

ZPW2025

Particle Physics from Low to High Energies University of Zurich – January 7, 2025

DANIEL WYLER FEST The Power of EFTs From HQET to SCET and beyond

Matthias Neubert, Johannes Gutenberg University Mainz

An oeuvre of enormous breadth and impact

Fermion masses and mixing angles

QFT: QCD and EW interactions, anomalies, phase transitions, axions, topological charge ...

Higgs physics

(incl. d=6 effective

Lagrangian)

Charm physics

Kaon physics and effective chiral Lagrangian

Neutrino physics

M. Neubert, "The Flavor of Beauty", Symposium in honor of Prof. Daniel Wyler ("Abschiedskolloquium"), University of Zurich, 8 May 2015

An oeuvre of enormous breadth and impact

M. Neubert, "The Flavor of Beauty", Symposium in honor of Prof. Daniel Wyler ("Abschiedskolloquium"), University of Zurich, 8 May 2015

PUSHING THE LUMINOSITY FRONTIER – GOLDEN AGE OF HEAVY-QUARK THEORY

- Tremendous experimental advances:
 - 1. generation: ARGUS & CLEO, LEP expts.
 - 2. generation: BaBar & Belle, LHCb, CMS, ...
 - ▶ 3. generation: Belle II, LHCb upgrade, ...
- Precise measurement of CKM elements $|V_{cb}|, |V_{ub}|, |V_{td}|, |V_{ts}|$ involving thirdgeneration quarks
- Precise determinations of angles (CP violation)
- New-physics searches using FCNC processes

[Kobayashi, Maskawa (1973)]

PUSHING THE LUMINOSITY FRONTIER – GOLDEN AGE OF HEAVY-QUARK THEORY

PUSHING THE LUMINOSITY FRONTIER – GOLDEN AGE OF HEAVY-QUARK THEORY

- Matching the incredible precision of the B-factories required a revolution in theory
- Concerted effort of theory community was an important consequence Breakthrough came from using effective field theories (EFTs):

 \mathcal{H}_{eff}^{weak} , HQET, NRQCD, QCDF, SCET SCET later became a versatile tool for addressing difficult QCD problems

EFFECTIVE WEAK HAMILTONIAN

- Systematic method to separate shortdistance effects (weak scale and beyond) from long-distance hadronic dynamics
- Nowadays embedded into SMEFT and its low-energy variant LEFT
- But: challenge is to evaluate hadronic matrix elements of the quark-gluon operators $Q_i(\mu)$ in all but simplest cases

[Gilman, Wise (1979); Buras et al. (1990s)]

HEAVY QUARK SYMMETRY

- Hadronic bound states containing a heavy quark obey an approximate spin-flavor symmetry
- Many predictions for spectroscopy of heavy hadrons [Shuryak (1980)]
- Symmetry relations among $B \rightarrow D^{(*)}$ form factors, including symmetry-breaking corrections ~ $\alpha_s(m_Q)$ or $\Lambda_{\rm QCD}/m_Q$ [lsgur, Wise (1990)]

Relations between level spacings in bottom and charm systems, e.g.:

- $m_{B^*}^2 m_B^2 \approx 0.49 \,\text{GeV}^2 \,\text{vs.} \, m_{D^*}^2 m_D^2 \approx 0.55 \,\text{GeV}^2$
- $m_{B_s} m_B \approx m_{D_s} m_d \approx 0.10 \,\mathrm{GeV}$
- $m_{B_2^*}^2 m_{B_1}^2 \approx m_{D_2^*}^2 m_{D_1}^2 \approx 0.17 \,\mathrm{GeV}^2$

Form-factor relations: $\langle D(v')|V^{\mu}|B(v)\rangle = h_{+}(w) (v + v')^{\mu} + h_{-}(w) (v - v')^{\mu}$ $\langle D^{*}(v', \epsilon)|V^{\mu}|B(v)\rangle = ih_{V}(w)\epsilon^{\mu\nu\alpha\beta}\epsilon^{*}_{\nu}v'_{\alpha}v_{\beta}$ $\langle D^{*}(v', \epsilon)|A^{\mu}|B(v)\rangle = h_{A_{1}}(w)(w + 1)\epsilon^{*\mu}$ $- [h_{A_{2}}(w)v^{\mu} + h_{A_{3}}(w)v'^{\mu}]\epsilon^{*} \cdot v$ with $(w = v \cdot v')$: $h_{+}(w) = h_{V}(w) = h_{A_{1}}(w) = h_{A_{3}}(w) = \xi(w) \text{ and } \xi(1) = 1$ $h_{-}(w) = h_{A_{2}}(w) = 0$

MODEL-INDEPENDENT DETERMINATION OF |V_{CB}|

• Extrapolate observed spectrum in $w = v \cdot v'$ to zero recoil:

Fig. 1. Extraction of $|V_{cb}|$ and the Isgur-Wise function from $\overline{B}^0 \rightarrow D^{*+} \ell \overline{v}_{\ell}$ decays. The data are taken from ref. [16]. $\tau_{B^0} = 1.18$ ps is assumed. $|V_{cb}|$ follows from an extrapolation of the data to $v \cdot v' = 1$. Its currently best value is indicated as a shaded area on the vertical axis.

