

Next in section VII the∆S = 1 and∆B = 1 hamiltonians of section VI will be generalized to
include the electroweak penguin operatorsQ7 −Q10. These generalized hamiltonians are given in
(VII.1) and (VII.37) for ∆S = 1 and ∆B = 1 non-leptonic decays, respectively. The inclusion of
the electroweak penguin operators implies the inclusion of QED effects. Consequently the coef-
ficients of the operators Q1 − Q6 given in this section will differ slightly from the ones presented
in the previous sections.

In section VIII the effective hamiltonian for KL → π0e+e− will be presented. It is given in
(VIII.1). This hamiltonian can be considered as a generalization of the∆S = 1 hamiltonian (VI.1)
presented in section VI to include the semi-leptonic operators Q7V and Q7A. This generalization
does not modify the numerical values of the∆S = 1 coefficients Ci (i = 1, . . . , 6) given in section
VI.

In section IX we will discuss the effective hamiltonian for B → Xsγ. It is written down in
(IX.1). This hamiltonian can be considered as a generalization of the∆B = 1 hamiltonian (VI.32)
to include the magnetic penguin operators Q7γ and Q8G. This generalization does not modify the
numerical values of the ∆B = 1 coefficients Ci (i = 1, . . . , 6) from section VI.
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Qq
1 =

(
b̄iqj

)

V−A
(q̄jdi)V−A ,

Qq
2 =

(
b̄q
)

V−A
(q̄d)V−A ,

Q3 =
(
b̄d
)

V−A

∑

q

(q̄q)V−A , (VI.33)

Q4 =
(
b̄idj

)

V−A

∑

q

(q̄jqi)V−A ,

Q5 =
(
b̄d
)

V−A

∑

q

(q̄q)V+A ,

Q6 =
(
b̄idj

)

V−A

∑

q

(q̄jqi)V+A ,

where the summation runs over q = u, d, s, c, b.
The corresponding ∆B = 1 Wilson coefficients at scale µ = O(mb) are simply given by a

truncated version of eq. (VI.7)

C⃗(mb) = U5(mb, MW) C⃗(MW) . (VI.34)

Here U5 is the 6 × 6 RG evolution matrix of eq. (VI.24) for f = 5 active flavours. The initial
conditions C⃗(MW) are identical to those of (VI.9)–(VI.14) for the ∆S = 1 case.

G. Numerical Results for the∆B = 1Wilson Coefficients in Pure QCD

TABLE XIII. ∆B = 1Wilson coefficients at µ = mb(mb) = 4.40GeV formt = 170GeV.

Λ(5)

MS
= 140MeV Λ(5)

MS
= 225MeV Λ(5)

MS
= 310MeV

Scheme LO NDR HV LO NDR HV LO NDR HV
C1 –0.272 –0.164 –0.201 –0.307 –0.184 –0.227 –0.337 –0.202 –0.250
C2 1.120 1.068 1.087 1.139 1.078 1.101 1.155 1.087 1.113
C3 0.012 0.012 0.011 0.013 0.013 0.012 0.015 0.015 0.014
C4 –0.026 –0.031 –0.026 –0.030 –0.035 –0.029 –0.032 –0.038 –0.032
C5 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.010
C6 –0.033 –0.035 –0.029 –0.038 –0.041 –0.033 –0.042 –0.046 –0.036

Table XIII lists the ∆B = 1Wilson coefficients for Qu,c
1 , Qu,c

2 , Q3, . . . , Q6 in pure QCD.
C1, C4 and C6 show a O(20%) scheme dependence while this dependence is much weaker for the
rest of the coefficients.
Similarly to the ∆S = 1 case the numerical values for ∆B = 1 Wilson coefficients are sensitive
to the value of ΛMS used to determine αs for the RG evolution. The sensitivity is however less
pronounced than in the ∆S = 1 case due to the higher value µ = mb(mb) of the renormalization
scale.
Finally, one finds no visiblemt dependence in the rangemt = (170 ± 15) GeV.
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VII. THE EFFECTIVE∆F = 1 HAMILTONIAN: INCLUSION OF ELECTROWEAK PENGUIN
OPERATORS

Similarly to the creation of the penguin operators Q3, . . . , Q6 through QCD corrections the
inclusion of electroweak corrections, shown in figs. 2 (d) and (e), generates a set of new operators,
the so-called electroweak penguin operators. For the ∆S = 1 decay K → ππ they are usually
denoted by Q7, . . . , Q10.
This means that although now we will have to deal with technically more involved issues like
an extended operator basis or the possibility of mixed QCD-QED contributions the underlying
principles in performing the RG evolution will closely resemble those used in section VI for pure
QCD. Obviously, the fundamental step has already been made when going from current-current
operators only in section V, to the inclusion of QCD penguins in section VI. Hence, in this section
we will wherever possible only point out the differences between the pure 6 × 6 QCD and the
combined 10 × 10 QCD-QED case.

The full ∆S = 1 effective hamiltonian for K → ππ at scales µ < mc reads including QCD
and QED corrections4

Heff(∆S = 1) =
GF√

2
V ∗

usVud

10∑

i=1

(zi(µ) + τ yi(µ))Qi(µ) , (VII.1)

with τ = −V ∗
tsVtd/(V ∗

usVud).

A. Operators

The basis of four-quark operators for the ∆S = 1 effective hamiltonian in (VII.1) is given by
Q1, . . . , Q6 of (VI.3) and the electroweak penguin operators

Q7 =
3

2
(s̄d)V−A

∑

q

eq (q̄q)V+A ,

Q8 =
3

2
(s̄idj)V−A

∑

q

eq (q̄jqi)V+A ,

Q9 =
3

2
(s̄d)V−A

∑

q

eq (q̄q)V−A , (VII.2)

Q10 =
3

2
(s̄idj)V−A

∑

q

eq (q̄jqi)V−A .

Here, eq denotes the quark electric charge reflecting the electroweak origin of Q7, . . . , Q10. The
basis Q1, . . . , Q10 closes under QCD and QED renormalization. Finally, for mb > µ > mc the
operators Qc

1 and Qc
2 of eq. (VI.4) have to be included again similarly to the case of pure QCD.

4In principle also operators Q11 = gs
16π2 mss̄σµνT aGµν

a (1 − γ5)d and Q12 = eed
16π2 mss̄σµνFµν(1 − γ5)d

should be considered for K → ππ. However, as shown in (Bertolini et al., 1995a) their numerical contri-
bution is negligible. Therefore Q11 and Q12 will not be included here for K → ππ.
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[Gilman, Wise (1979); Buras et al. (1990s)]
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Relations between level spacings in bottom and 
charm systems, e.g.: 
‣  vs.  

‣  

‣  

Form-factor relations: 

with ( ):

m2
B* − m2

B ≈ 0.49 GeV2 m2
D* − m2

D ≈ 0.55 GeV2

mBs
− mB ≈ mDs

− md ≈ 0.10 GeV
m2

B*2
− m2

B1
≈ m2

D*2
− m2

D1
≈ 0.17 GeV2

w = v ⋅ v′ 

HEAVY QUARK SYMMETRY

▸ Hadronic bound states containing a 
heavy quark obey an approximate     
spin-flavor symmetry  

▸ Many predictions for spectroscopy of 
heavy hadrons 

▸ Symmetry relations among  form 
factors, including symmetry-breaking 
corrections  or 

B → D(*)

∼ αs(mQ) ΛQCD/mQ and  ξ(1) = 1

326 M. Neubert/Physics Reports245 (1994) 259—395

analysis considerably by including the first-order power corrections in 1 /mc and i/mb, as well as
renormalization effects at next-to-leading order in perturbation theory. The original analysis of power
corrections is due to Luke [30]. Radiative corrections at leading and subleading order have been
included in a systematic way in Refs. [86,90].
We start by introducing a convenient set of six hadronic form factors h (w), which parameterize

the relevant meson matrix elements of the flavor-changing vector and axial vector currents V~L= ëy’~b
and A,U = ~#y5b,

(D(v’)IV~IB(v))= h~(w)(v + V~)~L+ h_(w) (v —

(D*(vF,E)IV~LIB(v))= ihy(w) e~v~,v~,

(D*(vf,E)IA~dIB(v))hAI(w)(w+i) *~~_ [hA2(w)v~~+hA3(w)vh1~}E*.v. (4.25)

Here w = v v’ is the velocity transfer of the mesons. The results (1.29) and (1.45) obtained in
section 1.4 from the consideration of the naive symmetry limit would correspond to

h~(w)=hy(w)—hA,(w) —hA3(w)(w),

h(w)=hA2(w) =0. (4.26)

But even at leading order in the 1/rn0 expansion there are corrections to these relations from
renonnalization group effects. They can be taken into account by combining the operator product
expansion of the flavor-changing currents J1~~= V~Lor A’~in (3.126) with the general form (4.24)
of matrix elements of the dimension-three operators in the effective theory. According to (3.142),
the /5-dependence of the Wilson coefficients of any bilinear heavy-quark current can be factorized
into a universal function Khh (w, ia), which is normalized at zero recoil. The /5-dependence of this
function has to cancel against that of the Isgur—Wise function. We can use this fact to define a
renormalization-group invariant Isgur—Wise form factor by

~ren(~4’) ~~(w,/5)Khh(w,/L), ~ren(1) = 1. (4.27)

Neglecting terms of order 1 /mQ, we then obtain [86]

(M’(v’) Ij~IM(L’))= ~ren(W) ~ ~~(w) Tr{M’(v’)F1M(v)}. (4.28)

For J~= V’~and A’~,the matrices F, are given in (3.102) and (3.112), respectively. It is now
straightforward to evaluate the traces to find

h~(w)= {C,(w) + ~(w+ l)[C2(w) +C3(W)]}~ren(W),

h(w) = ~(w + 1) [C2(w) — C3(W)]~ren(W),

hy(w) = Ci(W)~ren(W),

hA1(w) C~(W)~ren(W),
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corrections is due to Luke [30]. Radiative corrections at leading and subleading order have been
included in a systematic way in Refs. [86,90].
We start by introducing a convenient set of six hadronic form factors h (w), which parameterize

the relevant meson matrix elements of the flavor-changing vector and axial vector currents V~L= ëy’~b
and A,U = ~#y5b,

(D(v’)IV~IB(v))= h~(w)(v + V~)~L+ h_(w) (v —

(D*(vF,E)IV~LIB(v))= ihy(w) e~v~,v~,

(D*(vf,E)IA~dIB(v))hAI(w)(w+i) *~~_ [hA2(w)v~~+hA3(w)vh1~}E*.v. (4.25)

Here w = v v’ is the velocity transfer of the mesons. The results (1.29) and (1.45) obtained in
section 1.4 from the consideration of the naive symmetry limit would correspond to

h~(w)=hy(w)—hA,(w) —hA3(w)(w),

h(w)=hA2(w) =0. (4.26)

But even at leading order in the 1/rn0 expansion there are corrections to these relations from
renonnalization group effects. They can be taken into account by combining the operator product
expansion of the flavor-changing currents J1~~= V~Lor A’~in (3.126) with the general form (4.24)
of matrix elements of the dimension-three operators in the effective theory. According to (3.142),
the /5-dependence of the Wilson coefficients of any bilinear heavy-quark current can be factorized
into a universal function Khh (w, ia), which is normalized at zero recoil. The /5-dependence of this
function has to cancel against that of the Isgur—Wise function. We can use this fact to define a
renormalization-group invariant Isgur—Wise form factor by

~ren(~4’) ~~(w,/5)Khh(w,/L), ~ren(1) = 1. (4.27)

Neglecting terms of order 1 /mQ, we then obtain [86]

(M’(v’) Ij~IM(L’))= ~ren(W) ~ ~~(w) Tr{M’(v’)F1M(v)}. (4.28)

For J~= V’~and A’~,the matrices F, are given in (3.102) and (3.112), respectively. It is now
straightforward to evaluate the traces to find

h~(w)= {C,(w) + ~(w+ l)[C2(w) +C3(W)]}~ren(W),

h(w) = ~(w + 1) [C2(w) — C3(W)]~ren(W),

hy(w) = Ci(W)~ren(W),

hA1(w) C~(W)~ren(W),

[Shuryak (1980)]

[Isgur, Wise (1990)]

5

The Power of Effective Field Theories



Daniel Wyler Fest — January 7, 2025Matthias Neubert  — 

▸ Extrapolate observed spectrum in 
 to zero recoil: w = v ⋅ v′ 

[MN (1991)]

6

MODEL-INDEPENDENT DETERMINATION OF |VCB|

▸ Direct calculation of the  
form factors (HPQCD):

B → Dlν9
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FIG. 10. Test results for f+(0) and f+(q
2
max) under modifica-

tions of the “standard extrapolation” fit ansatz. The shaded
horizontal bands are the standard extrapolation results. The
x-axis labels the modifications 1 - 16 listed in the text.

14. use 4% uncertainty for higher order matching con-
tributions;

15. use 2% uncertainty on fine and 4% uncertainty on
coarse lattices for higher order matching contribu-
tions;

16. remove Blaschke factor from f0 and f+.

In Fig. 10 we show how results for f+(q2 = 0) = f0(0)
and f+(q2max

) are a↵ected by these modifications. One
sees that our extrapolations are very stable.

V. FORM FACTOR RESULTS

Our final results for the form factors in the physical
limit versus q2 are shown in Fig. 11. Error plots for
f+(q2) and f0(q2) are given in Fig. 12. We isolate the
errors coming from di↵erent sources and also give the
total error as a function of q2. The individual errors in
Fig. 12 correspond to the following:

• statistical
The statistical error includes the three and two-
point correlator fit errors and the scale errors (r1
and r1/a). These are lattice simulation errors, and
we have lattice data in the large q2 region, from
about 9.5 GeV2 to 12 GeV2. Fig. 12 shows the
propagation of such errors to the continuum limit
and after extrapolation to the full q2 range.

• chiral extrapolation
These are the valence and sea quark mass extrap-
olation errors including e↵ects of chiral logs. They

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

q2 [GeV2]

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

f 0 a
nd

 f +

FIG. 11. Continuum and chiral extrapolated f0 (lower band)
and f+ (upper band).

come from the fit parameters ck1 , ck2 and ck3 in
Eq. (33).

• discretization
Discretization errors come from the (amc)n and
(aED)n terms and they constitute the dominant
errors in our calculation.

• kinematic
These come from the z-expansion coe�cients ã(0,+)

k

and the pole locations. As one would expect, the
error increases as q2 decreases.

• matching
Matching errors come from the m?,k fit parameters
as explained in the previous section.

Physical meson mass input errors (0.01%) and finite size
errors (0.1%) are not included in the plots, since they are
too small to have any e↵ect.

The slope of f+(q2) as one comes down from the zero
recoil point at q2 = q2

max
is a quantity that is often

quoted when comparing di↵erent measurements of this
form factor. In terms of the variable w = (M2

B
+M2

D
�

q2)/(2MBMD) the slope parameter ⇢2 is given by

G(w) = G(1)
�
1� ⇢2(w � 1) +O((w � 1)2)

 
, (37)

where,

G(w = w(q2)) =
2
p


1 + 
f+(q

2) (38)

for

 =
MD

MB

. (39)

[HPQCD (2015)]

The Power of Effective Field Theories



Daniel Wyler Fest — January 7, 2025Matthias Neubert  — 

HEAVY QUARK EFFECTIVE THEORY (HQET)

▸ Firm theoretical basis for deriving heavy-
quark symmetry and its consequences

[Eichten, Hill (1990); Georgi (1990)]
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THE GRAND CHALLENGE:  NON-LEPTONIC DECAYS

▸ Georgi: “Why we can’t calculate …” 

▸ Naive factorization approach was semi-successful in describing early data, 
but lacked a firm theoretical foundation

[Georgi: Weak Interactions and Modern Particle Theory (1984)]

[Bauer, Stech, Wirbel (1986)]
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THE GRAND CHALLENGE:  NON-LEPTONIC DECAYS

▸ Georgi: “Why we can’t calculate …” 

▸ Naive factorization approach was semi-successful in describing early data, 
but lacked a firm theoretical foundation

[Georgi: Weak Interactions and Modern Particle Theory (1984)]

▸ QCD factorization approach (BBNS): 

▸ First model-independent calculation of 
 decay amplitudes from first 

principles (including strong- and weak-
interaction phases) in heavy-quark limit

B → M1M2

[Beneke, Buchalla, MN, Sachrajda (1999—2001)] Factorization proof at two-loop order based on 
method of regions, see pp. 48-79 in BBNS (2000)
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QCD FACTORIZATION IN NONLEPTONIC B DECAYS INTO LIGHT MESONS
QCD factorization theorem: 

Figure 1: Graphical representation of the factorization formula. Only one of
the two form-factor terms in (25) is shown for simplicity.

example. To leading power in ΛQCD/mb, but to all orders in perturbation theory, the
matrix elements of the local operators Qi in the effective weak Hamiltonian in (1) obey
the factorization formula

⟨πK|Qi|B⟩ = FB→π
0 T I

K,i ∗ fKΦK + FB→K
0 T I

π,i ∗ fπΦπ

+ T II
i ∗ fBΦB ∗ fKΦK ∗ fπΦπ , (25)

where ΦM are leading-twist light-cone distribution amplitudes, and the ∗-products imply
an integration over the light-cone momentum fractions of the constituent quarks inside
the mesons. A graphical representation of this result is shown in Figure 1. Because
the energetic, collinear light-quark pair that ultimately evolves into the emission particle
at the “upper vertex” is created by a point-like source, soft gluon exchange between
this pair and the other quarks in the decay is power suppressed in the heavy-quark
limit (colour transparency). In other words, whereas the hadronic physics governing
the semileptonic B → M1 transition and the formation of the emission particle M2 is
genuinely nonperturbative, “nonfactorizable” interactions connecting the two systems
are dominated by hard gluon exchange.

The hard-scattering kernels T I,II
i in (25) are calculable in perturbation theory. T I

M,i

starts at tree level and, at higher order in αs, contains “nonfactorizable” corrections from
hard gluon exchange or light-quark loops (penguin topologies). Hard, “nonfactorizable”
interactions involving the spectator quark are part of T II

i . The relevant Feynman dia-
grams contributing to these kernels at next-to-leading are shown in Figure 2. Although
individually these graphs contain infrared-sensitive regions at leading power, all soft and
collinear divergences cancel in their sum, thus yielding a calculable short-distance con-
tribution. Annihilation topologies are not included in (25) and Figure 2, because they
do not contribute at leading order in ΛQCD/mb. These power-suppressed contributions
will be discussed separately in Section 3.5.