• Direct calculation of the $B \rightarrow D l \nu$ form factors (HPQCD):

HEAVY QUARK EFFECTIVE THEORY (HQE

[Eichten, Hill (1990); Georgi (1990)]

Firm theoretical basis for deriving he quark symmetry and its consequence

ET)

$$\mathcal{L}_{\text{HQET}} = \bar{h}_{v} \, iv \cdot D \, h_{v} + \mathcal{O}\left(\frac{1}{m_{Q}}\right)$$

$$+ \frac{1}{2m_{Q}} \left[\bar{h}_{v} \, (iD)^{2} \, h_{v} + \frac{g_{s}}{2} \, \bar{h}_{v} \, \sigma_{\mu\nu} G^{\mu\nu} h_{v}\right] + c$$
sets

THE GRAND CHALLENGE: NON-LEPTONIC DECAYS

- Georgi: "Why we can't calculate ..." [Georgi: Weak Interactions and Modern Particle Theory (1984)]
- but lacked a firm theoretical foundation

Naive factorization approach was semi-successful in describing early data,

[Bauer, Stech, Wirbel (1986)]

THE GRAND CHALLENGE: NON-LEPTONIC DECAYS

- Georgi: "Why we can't calculate ..."
- but lacked a firm theoretical foundation
- QCD factorization approach (BBNS):
 - First model-independent calculation of $B \rightarrow M_1 M_2$ decay amplitudes from first principles (including strong- and weakinteraction phases) in heavy-quark limit [Beneke, Buchalla, MN, Sachrajda (1999–2001)]

[Georgi: Weak Interactions and Modern Particle Theory (1984)]

Naive factorization approach was semi-successful in describing early data,

[Bauer, Stech, Wirbel (1986)]

Factorization proof at two-loop order based on method of regions, see pp. 48-79 in BBNS (2000)

QCD FACTORIZATION IN NONLEPTONIC B DECAYS INTO LIGHT MESONS

QCD factorization theorem:

$$\langle \pi K | Q_i | B \rangle = F_0^{B \to \pi} T_{K,i}^{\mathrm{I}} * f_K \Phi_K + F_0^{B \to K} T_{\pi,i}^{\mathrm{I}} * f_\pi \Phi_\pi + T_i^{\mathrm{II}} * f_B \Phi_B$$
$$+ \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_b}\right)$$

[Beneke, Buchalla, MN, Sachrajda (1999–2001)]

QCD FACTORIZATION IN NONLEPTONIC B DECAYS INTO LIGHT MESONS

QCD factorization theorem: [Beneke, Buch

$$\langle \pi K | Q_i | B \rangle = F_0^{B \to \pi} T_{K,i}^{\mathrm{I}} * f_K \Phi_K + F_0^{B \to K} T_{\pi,i}^{\mathrm{I}} * f_\pi \Phi_\pi + T_i^{\mathrm{II}} * f_B \Phi_B$$
$$+ \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_b}\right)$$

[Beneke, Buchalla, MN, Sachrajda (1999–2001)]

 M_2

- M_1 $B_3 * f_K \Phi_K * f_\pi \Phi_\pi$
- Importance of non-local hadronic matrix elements, in particular light-cone distribution amplitudes (LCDAs), to account for hadronic dynamics
- Second term corresponds to Brodsky-Lepage (1980), while the first term is specific for *B*-meson decays and contributes at the same order in Λ_{OCD}/m_b

QCD FACTORIZATION IN NONLEPTONIC B DECAYS INTO LIGHT MESONS

Daniel Wyler Fest – January 7, 2025

CONFIRMATION OF KM RELATION BETWEEN IM(V_{UB}) AND IM(V_{TB})

- In 2001, fact that $Im(V_{td}) \neq 0$ had been established by studies of $K - \bar{K}$ and $B - \bar{B}$ mixing and first measurements of $\sin 2\beta$ 2004 analysis: $\bar{\rho} = 0.15 \pm 0.08$, $\bar{\eta} = 0.36 \pm 0.09$ $\gamma = (67 \pm 15)^\circ$, $\beta = (24 \pm 2)^\circ$ 2021 values: $\bar{\rho} = 0.157^{\pm 0.09}$, $\bar{\eta} = 0.347^{\pm 0.012}$
- Fact that $Im(V_{ub}) \neq 0$ has been established by studying rare hadronic decays $B \rightarrow \pi K, \pi \pi$ in QCD factorization [BBNS (2001), here updated to 2004 data]
- KM relation confirmed; most stringent test of KM mechanism at the time