We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone
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Figure 1: Graphical representation of the factorization formula. Only one of
the two form-factor terms in (25) is shown for simplicity.

example. To leading power in ΛQCD/mb, but to all orders in perturbation theory, the
matrix elements of the local operators Qi in the effective weak Hamiltonian in (1) obey
the factorization formula

⟨πK|Qi|B⟩ = FB→π
0 T I

K,i ∗ fKΦK + FB→K
0 T I

π,i ∗ fπΦπ

+ T II
i ∗ fBΦB ∗ fKΦK ∗ fπΦπ , (25)

where ΦM are leading-twist light-cone distribution amplitudes, and the ∗-products imply
an integration over the light-cone momentum fractions of the constituent quarks inside
the mesons. A graphical representation of this result is shown in Figure 1. Because
the energetic, collinear light-quark pair that ultimately evolves into the emission particle
at the “upper vertex” is created by a point-like source, soft gluon exchange between
this pair and the other quarks in the decay is power suppressed in the heavy-quark
limit (colour transparency). In other words, whereas the hadronic physics governing
the semileptonic B → M1 transition and the formation of the emission particle M2 is
genuinely nonperturbative, “nonfactorizable” interactions connecting the two systems
are dominated by hard gluon exchange.

The hard-scattering kernels T I,II
i in (25) are calculable in perturbation theory. T I

M,i

starts at tree level and, at higher order in αs, contains “nonfactorizable” corrections from
hard gluon exchange or light-quark loops (penguin topologies). Hard, “nonfactorizable”
interactions involving the spectator quark are part of T II

i . The relevant Feynman dia-
grams contributing to these kernels at next-to-leading are shown in Figure 2. Although
individually these graphs contain infrared-sensitive regions at leading power, all soft and
collinear divergences cancel in their sum, thus yielding a calculable short-distance con-
tribution. Annihilation topologies are not included in (25) and Figure 2, because they
do not contribute at leading order in ΛQCD/mb. These power-suppressed contributions
will be discussed separately in Section 3.5.

We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone
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QCD factorization theorem: 

Figure 1: Graphical representation of the factorization formula. Only one of
the two form-factor terms in (25) is shown for simplicity.

example. To leading power in ΛQCD/mb, but to all orders in perturbation theory, the
matrix elements of the local operators Qi in the effective weak Hamiltonian in (1) obey
the factorization formula

⟨πK|Qi|B⟩ = FB→π
0 T I

K,i ∗ fKΦK + FB→K
0 T I

π,i ∗ fπΦπ

+ T II
i ∗ fBΦB ∗ fKΦK ∗ fπΦπ , (25)

where ΦM are leading-twist light-cone distribution amplitudes, and the ∗-products imply
an integration over the light-cone momentum fractions of the constituent quarks inside
the mesons. A graphical representation of this result is shown in Figure 1. Because
the energetic, collinear light-quark pair that ultimately evolves into the emission particle
at the “upper vertex” is created by a point-like source, soft gluon exchange between
this pair and the other quarks in the decay is power suppressed in the heavy-quark
limit (colour transparency). In other words, whereas the hadronic physics governing
the semileptonic B → M1 transition and the formation of the emission particle M2 is
genuinely nonperturbative, “nonfactorizable” interactions connecting the two systems
are dominated by hard gluon exchange.

The hard-scattering kernels T I,II
i in (25) are calculable in perturbation theory. T I

M,i

starts at tree level and, at higher order in αs, contains “nonfactorizable” corrections from
hard gluon exchange or light-quark loops (penguin topologies). Hard, “nonfactorizable”
interactions involving the spectator quark are part of T II

i . The relevant Feynman dia-
grams contributing to these kernels at next-to-leading are shown in Figure 2. Although
individually these graphs contain infrared-sensitive regions at leading power, all soft and
collinear divergences cancel in their sum, thus yielding a calculable short-distance con-
tribution. Annihilation topologies are not included in (25) and Figure 2, because they
do not contribute at leading order in ΛQCD/mb. These power-suppressed contributions
will be discussed separately in Section 3.5.

We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone
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Figure 1: Graphical representation of the factorization formula. Only one of
the two form-factor terms in (25) is shown for simplicity.
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0 T I
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+ T II
i ∗ fBΦB ∗ fKΦK ∗ fπΦπ , (25)

where ΦM are leading-twist light-cone distribution amplitudes, and the ∗-products imply
an integration over the light-cone momentum fractions of the constituent quarks inside
the mesons. A graphical representation of this result is shown in Figure 1. Because
the energetic, collinear light-quark pair that ultimately evolves into the emission particle
at the “upper vertex” is created by a point-like source, soft gluon exchange between
this pair and the other quarks in the decay is power suppressed in the heavy-quark
limit (colour transparency). In other words, whereas the hadronic physics governing
the semileptonic B → M1 transition and the formation of the emission particle M2 is
genuinely nonperturbative, “nonfactorizable” interactions connecting the two systems
are dominated by hard gluon exchange.

The hard-scattering kernels T I,II
i in (25) are calculable in perturbation theory. T I

M,i

starts at tree level and, at higher order in αs, contains “nonfactorizable” corrections from
hard gluon exchange or light-quark loops (penguin topologies). Hard, “nonfactorizable”
interactions involving the spectator quark are part of T II

i . The relevant Feynman dia-
grams contributing to these kernels at next-to-leading are shown in Figure 2. Although
individually these graphs contain infrared-sensitive regions at leading power, all soft and
collinear divergences cancel in their sum, thus yielding a calculable short-distance con-
tribution. Annihilation topologies are not included in (25) and Figure 2, because they
do not contribute at leading order in ΛQCD/mb. These power-suppressed contributions
will be discussed separately in Section 3.5.

We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone
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We stress that the factorization formula does not imply that hadronic B decays are
perturbative in nature. Dominant soft contributions to the decay amplitudes exist, which
cannot be controlled in a hard-scattering approach. However, at leading power all these
nonperturbative effects are contained in the semileptonic form factors and light-cone
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[Beneke, Buchalla, MN, Sachrajda (1999—2001)]

▸ Importance of non-local hadronic matrix 
elements, in particular light-cone 
distribution amplitudes (LCDAs), to 
account for hadronic dynamics 

▸ Second term corresponds to Brodsky-
Lepage (1980), while the first term is 
specific for B-meson decays and 
contributes at the same order in  ΛQCD/mb

The Power of Effective Field Theories
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QCD FACTORIZATION IN NONLEPTONIC B DECAYS INTO LIGHT MESONS

Status 2004

[Beneke, MN (2003)]
10
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CONFIRMATION OF KM RELATION BETWEEN IM(VUB) AND IM(VTB)

11

▸ In 2001, fact that  had been 
established by studies of  and  
mixing and first measurements of  

▸ Fact that  has been established by 
studying rare hadronic decays  in 
QCD factorization 

▸ KM relation confirmed; most stringent test of 
KM mechanism at the time

Im(Vtd) ≠ 0
K−K̄ B−B̄

sin 2β

Im(Vub) ≠ 0
B → πK, ππ

[BBNS (2001), here updated to 2004 data]

CP violation in the bottom sector

Fact that Im(V ∗
ub) ̸= 0 has been established by studies of rare

hadronic B decays using QCD factorization: [BBNS 01]
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η

ρ

top sector

bottom sector

combined region

CKM relation between Im(Vtd) and Im(Vub) confirmed
most stringent test of CKM mechanism to date!

In framework of the Standard Model, this determines the
triangle parameters with good precision (90% CL):

γ = (62 ± 15)◦, and ρ̄ = 0.15 ± 0.08, η̄ = 0.36 ± 0.09

Mixing-Independent Determination ofThe Unitarity Triangle – p.4/21

2004 analysis: ,   
ccccccccccccrk ,     

ρ̄ = 0.15 ± 0.08 η̄ = 0.36 ± 0.09
γ = (67 ± 15)∘ β = (24 ± 2)∘

2021 values:    ,    
cccccccclccrk.  ,     

ρ̄ = 0.157+0.009
−0.005 η̄ = 0.347+0.012

−0.005
γ = (65.5+1.3

−1.2)
∘ β = (22.42+0.64

−0.37)
∘

[CKMfitter global fit, spring 2021]

The Power of Effective Field Theories
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▸ Measuring time-dependent CP asymmetries 
in  and  decays one obtains 
an internally consistent determination of  

▸ 2003 analysis found:   

▸ 2021 value:                  

B → ππ B → πρ
γ

γ = (62 ± 8)∘

γ = (65.5+1.3
−1.2)

∘

[Beneke, MN (2003)]

Status 2003

The Power of Effective Field Theories

CONFIRMATION OF KM RELATION BETWEEN IM(VUB) AND IM(VTB)

 Gronau—Wyler method↪
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The Power of Effective Field Theories
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On determining a weak phase from charged B decay asymmetries 
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we demonstrate a possible determination of the weak phase 7 from the CP asymmetry in B ÷ --,D~',2,X-. where D°t2~ is a CP- 
even (odd) state and X * is any hadronic state with the flavor ofa K :. To obtain the phase one needs separate measurements of 
the rates F( B ÷ , D°c 2, X -* ) and of the equal rates F( B -' --, D°X -* ) = F( B* --, I)°X ~ ). Certain ambiguities are discussed and reso- 
lutions are proposed. 

A rather promising way of testing the Kobayashi -  
Maskawa model of C P  violation [ I ] is by measure- 
ments of C P  asymmetries in neutral B decays into C P  
eigenstates. When a single Cab ibbo-Kobayash i -  
Maskawa ( C K M )  weak ampli tude dominates  in the 
decay of a pure B °, the t ime-dependent  asymmetry 
oscillates with a frequency given by the neutral B me- 
son mass-difference and with an ampli tude which is 
directly related to a weak CKM phase [2]. This sim- 
ple result may serve in the future as a pure test of the 
KM mechanism of CP violation [ 3,4 ]. It follows from 
having two interfering ampli tudes with equal mag- 
nitudes and equal final state interaction phases *' 

On the other hand, C P  asymmetries in charged B 
decays involve in general large theoretical uncertain- 
ties [7] ~2. An asymmetry is expected in a given pro- 
cess, B ± --,f(l'), provided that two ampli tudes con- 
tribute (A,. A2), with different CKM phases (~) : ~ 2 )  
and different final state intcraction phascs (,6, ¢ 62 ): 

*' The situation is more complicated when two amplitudes con- 
tribute to a given neutral B decay, see ref. [ 5 ]. Such cases can 
be analyzed with the help ofisospin symmetry, see ref. [6]. 

,2 For two recent calculations of such asymmetries see ref. [8]. 
These papers contain references to previous work. 

A(B -+ - , f ( f )  ) = IA, I cxp( _+ i0, ) exp(i6, ) 

+ [A2l exp(+i•2)  exp(i62) . (1)  

The theoretical difficulty in relating the asymmetry 
in charged B decays to a pure CKM matrix element 
follows from having two unknowns in the problem, 
the ratio of amplitudes, [A2/An [, and the final state 
phase difference, 62 - 6 , .  Both quantities involve quite 
large theoretical uncertainties. 

In the present letter we will show that in a certain 
type of charged B decays it is possible to measure sep- 
arately the magnitudes of the two contr ibuting am- 
plitudes. This will be shown to be a possible step to- 
wards a determinat ion of the weak phase. That is, 
0 2 - ~ ,  can be cleanly obtained from the measured 
decay rates (at least in principle).  In the processes 
studied below. ~2-¢~ =7  is one of the angles of the 
CKM unitari ty triangle, namely the phase of the mix- 
ing of the first and third families of quarks (7 -6 ,3 ,  
see ref. [ 9 ] ). There remain two discrete ambiguities 
in 7; one in the sign of the weak phase and the other 
in the possibility of confusing 7 with the final state 
phase difference, 62 -6 , .  Both ambiguities can be re- 
moved by using known constraints on the weak phase 
and by applying this method to a variety of processes. 

We consider the decays B ' - , D ° ( D ° , ) K  ' , where 

172 0370-2693/91/$ 03.50 ¢.) 1991 Elsevier Scicnce Publishers B.V. All rights reserved. 
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D0(D °) = [D°+ ( - )O°]/x/2 is a CP-even (odd) 
state. This state can be identified by its CP-even 
(odd)  decay products. For instance, the states Ksn °, 
Ksp °, KsO), Ks¢ can identify a D °, while n+x - ,  K+K - 
represent a D °. In the standard model C P  violation 
in D decays is negligibly small and hence will be dis- 
regarded. The decay ampli tudes of the above two 
mutual charge-conjugate processes can be written (say 
for D °) in the form 

xf} A(B + --.D°K + ) 

= IA[ exp(iy) e x p ( i 6 ) +  IAI exp(i~-),  

V/2 A ( B - - , D ° K  - ) 

= IAI exp( - i~ , )  e x p ( i 6 ) +  IAI exp(i~-).  (2) 

A and ,,[are the two weak amplitudes, with CKM fac- 
tors V~*b Vcs and Vcb Vus, respectively. These two am- 
plitudes are of comparable size ,3. y and zero are the 
corresponding weak phases in the standard CKM pa- 
rametrization [9] and 6, ~-are the final state interac- 
tion phases, respectively. Since A leads to final states 
with isospin 0 and 1, whereas ,~ can only lead to iso- 
spin 1 states, one generally expects 6 ~ -  [ 10] ~4 

The crucial point to note is that the two amplitudes 
on the right-hand side of the first of eqs. (2) are, in 
fact, the amplitudes of B + --,D°K + and B + --. l )°K +, 
respectively. Similarly, the two terms in the second 
equation describe the ampli tudes of B-  - , l ) ° K  - and 
B-  --. D ° K - ,  respectively"5. Thus 

x/~ A (B+ --,D°K + ) 

=A (B+ ~ D ° K +  ) +A (B+--.I3°K + ) ,  

xf} A (B---,D°K - ) 

= A ( B -  --,13°K - ) + A ( B -  -*D°K - ) .  (3) 

,3 A similar study may be carried out for B-'--,D°,(2)n ". How- 
ever, here the two amplitudes are quite dissimilar in magni- 
tude. the expected CP asymmetry is rather small and the ap- 
plication oftbe analysis below is expected to accumulate large 
errors. 

~4 This paper includes an estimate of the CP asymmetry in 
B*~ (D°/IT)°) K *- + n n ~  (Ks+mrt)K ÷ +nn. The authors do 
not insist on neutral D decays to CP-eigenstates as we do. 

=s This simple and very useful relation was used in ref. [ 11 ] to 
study the corresponding neutral B decays. The angles ot andp 
were shown to be determined from B ° --, DO/13°/D°(2 ~ Ks. 

The flavor states D O and I) ° are distinguished by the 
charge of the decay lepton or kaon. Eqs. (2) ,  (3) can 
be described by two triangles in the complex plane, 
given by the solid lines in fig. la. The two triangles 
represent the complex B ÷ and B-  decay amplitudes. 
Note that 

A(B + --,IT)°K + ) = A ( B -  --, D°K - ) ,  

A(B + --. D°K + ) =exp  (2iy)A (B-  --, I)°K - ) ,  

IA( B+--*D°K+ )1 ~ IA(B---,Dt°K - )1 • (4)  

This implies that CP is conserved in B-' --,D°(D°)K-+ 
but is violated in B-+ ~ D ° K  ±. In the last of eqs. (4) 
we assumed y¢:0, 6¢J. .  The asymmetry in the rates 
of B -+ --,D°K -+ depends on 7and  ~--6; clearly 

(o) 

///•A (B° ~ D° K * ) 

~ A(B---DOK - ) 

~ .  A(BO ~ O K , ) = A ( B - ~  ~-o ~ - ~  . . . . .  o -,\  ~8-~-7"oOK-)\- - - -  

-.. \ 
" -  \ 

"~, '~. ~t A (B* ~O° K ° ) vi~ A (B'--DOK ") ~..~. \ 

(b) 

A I B ' - - ~ ' ~ D ° K "  ) 

Fig. I. Complex triangles ofeq. (3). (a) and (b) describe two 
solutions for y. 
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IA(B+--,DOK + ) 1 2 -  I A ( B - ~ D ° K  -)12 

=21A(B+ ~ I ) ° K + ) I  { A ( B + ~ D ° K + ) I  

× s i n ( ~ - f i )  sin y.  (5)  

The procedure for obtaining y is straightforward. 
Measurements  of  the rates of  the above six proc- 
cesses, two pairs o f  which are equal, determine the 
lengths ofal l  six sides of  the two triangles (solid lines 
in fig. ia ) .  When the two triangles are formed, 27 is 
the angle between A(B+-- ,D°K +) and A(B- - - .  
IS)°K - ). This determines the magnitude of  7 within a 
two-fold ambiguity. Fig. l b describes the second pos- 
sible solution. Figs. la (solid lines) and lb  are ob- 
tained from each other by interchanging y and ~ - ~ .  
This ambiguity follows from the symmetry  of  the rel- 
evant equations for 7 (the cosine theorem ) under the 
latter interchange. There is also a sign ambiguity for 
y, since each of  the two triangles may be reflected 
through its basis. The four solutions for sin 7 are given 
by 

1 
sin 7=  41AA~ ( + { [ (  Ihl  + 1-41 )2 -21A ~" 12 ] 

× [2 IA i- 1 2 - (  I A I -  1.41 )2]} ,/2 

+ { [ ( I A I  +1.41 ) 2 - 2 [ A  i-12 ] 

X [ 2 1 A ?  1 2 - ( I A I - I , g l ) 2 ] } ' / 2 )  , (6)  

where A ~- - A  (B + - , D ° K  + ), A i- - A  ( B -  - ,Dt°K - ). 
Additional measurements  of  the rates of  B----, 

D°K ± cannot resolve the above ambiguities in the 
size and sign of 7. However,  these measurements  
would increase the statistics and provide additional 
constraints on the two triangles. The constraint of  
B + - , D ° K  + is shown by the broken lines in fig. la. 
This information may turn out to be crucial, since 
measurement  of  the rate of  B + + D O K -+ will presum- 
ably have larger experimental  errors than 
B + --* D°(IS)°)K + (see discussion below). We note the 
following identity: 

IA (B+--,DOK + ) 1 2 -  IA ( B -  --,D~K - )12 

= IA ( B -  ~ D ° K -  ) I - ' -  IA(B+ ~ D ° K +  ) 12 (7)  

In general the CP asymmetr ies  in B ± --,D°t K *- and in 
B ' - - - ,D°K -' differ in magnitude due to the different 
rates of  these two decay processes. 

The way to resolve the ambiguity in the magnitude 
of sin y is the following. One may carry out the above 
analysis for all decay processes of  the type B*-~ 
DO ( I)°, D]~I 2) ) X ±, where X -' is any state with the fla- 
vor quantum number  o f a  K- ' ,  e.g. X + = K  +, K°~ +, 
K ÷ x  °, K+~+~ - .  This has the effect o f  increasing sta- 
tistics considerably. Also, one makes the following 
observation. Whereas the weak phase y is common  to 
all such decay processes, the final-state phase differ- 
ences 6 -  ~-differ from one process to another.  Draw- 
ing the triangles of  fig. 1 separately for each of  these 
processes and comparing the respective angles re- 
solves the ambiguity of  confusing 7 with 6-~..  In 
principle, when this study is carried out for a variety 
of  processes of  this type, both the weak phase and the 
relevant final-state phase differences can be 
determined.  

The ambiguity in the sign of  sin ~, is intrinsic to our 
method.  It basically follows from trying to determine 
the weak phase from rates alone. Since the rates de- 
termine the cosines through the cosine theorem (figs. 
la, lb ) ,  the sign of  the weak angle cannot be deter- 
mined. However,  it should be noted that the sign of  
sin 7 in the standard model is already known to be 
positive from the phenomenology of  CP violation in 
K decays [ 9 ]. 

At this point it may be useful to comment  on the 
feasibility of  our method.  Since it applies to all de- 
cays of  the type B ' --,D°X ' , where X* is any state 
with the flavor o f a  K ±, we will first consider the in- 
clusive rates. The inclusive branching ratio of  
B + - , D ° X  +, X + = ( K + n n )  + ( summed  over  n) is 
est imated to be at the level of  2% ( B R ( B ~ D +  any- 
thing) ~50% [9] ). Only 5% or so of  all D°'s decay 
into CPeigenstates [9,12]. A sample of  106 B ± yields 
about 1000 events of  the kind B :  - ,  D°,2 X +. The CP 
asymmet ry  in these inclusive rates may be as large as 
a few tens of  a percent. It is, however, difficult to ob- 
tain ;, from the asymmetry  in the inclusive rates. The 
above-described procedure is to study each decay 
mode (X = K, KTt, K2rc, etc. ) separately. If  one as- 
sumes for simplicity that the final state phase differ- 
ence J - a -  and the ratio of  two ampli tudes I~11/IAI 
do not depend on the decay mode,  then the determi- 
nation of  7 from fig. 1 would apply also to the inclu- 
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[Gronau, Wyler (1991)]

A pioneering paper! 
(1141 citations)
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LIMITATIONS OF QCD FACTORIZATION

14

▸ Lots of predictive power, but uncertainties due to hadronic input quantities: 
form factors, decay constants, and LCDAs (reducible to some extent) 

▸ Power corrections in  do not (naively) factorize due to endpoint 
divergences (  different meanings of “factorization”) 

▸ In some cases, power-suppressed effects can be enhanced by large Wilson 
coefficients (e.g. “color-suppressed” decay modes) 

▸ To make progress, one needed an EFT implementation of QCD factorization

ΛQCD/mb
⇒

The Power of Effective Field Theories
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SOFT-COLLINEAR EFFECTIVE THEORY (SCET)

▸ Firm theoretical basis for deriving QCD factorization theorems in heavy-quark 
and collider physics for processes involving light energetic particles 

▸ Collinear effective Lagrangian: 

▸ Soft-collinear factorization at Lagrangian level 

▸ Scale separation and resummation accomplished using powerful EFT tools

[Bauer, (Fleming,) Pirjol, Stewart (2001); Beneke, Chapovski, Diehl, Feldmann (2002)]

eikonal interaction, can be removed by 
the field redefinition ξn → Sn ξ(0)

n

15

7 16. Heavy-Quark and Soft-Collinear E�ective Theory

In the above power counting the transverse momenta of soft degrees of freedom scale as p‹
s ≥256

Q⁄2, which is much smaller than the transverse momenta p‹
c ≥ Q⁄ of collinear fields. This theory is257

usually called SCETI. If the external kinematics require that the transverse momenta of both soft258

and collinear fields are of the same size, p‹
c ≥ p‹

s , then the appropriate degrees of freedom have the259

scaling pc ≥ Q(1, ⁄2, ⁄) and ps ≥ Q(⁄, ⁄, ⁄). This theory is usually called SCETII and is required,260

e.g., for exclusive hadronic decays such as B̄ æ Dfi, where the virtuality of both collinear and soft261

degrees of freedom are set by �QCD, or for the description of transverse-momentum distributions262

at colliders. SCETI power counting is assumed in the following sections, while SCETII is discussed263

in more detail in 16.3.6.264

16.3.2 Leading-order Lagrangian265 sect.Lagrangian

The derivation of the SCET Lagrangian follows similar steps as described for HQET in Sec-266

tion 16.2.1. One begins by deriving the Lagrangian for a theory containing only a single collinear sec-267

tor. Similar to HQET, one separates the full QCD field into two components, qn(x) = Ân(x)+�n(x),268

where (with n · n̄ = 2)269

Ân(x) = /n/̄n
4 qn(x) , �n(x) = /̄n/n

4 qn(x) . (16.11)dummy1dummy1

The degrees of freedom described by the field �n are far o� shell and can therefore be eliminated270

using its equation of motion. This gives271

Ln = Â̄n(x)
5
in · D + i /D‹ 1

in̄ · D
i /D‹

6 /̄n
2 Ân(x) . (16.12)Lfinal1Lfinal1

As a next step, one separates the large and residual momentum components by decomposing the272

collinear momentum into a “label” and a residual momentum, pµ = P µ + kµ with n · P = 0.273

One then performs a phase redefinition on the collinear fields, such that Ân(x) = eiP ·x ›n(x).274

Derivatives acting on the fields ›n(x) now only pick out the residual momentum. Since unlike in275

HQET the label momentum in SCET is not conserved, one defines a label operator Pµ acting as276

Pµ›n(x) = P µ›n(x) [52], as well as a corresponding covariant label operator iDµ
n = Pµ + gAµ

n(x).277

Note that at leading order in power counting iDµ
n does not contain the soft gluon field. This leads278

to the final SCET Lagrangian [52,53,55,56]279

Ln = ›̄n(x)
5
in · Dn + gn · As + i/D‹

n
1

in̄ · Dn
i/D‹

n

6 /̄n
2 ›n(x) + . . . , (16.13)Lfinal3Lfinal3

where we have split in ·D into a collinear piece in ·Dn = in ·ˆ +gn ·An and a soft piece gn ·As. This280

latter term gives rise to the only interaction between a collinear quark and soft gluons at leading281

power in ⁄. The ellipses represent higher-order interactions between soft and collinear particles.282

The Lagrangian describing collinear fields in di�erent light-like directions is simply given by283

the sum of the Lagrangians for each direction n, i.e. L =
q

n Ln. The soft gluons are the same in284

each individual Lagrangian. An alternative way to understand the separation between large and285

small momentum components is to derive the Lagrangian of SCET in position space [56]. In this286

case no label operators are required, and the dependence on short-distance e�ects is contained in287

non-localities at short distances. An important di�erence between SCET and HQET is that the288

SCET Lagrangian is not corrected by short distance fluctuations. The physical reason is that in289

the construction described above no high-momentum modes have been integrated out [56]. Such290

hard modes arise when di�erent collinear sectors are coupled via some external current (e.g. in jet291

production at e+e≠ or hadron colliders), or when collinear particles are produced in the rest frame292

of a decaying heavy object (such as in B decays). Short-distance e�ects are then incorporated in293

the Wilson coe�cients of the external source operators.294

DRAFT 25th November, 2019 1:13pm- Not for public distribution

H

JJ

J J

S

The Power of Effective Field Theories
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SCET PROOF OF QCD FACTORIZATION FOR  DECAYB → K*γ

Two-step matching procedure QCD  SCET-1  SCET-2:→ →
[Becher, Hill, MN (2005)]

16

QCD
µ2 ∼ m2

b−→ SCETI
µ2 ∼ mbΛ−→ SCETII

PSfrag replacements

Q8

−→PSfrag replacements JA −→PSfrag replacements JA

PSfrag replacements

Q8

−→PSfrag replacements

JB

−→PSfrag replacements

OB

PSfrag replacements

Q8

−→
PSfrag replacements

JC
−→

PSfrag replacements
OC

Figure 1: Three QCD Feynman diagrams for the contributions of Q8 and their leading-order
representation in the effective theory. The double line denotes the heavy-quark field. The
dashed lines denote hard-collinear fields in SCETI and collinear fields in SCETII. Solid lines
in the effective-theory diagrams denote soft fields and the dotted line denotes a soft-collinear
field.

While it is easy to see that all of the above regions are required to obtain the expansion of
the correlator diagrams, we do not have a proof that they are sufficient.2 Two-loop applications
in similar kinematic situations [28] suggest that no additional regions are needed. The above
list of momentum scalings is natural in that it contains all onshell modes whose components
n·p and n̄·p scale with powers of λ equal to the scaling of the components of external momenta.

Finally, let us note that the analysis of regions presented above assumes exactly massless
light quarks. A systematic inclusion of quark mass terms presents a challenge, since the mode
structure in the low-energy theory is then drastically altered. For instance, including O(Λ)
masses would eliminate the soft-collinear mode, but the resulting diagrams for the soft and
collinear regions would no longer be separately well-defined in dimensional regularization,
requiring additional unconventional (e.g., analytic) regulators. We will return to this issue in
Section 4.3 and address the more modest question of the leading corrections for light-quark
masses mq ≪ Λ. We argue that contributions linear in the light mass may be absorbed into
the hadronic parameters appearing in the factorization formula, while any terms that could
potentially spoil factorization appear first at quadratic order.

2The same is true for traditional diagrammatic factorization proofs. Additional momentum regions could
invalidate the analysis also in these cases.

7

The Power of Effective Field Theories
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Product/convolution of component functions each depending on a single scale:

17

PROTOTYPICAL SCET FACTORIZATION THEOREM

hard collinear soft
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p2

SCET-2

▸ Extension to next-to-leading power is a hard problem, due to endpoint-divergent 
convolution integrals 

▸ Refactorization-based subtraction (RBS) scheme provides a consistent framework 
for dealing with this problem 

[Beneke et al. ; Moult et al.; Stewart et al.; Bell et al. (2018—2022)]

[Liu, MN (2019, 2020); Liu, Mecaj, MN, Wang (2021); Liu, MN, Schnubel, Wang (2022)]

The Power of Effective Field Theories
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GAP-BETWEEN-JETS OBSERVABLES

The Power of Effective Field Theories

CERN Document Server, ATLAS-PHOTO-2018-022-6

H ! bb̄
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LARGE LOGARITHMS IN JET PROCESSES

The Power of Effective Field Theories

Perturbative expansion includes “super-leading” logarithms:

gap: 
 Eout < Q0

unrestricted Ein ~ Q

� ⇠ �Born ⇥
�
1 + ↵sL+ ↵2

sL
2 + ↵3

sL
3 + ↵4

s L
5 + ↵5

s L
7 + . . .
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formally larger than O(1)
[Forshaw, Kyrieleis, Seymour (2006)]state-of-the-art
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LARGE LOGARITHMS IN JET PROCESSES

The Power of Effective Field Theories

Really, a double-logarithmic series starting at 3-loop order:

gap: 
 Eout < Q0

unrestricted Ein ~ Q

formally larger than O(1)
[Forshaw, Kyrieleis, Seymour (2006)](=mL)2
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BREAKING OF COLOR COHERENCE

The Power of Effective Field Theories

▸ Color coherence holds if all three particles are incoming or outgoing 
(time-like splitting): 

▸ Then collinear factorization holds:

2
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k
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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conditions on the low-energy matrix elements Wm(µs) =
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
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or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0
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< Q0. The ↵2
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term / V

G � arises from real-
virtual corrections to the same matrix elements. The
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.
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(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
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from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3
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arise at four-loop order and involve C01 and C11. In (4),
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are the Born-level hard functions and we use that
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= 1 at lowest order.
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conditions on the low-energy matrix elements Wm(µs) =
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. The renormalization factor Z is related to
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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with O
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1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0
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< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
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G is directly related to the imagi-
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BREAKING OF COLOR COHERENCE

The Power of Effective Field Theories

▸ Color coherence is broken if not all particles are incoming/outgoing 
(space-like splitting), since both sides receive different phase factors: 

▸ Collinear factorization is violated:
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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lous dimension. The soft piece consists of �c and V
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which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form
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Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3
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in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H
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are the Born-level hard functions and we use that
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= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]
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lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple
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conditions on the low-energy matrix elements Wm(µs) =
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. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
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We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]
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with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
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J
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µ as well the product of J
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µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+

⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

≠ +

soft soft soft

collinear

…

p1

p2

pi

pn

pj

Mn
<latexit sha1_base64="DMABv/WXZNTVYSWdalbRTX8S7+k=">AAAB9HicbVDLSgMxFL2pr1pfVZdugkVwVWaqYJcFN26ECvYB7VAyaaYNzWTGJFMoQ7/DjQtF3Pox7vwbM+0stPVA4HDOvdyT48eCa+M436iwsbm1vVPcLe3tHxwelY9P2jpKFGUtGolIdX2imeCStQw3gnVjxUjoC9bxJ7eZ35kypXkkH80sZl5IRpIHnBJjJa8fEjOmRKT384EclCtO1VkArxM3JxXI0RyUv/rDiCYhk4YKonXPdWLjpUQZTgWbl/qJZjGhEzJiPUslCZn20kXoOb6wyhAHkbJPGrxQf2+kJNR6Fvp2MgupV71M/M/rJSaoeymXcWKYpMtDQSKwiXDWAB5yxagRM0sIVdxmxXRMFKHG9lSyJbirX14n7VrVvarWHq4rjXpeRxHO4BwuwYUbaMAdNKEFFJ7gGV7hDU3RC3pHH8vRAsp3TuEP0OcPCu+SPg==</latexit> …

p1

p2 pn

pi

P
⊗

Mn�1
<latexit sha1_base64="b+oojxYLc7e+DSwY4cqnedYIOS8=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIvgxpJUwS4LbtwIFewD2hAm00k7dDIJMxOlxHyKGxeKuPVL3Pk3TtostPXAwOGce7lnjh8zKpVtfxultfWNza3ydmVnd2//wKwedmWUCEw6OGKR6PtIEkY56SiqGOnHgqDQZ6TnT69zv/dAhKQRv1ezmLghGnMaUIyUljyzOgyRmmDE0tvMS/m5k3lmza7bc1irxClIDQq0PfNrOIpwEhKuMENSDhw7Vm6KhKKYkawyTCSJEZ6iMRloylFIpJvOo2fWqVZGVhAJ/biy5urvjRSFUs5CX0/mQeWyl4v/eYNEBU03pTxOFOF4cShImKUiK+/BGlFBsGIzTRAWVGe18AQJhJVuq6JLcJa/vEq6jbpzUW/cXdZazaKOMhzDCZyBA1fQghtoQwcwPMIzvMKb8WS8GO/Gx2K0ZBQ7R/AHxucPNIyT7Q==</latexit>

pj

pi || p1

violated by soft photons!

[Catani, de Florian, Rodrigo (2011); Forshaw, Seymour, Siodmok (2012)]



Daniel Wyler Fest — January 7, 2025Matthias Neubert  — 22

GAP-BETWEEN-JETS OBSERVABLES

The Power of Effective Field Theories

SCET factorization theorem for M-jet production at the LHC

low scales Q0 and ΛQCD

[Becher, MN, Shao (2021); 
+ Stillger (2023)]

high scale

Figure 1. Pictorial representation of the factorization formula (2.1). In black, a hard function Hm

in (2.3) is shown, which is multiplied by soft Wilson lines for each hard parton (red double lines).
The color indices of the Wilson lines along the directions of the final-state particles in the amplitude
are connected (dotted lines) to the ones sourced by the particles in the conjugate amplitude. The
Wilson lines of the initial-state partons connect to the collinear fields (blue), see (2.7). We also
included a real and a virtual soft gluon, which are part of the matrix element Wm.

gluon, while �̄i is equal to the corresponding conjugate fields. Note that the argument

of the collinear fields indicates the spacetime point at which they are localized, whereas

the argument of the soft Wilson lines indicates their direction. All soft Wilson lines are

located at the point x = 0. Since we only consider unpolarized hadron beams, the Dirac

and Lorentz indices in (2.7) are contracted with the relevant spin sums, i.e.
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(2.8)

Therefore, Wm acts as a unity matrix in helicity space. The additional derivative arising in

the gluon case ensures that the collinear matrix element corresponds to the usual definition

of the gluon PDF. The factorization theorem is depicted in Figure 1, which also shows how

the color indices of the Wilson lines in Wm are connected to the hard functions and the

collinear fields (dotted lines).

In the factorization formula (2.1) the soft Wilson lines Si(ni) in (2.7) multiply the

amplitudes |Mm({p})i in the hard functions (2.3), while the conjugate Wilson lines S†
i
(ni)

multiply the conjugate amplitude hMm({p})|. In (2.7), the jet-veto scale Q0 is defined

to be the upper limit on the total transverse momentum E
?
out =

P
i
|p

?
i
| of the particles

outside of the jets, but many other kinematic restrictions could be considered. For example,

in order to be less sensitive to the underlying event and pile-up, one can instead define Q0

as the upper limit on the transverse momentum of jets inside the veto region, as was done

by the ATLAS collaboration in [42, 43]. In the leading-logarithmic approximation, one is

not sensitive to the precise definition of the observable, but only to the associated energy

scale Q0.

We note that the n1- and n2-collinear fields in (2.7) are fields obtained after the soft-

collinear decoupling transformation [32]

�i(tn̄i) ! Si(ni)�i(tn̄i) (2.9)
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We analyze the low-energy dynamics of gap-between-jets cross sections at hadron colliders, for
which phase factors in the hard amplitudes spoil collinear cancellations and lead to double (“super-
leading”) logarithmic behavior. Based on a method-of-regions analysis, we identify three-loop contri-
butions from perturbative active-active Glauber-gluon exchanges with the right structure to render
the cross section consistent with PDF factorization below the gap veto scale. The Glauber contribu-
tions we identify are unambiguously defined without regulators beyond dimensional regularization.

Factorization, the separation of physics e↵ects asso-
ciated with di↵erent scales, is a fundamental property
of quantum field theory. Indeed, the basis for all per-
turbative calculations of scattering processes at hadron
colliders is the factorization of cross sections into non-
perturbative (long-distance) parton distribution func-
tions (PDFs) and high-energy (short-distance) partonic
cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
energy interactions between the colliding hadrons in the
high-energy limit. A formal proof for PDF factorization
has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]

�(Q0) =
1X

m=m0

Z
d⇠1d⇠2 (1)

⇥
⌦
Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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cross sections computed in perturbation theory. Cru-
cially, PDF factorization also entails the absence of low-
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has only been presented for the inclusive Drell-Yan cross
section [1]. Over the years, a number of authors have
expressed doubts that it will be valid in general [2–4].
Indeed, the observed breakdown of collinear factorization
for space-like collinear splittings [5–10] is often taken as
an indication that PDF factorization might be violated in
higher orders of perturbation theory. Super-leading log-
arithms (SLLs) [11] in exclusive jet cross sections have
the same origin. They are double-logarithmic e↵ects
arising from complex phases in the hard-scattering am-
plitudes, which break color coherence and threaten the
cancellation of collinear divergences in the cross section.
Since PDF evolution is single-logarithmic, the presence
of SLLs necessitates the existence of low-energy interac-
tions between the incoming partons, and the key question
is whether this is a perturbative e↵ect. Both collinear
factorization breaking and the SLLs are associated with
Glauber dynamics, whose cancellation was crucial in the
factorization proof for the Drell-Yan process.

Collinear factorization breaking and SLLs were discov-
ered long ago [5, 6, 11], but an all-order understanding of
these e↵ects is lacking. For SLLs important progress was
achieved recently, and the all-order structure of the lead-
ing e↵ects is now known for arbitrary processes [12–14].
Based on an analysis in Soft-Collinear E↵ective Theory
(SCET) [15–18], the separation of scales in the cross sec-
tion was accomplished and a systematic framework for
investigating factorization was provided. SLLs arise first
at four-loop order, and the preservation of PDF factor-
ization would require a highly intricate interplay of high-
energy and (perturbative) low-energy dynamics at this
order, whose precise mechanism has remained elusive.

In this Letter, we address this outstanding challenge
and identify, for the first time, a contribution of an active-
active Glauber exchange (a gluon exchange between par-
tons participating in the hard scattering) to a cross sec-
tion. We show that in leading-logarithmic approxima-
tion the result has exactly the required form to turn
the double-logarithmic back into single-logarithmic evo-
lution. While our analysis does not amount to a proof of
PDF factorization, it demonstrates that the breaking of
collinear factorization does not necessarily translate into
a breaking of PDF factorization. On the technical side,
our analysis relies on a method-of-regions [19, 20] compu-
tation of box and pentagon diagrams. Obtaining a com-
plete list of the regions contributing to a given kinematic
configuration is not a straightforward task and, indeed,
an area of active research [10, 21–27]. Interestingly, the
Glauber region relevant to our case was not identified in
earlier literature and is missed by the available computer
codes used to search for regions. This contribution is the
first example of a genuine Glauber e↵ect in active-active
parton scattering, i.e. it is well-defined without additional
regulators and is not contained within other regions.

The observable we study is the production of M jets
in hadron-hadron collisions at large transverse momen-
tum Q, together with a stringent veto on radiation
emitted into a gap outside the jets, with an associ-
ated veto scale Q0. Such gap-between-jets observables
have been measured at the LHC [28] and are exam-
ples of non-global hadron-collider observables involving
two disparate scales. For small Q0 ⌧ Q, one can de-
rive a factorization theorem for such processes, which
reads [12, 13, 29]
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Hm({n}, Q, ⇠1, ⇠2, µ)⌦Wm({n}, Q0, ⇠1, ⇠2, µ)

↵
,

where m0 = 2 + M is the number of partons at Born-
level, ⇠i are the momentum fractions of the initial-state
partons, and the sum includes all partonic subprocesses.
The hard functions are the squared amplitudes for pro-
ducing the energetic partons inside the jets, integrated
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FIG. 3. Example of a collinear space-like splitting with a
genuine Glauber mode (red) contributing to the low-energy
matrix elements. The soft gluon is emitted into the gap with
constraint Q0 and attaches to leg j on the right-hand side.
Soft Wilson lines are drawn in orange, where relevant.

now turn our attention back to the challenge at hand:
explicitly verifying that also the final term in (5) is re-
produced perturbatively in the low-energy theory. With
our previous discussion, we have narrowed down the class
of diagrams that need to be evaluated to those involving
interactions between the collinear, anti-collinear, and soft
sectors such as the ones shown in Fig. 2. We thus evaluate
these diagrams in the soft-collinear and Glauber regions
and integrate over the phase space of the real emissions.
Due to the appearance of the collinear anomaly, the inte-
gration over qc is not well-defined on its own, and follow-
ing [43] we introduce a phase-space regulator (⌫/q�

c
)2⌘.

We find that the soft-collinear region (and the soft one
in the case of the box) always leads to scaleless collinear
phase-space integrals and therefore does not contribute
to the cross section. This is welcome news, since the as-
sociated low-energy scale �Q2

0 would be parametrically
smaller than Q2

0 and could be non-perturbative, even if
Q0 itself is not. What remains is the Glauber contribu-
tion. In addition to Fig. 1, we also consider the mirrored
diagrams in which the two incoming particles are inter-
changed or the Glauber exchange happens in the con-
jugate amplitude. The leading UV poles of these four
graphs yield a contribution to the (bare) low-energy ma-
trix element given by

W
bare
m

3
i↵3

s

12⇡2"3
fabcfade

X

j>2

Jj

⇥


T

d

1LT
e

1RT
b

2LT
c

jR

✓
�

1

2⌘
� ln

⌫

p�c

◆

+ T
d

2LT
e

2RT
b

1LT
c

jR

✓
1

2⌘
+ ln

⌫ p̄+c̄
Q2

0

◆�

� (L $ R) , (17)

where the terms with j = 1, 2 have canceled out in the
combination. Under the color trace with the hard func-
tion in (1), we can move the color generators TiL to the

right and replace (for j 6= 1, 2)

fade
T

d

1LT
b

2LT
e

1RT
c

jR
! �

iNc

2
T
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1 T
b
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c

j
, (18)

which leads to

W
bare
m

3 �
iNc↵3

s

12⇡2"3
X1 ln

p�
c
p̄+c̄

Q2
0

. (19)

The divergences in ⌘ have canceled but the associated
hard logarithm remains. It has indeed the structure
required by (5) to remove the double-logarithmic part
of the evolution below the scale Q0. We have checked
that (17) also holds for incoming gluons.
The same result can be obtained directly in SCET us-

ing the Glauber Lagrangian of [44]. The regions anal-
ysis immediately translates into SCET diagrams such
as the one shown in Fig. 3, where the di↵erent colors
now correspond to di↵erent SCET fields and the dashed
red line indicates the Glauber exchange. In the frame-
work of [44], one additionally encounters diagrams with
Glauber scaling on both internal lines connecting to the
soft-emission vertex. After regularizing their contribu-
tion with a Glauber regulator |kz

g
|
⌘
0
[45], distinct from

the rapidity regulator, and performing the required 0-bin
subtractions, we find that SCET reproduces (17). For
our observable, the 0-bin subtractions and the additional
graph with two Glauber gluons cancel each other. We
believe that it should be possible to choose a regulariza-
tion scheme in which such “non-genuine” (or “Cheshire”
[44]) Glauber contributions vanish from the beginning.
In this Letter, we have uncovered a new mechanism

that reconciles the breaking of collinear factorization
with PDF factorization. Remarkably, it is the contribu-
tion of perturbative Glauber gluons which, in an inter-
play of space-like collinear splittings and soft emissions,
restores the factorization of the cross section by convert-
ing double-logarithmic into single-logarithmic running at
low values of the factorization scale. In the future, it
will be important to understand the all-order structure
of these e↵ects, a key ingredient for the resummation of
jet processes at hadron colliders to higher logarithmic ac-
curacy [46–48] and the development of finite-Nc parton
showers [49–52]. This would clarify the physics of space-
like collinear limits of amplitudes and pave the way to
a proof of PDF factorization for a much wider class of
observables.
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GAP-BETWEEN-JETS OBSERVABLES

The Power of Effective Field Theories

[Becher, Martinelli, MN, Schwienbacher (2024)]

Figure 2: SLL contribution to the pp ! 2 jets cross section at the LHC as a function
of the veto scale Q0, for a center-of-mass energy

p
s = 13TeV and jet radius R = 0.6.

The black curve shows the central result obtained in RG-improved perturbation theory.
The perturbative uncertainties indicated by the yellow bands are obtained from the
variation of the soft scale µs by a factor 2 about its default value Q0.

where Ni = 2Nc for parton i being a quark or anti-quark, and Ni = (d� 2)(N2
c
� 1) for it

being a gluon. One particular choice of color bases and the associated matrix representations
for the spin-summed “unintegrated” hard functions have been given in [30] for all relevant
2 ! 2 processes up to NNLO. We have calculated the Xi matrices using ColorMath [31]
and listed them in a supplemented Mathematica notebook.

Upon evaluating the color traces h. . .i in (2.11), we observe that for qq̄ ! qq̄ scattering
the SLL contribution to the pp ! 2 jets cross section contains expansion coe�cients cn
of O(Nc) in (1.1), whereas for all other partonic channels these coe�cients are of O(N0

c
).

This leads to SLL contributions that are only suppressed by one power of 1/Nc, an e↵ect
that to our knowledge has so far not been noticed in the literature. This enhancement can
be traced back to the interference of two di↵erent color configurations in the amplitude.
However, we find below that the qq̄ ! qq̄ channel only contributes a small amount to the
pp ! 2 jets cross section.

3 Results

We are now in a position to determine the impact of the super-leading logarithms for
the physical pp ! 2 jets cross section. This involves integrals over the rapidities y3, y4,
and transverse momentum pT , which we evaluate numerically. We set the high scale to
µh = 2pT , employ a jet radius R = 0.6 and use the parton distribution functions from
the NNPDF4.0 NLO set with ↵s(MZ) = 0.118 [32] via ManeParse [33]. As described
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s = 13TeV and jet radius R = 0.6.

The black curve shows the central result obtained in RG-improved perturbation theory.
The perturbative uncertainties indicated by the yellow bands are obtained from the
variation of the soft scale µs by a factor 2 about its default value Q0.

where Ni = 2Nc for parton i being a quark or anti-quark, and Ni = (d� 2)(N2
c
� 1) for it

being a gluon. One particular choice of color bases and the associated matrix representations
for the spin-summed “unintegrated” hard functions have been given in [30] for all relevant
2 ! 2 processes up to NNLO. We have calculated the Xi matrices using ColorMath [31]
and listed them in a supplemented Mathematica notebook.

Upon evaluating the color traces h. . .i in (2.11), we observe that for qq̄ ! qq̄ scattering
the SLL contribution to the pp ! 2 jets cross section contains expansion coe�cients cn
of O(Nc) in (1.1), whereas for all other partonic channels these coe�cients are of O(N0

c
).

This leads to SLL contributions that are only suppressed by one power of 1/Nc, an e↵ect
that to our knowledge has so far not been noticed in the literature. This enhancement can
be traced back to the interference of two di↵erent color configurations in the amplitude.
However, we find below that the qq̄ ! qq̄ channel only contributes a small amount to the
pp ! 2 jets cross section.

3 Results

We are now in a position to determine the impact of the super-leading logarithms for
the physical pp ! 2 jets cross section. This involves integrals over the rapidities y3, y4,
and transverse momentum pT , which we evaluate numerically. We set the high scale to
µh = 2pT , employ a jet radius R = 0.6 and use the parton distribution functions from
the NNPDF4.0 NLO set with ↵s(MZ) = 0.118 [32] via ManeParse [33]. As described

6



Daniel Wyler Fest — January 7, 2025Matthias Neubert  — 24

STRUCTURE OF THE FACTORIZATION THEOREM ?

The Power of Effective Field Theories

hard scale Q ∼ ̂s

jet-veto scale Q0

hadronic scale ΛQCD

double-logarithmic evolution 
(super-leading logs) & non-
DGLAP collinear evolution

single-logarithmic PDF evolution 

OR: double-logarithmic evolution and 
breaking of PDF factorization?

OR: something more complicated, e.g. 
a combined two-proton distribution?
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of
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STRUCTURE OF THE FACTORIZATION THEOREM ?

The Power of Effective Field Theories

hard scale Q ∼ ̂s

jet-veto scale Q0

hadronic scale ΛQCD

double-logarithmic evolution 
(super-leading logs) & non-
DGLAP collinear evolution

single-logarithmic PDF evolution 

OR: double-logarithmic evolution and 
breaking of PDF factorization?

OR: something more complicated, e.g. 
a combined two-proton distribution?

Hm
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FIG. 1. Sample perturbative contribution to the gap-between-
jets cross section. The gray inner subdiagrams make up the
hard function Hm, while the remainder is part of Wm. The
orange gluon is soft and enters the veto region, the blue and
green partons are collinear to the beams. Possible scalings of
the virtual gluon momentum k will be analyzed below.

over the energies of the final-state particles,

Hm({n}, Q, ⇠1, ⇠2, µ) =

Z
dEm |Mm({p})ihMm({p})| ,

(2)
while keeping the parton directions {n} = {n1, . . . , nm}

fixed. The explicit form of the energy integration can be
found in (2.3) of [13]. The integration over the final-state
parton directions is indicated by the symbol ⌦ in (1).
The color indices of the hard partons are kept open and
h. . . i denotes the color trace, which is taken after com-
bining the hard functions with the low-energy matrix ele-
ments Wm, which contain the dynamics associated with
the perturbative scale Q0, as depicted in Fig. 1, as well
as non-perturbative QCD e↵ects. The main result of our
Letter is that, at least up to three-loop order, the pertur-
bative part of Wm is consistent with PDF factorization.
The SLL analysis in [12, 13] was based on the

renormalization-group evolution of the hard functions
from the high scale µh = Q to a low scale µs ⇠ Q0.
The leading logarithms were obtained by iterating the
one-loop anomalous dimension [30]

�H = �cusp(↵s)
⇣
�c ln

µ2

Q2
+ V

G

⌘
+

↵s

4⇡
�+ �C , (3)

where �cusp = ↵s/⇡ + . . . is the light-like cusp anoma-
lous dimension. The soft piece consists of �c and V

G,
which account for soft+collinear emissions from one of
the two initial-state partons and complex phases arising
from virtual gluon exchange between them, respectively.
� corresponds to gluon emission into the gap, and �C

denotes purely collinear contributions. The anomalous
dimension is an operator in color space and a matrix
in the space of parton multiplicities m. An application
of �H can either increase the number of partons, corre-
sponding to a real emission, or leave them unchanged for
virtual terms. The SLLs originate from �c. Using simple

identities among the various terms in (3) [12], one finds
that the relevant color traces are of the form

Crn =
⌦
H

(0)
m0

(�c)r V G (�c)n�r
V

G �⌦ 1
↵
. (4)

Performing the associated scale integrals for evolution
from Q down to the scale µs ⇠ Q0 produces single loga-
rithms for V G and �, but double logarithms for �c. The
color traces Crn thus contribute at order ↵n+3

s
L2n+3
s

in
perturbation theory, where Ls = ln(Q/µs). SLLs first
arise at four-loop order and involve C01 and C11. In (4),
H

(0)
m0

are the Born-level hard functions and we use that

W
(0)
m

= 1 at lowest order.
The fact that the cross section �(Q0) must be indepen-

dent of the renormalization scale µs imposes non-trivial
conditions on the low-energy matrix elements Wm(µs) =
ZW

bare
m

. The renormalization factor Z is related to
the anomalous dimension (3) [31], and using its three-
loop expression one finds that the leading UV poles in
d = 4� 2" dimensions must be of the form

W
bare
m

= 1+
↵s

4⇡

�

2"
+
⇣↵s

4⇡

⌘2
✓
V

G �

2"2
+ . . .

◆

+
⇣↵s

4⇡

⌘3
✓
V

G
V

G �

3"3
�

�c
V

G �

3"3
ln

Q2

µ2
s

+ . . .

◆

+O(↵4
s
) . (5)

We only show terms which, after combining with the hard
functions in (1) and taking the color trace, produce con-
tributions compatible with SLLs at four-loop order and
beyond. Under the color trace, we can replace [13]

V
G � ! 16i⇡X1 , �c

V
G � ! 16i⇡NcX1 ,

V
G
V

G � ! �6⇡2NcX2 , (6)

where

X1 = ifabc
X

j>2

Jj T
a

1 T
b

2 T
c

j
, X2 =

1

Nc

X

j>2

Jj O
(j)
1 , (7)

with O
(j)
1 defined in (6.36) of [13]. The sums extend over

all final-state partons j > 2 in the Born-level process, and
the angular integral Jj has been given in (16) of [12].

We now compute the perturbative part of Wbare
m

or-
der by order in ↵s and check whether it matches the
structure (5). The one-loop term / � is the divergence
associated with a soft exchange between hard legs and
is obtained from soft Wilson-line matrix elements in the
low-energy theory or, equivalently, by taking the product

of two tree-level soft currents J
a(0)
µ (ls) and integrating

the momentum ls over the gap region under the restric-
tion l0

s
< Q0. The ↵2

s
term / V

G � arises from real-
virtual corrections to the same matrix elements. The
complex phase in V

G is directly related to the imagi-

nary part of the one-loop soft current Ja(1)
µ [32]. To iso-

late the structure V
G
V

G �, we have analyzed the prod-

uct J
µ,a(1)

J
a(1)†
µ as well the product of J

a(2)
µ (includ-

ing the tripole terms) [33, 34] with a tree-level current,

[Becher, Hager, Jaskiewicz, MN, Schwienbacher (2024)]
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NEW INSIGHTS

The Power of Effective Field Theories

▸ We have uncovered a new mechanism that reconciles the breaking of collinear 
factorization with unbroken PDF factorization 

▸ In an interplay of space-like collinear splittings and soft emissions, perturbative 
Glauber gluons restore the factorization of the cross section by converting 
double-logarithmic into single-logarithmic evolution below the veto scale  
(shown explicitly up to 3-loop order) 

▸ In the future, it will be important to understand the all-order structure of these 
effects, paving the way for a proof of PDF factorization for a much wider class 
of observables!

Q0
[Becher, Hager, Jaskiewicz, MN, Schwienbacher (2024)]
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