2021 values: $\bar{\rho} = 0.157^{+0.009}_{-0.005}, \quad \bar{\eta} = 0.347^{+0.012}_{-0.005}$ $\gamma = (65.5^{+1.3}_{-1.2})^{\circ}, \quad \beta = (22.42^{+0.64}_{-0.37})^{\circ}$

[CKMfitter global fit, spring 2021]

CONFIRMATION OF KM RELATION BETWEEN IM(V_{UB}) AND IM(V_{TB})

- Measuring time-dependent CP asymmetries in $B \rightarrow \pi\pi$ and $B \rightarrow \pi\rho$ decays one obtains an internally consistent determination of γ
- > 2003 analysis found: $\gamma = (62 \pm 8)^{\circ}$
- $\gamma = (65.5^{+1.3}_{-1.2})^{\circ}$ > 2021 value:

← Gronau–Wyler method

Physics Letters B 265 (1991) 172-176 North-Holland

A pioneering paper! (1141 citations)

PHYSICS LETTERS B

On determining a weak phase from charged B decay asymmetries

Michael Gronau

Technion – Israel Institute of Technology, Haifa 32000, Israel

and

Daniel Wyler

Institute for Theoretical Physics, University of Zurich, Schönberggasse 9, CH-8001 Zurich, Switzerland

Received 27 May 1991

We demonstrate a possible determination of the weak phase γ from the *CP* asymmetry in $B^+ \rightarrow D^0_{1(2)}X^+$, where $D^0_{1(2)}$ is a *CP*even (odd) state and X^+ is any hadronic state with the flavor of a K^\pm . To obtain the phase one needs separate measurements of the rates $\Gamma(B^+ \rightarrow D^0_{1(2)}X^\pm)$ and of the equal rates $\Gamma(B^\pm \rightarrow D^0X^\pm) = \Gamma(B^+ \rightarrow \overline{D}^0X^\pm)$. Certain ambiguities are discussed and resolutions are proposed.

$$\sqrt{2} A(B^+ \to D_1^0 K^+)$$

$$= |A| \exp(i\gamma) \exp(i\delta) + |\bar{A}| \exp(i\delta) ,$$

$$= A(B^+ \to D_1^0 K^+) + A(B^+ \to \bar{D}^0 K^+)$$

$$\sqrt{2} A(B^- \to D_1^0 K^-)$$

$$= |A| \exp(-i\gamma) \exp(i\delta) + |\bar{A}| \exp(i\delta) .$$

$$= A(B^- \to \bar{D}^0 K^-) + A(B^- \to D^0 K^-)$$

LIMITATIONS OF QCD FACTORIZATION

- Lots of predictive power, but uncertainties due to hadronic input quantities: form factors, decay constants, and LCDAs (reducible to some extent)
- Power corrections in Λ_{OCD}/m_b do not (naively) factorize due to endpoint divergences (\Rightarrow different meanings of "factorization")
- In some cases, power-suppressed effects can be enhanced by large Wilson coefficients (e.g. "color-suppressed" decay modes)
- To make progress, one needed an EFT implementation of QCD factorization

SOFT-COLLINEAR EFFECTIVE THEORY (SCET)

[Bauer, (Fleming,) Pirjol, Stewart (2001); Beneke, Chapovski, Diehl, Feldmann (2002)]

- and collider physics for processes involving light energetic particles
- Collinear effective Lagrangian:

$$\mathcal{L}_n = \bar{\xi}_n(x) \left[in \cdot D_n + gn \cdot A_s + i \mathcal{P}_n^{\perp} \frac{1}{i\bar{n} \cdot \mathcal{D}_n} i \mathcal{P}_n^{\perp} \right] \frac{\vec{n}}{2}$$

eikonal interaction, can be removed by the field redefinition $\xi_n \to S_n \xi_n^{(0)}$

Soft-collinear factorization at Lagrangian level

Matthias Neubert – 15

Firm theoretical basis for deriving QCD factorization theorems in heavy-quark

 $\xi_n(x) + \dots$

Scale separation and resummation accomplished using powerful EFT tools

Daniel Wyler Fest – January 7, 2025

SCET PROOF OF QCD FACTORIZATION FOR $B \to K^* \gamma$ decay

[Becher, Hill, MN (2005)]

Two-step matching procedure QCD \rightarrow SCET-1 \rightarrow SCET-2:

PROTOTYPICAL SCET FACTORIZATION THEOREM

- convolution integrals
- for dealing with this problem

Product/convolution of component functions each depending on a single scale:

Extension to next-to-leading power is a hard problem, due to endpoint-divergent

[Beneke et al.; Moult et al.; Stewart et al.; Bell et al. (2018–2022)]

Refactorization-based subtraction (RBS) scheme provides a consistent framework [Liu, MN (2019, 2020); Liu, Mecaj, MN, Wang (2021); Liu, MN, Schnubel, Wang (2022)]

ZPW2025 Particle Physics from Low to High Energies

GAP-BETWEEN-JETS OBSERVABLES

CERN Document Server, ATLAS-PHOTO-2018-022-6

Daniel Wyler Fest – January 7, 2025

LARGE LOGARITHMS IN JET PROCESSES

Perturbative expansion includes "super-leading" logarithms: $\sigma \sim \sigma_{\rm Born} \times \{1 + \alpha_s L + \alpha_s^2 L + \alpha_s^2 L \}$

state-of-the-art

$$L^{2} + \alpha_{s}^{3}L^{3} + \alpha_{s}^{4}L^{5} + \alpha_{s}^{5}L^{7} + \dots \}$$

formally larger than O(1)

[Forshaw, Kyrieleis, Seymour (2006)]

Daniel Wyler Fest – January 7, 2025

LARGE LOGARITHMS IN JET PROCESSES

Really, a double-logarithmic series starting at 3-loop order: $\sigma \sim \sigma_{\rm Born} \times \left\{1 + \alpha_s L + \alpha_s^2 L^2 + (\alpha_s \pi^2) \left[\alpha_s^2 L^3 + (\alpha_s \pi^2) \left[\alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L^2 + (\alpha_s \pi^2) \left[\alpha_s^2 L^3 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + (\alpha_s \pi^2) \left[\alpha_s^2 L^3 + \alpha_s^2 L^3 + \alpha_s^2 L^2 + \alpha_s^2 L^2 + \alpha_s^2 L^3 + \alpha_s^2$

$$L^{2} + (\alpha_{s}\pi^{2}) \left[\alpha_{s}^{2}L^{3} + \alpha_{s}^{3}L^{5} + \ldots \right]$$

formally larger than O(1)
 $(\Im L)^{2}$ [Forshaw, Kyrieleis, Seymour (2006)]

BREAKING OF COLOR COHERENCE

Color coherence holds if all three particles are incoming or outgoing (time-like splitting):

Then collinear factorization holds:

BREAKING OF COLOR COHERENCE

Color coherence is broken if not all particles are incoming/outgoing (space-like splitting), since both sides receive different phase factors:

GAP-BETWEEN-JETS OBSERVABLES

SCET factorization theorem for *M*-jet production at the LHC

$$\sigma(Q_0) = \sum_{m=m_0}^{\infty} \int d\xi_1 d\xi_2 \, \langle \mathcal{H}_m(\{\underline{\eta}\}) \rangle \, d\xi_2 \,$$

[Becher, MN, Shao (2021); + Stillger (2023)]

- large logs can be resummed using RGEs
- all-order understanding of super-leading logarithms for arbitrary processes

GAP-BETWEEN-JETS OBSERVABLES

variation of the soft scale μ_s by a factor 2 about its default value Q_0 .

[Becher, Martinelli, MN, Schwienbacher (2024)]

Figure 2: SLL contribution to the $pp \rightarrow 2$ jets cross section at the LHC as a function of the veto scale Q_0 , for a center-of-mass energy $\sqrt{s} = 13$ TeV and jet radius R = 0.6. The black curve shows the central result obtained in RG-improved perturbation theory. The perturbative uncertainties indicated by the yellow bands are obtained from the

STRUCTURE OF THE FACTORIZATION THEOREM ?

 $\sigma \sim \sum_{m} \mathcal{H}_{m} \otimes \mathcal{W}_{m}^{\mathrm{pert}} \otimes f_{a/p} \otimes f_{b/p}$

STRUCTURE OF THE FACTORIZATION THEOREM ?

NEW INSIGHTS

- We have uncovered a new mechanism that reconciles the breaking of collinear factorization with unbroken PDF factorization
- In an interplay of space-like collinear splittings and soft emissions, perturbative Glauber gluons restore the factorization of the cross section by converting double-logarithmic into single-logarithmic evolution below the veto scale Q_0 (shown explicitly up to 3-loop order) [Becher, Hager, Jaskiewicz, MN, Schwienbacher (2024)]
- In the future, it will be important to understand the all-order structure of these effects, paving the way for a proof of PDF factorization for a much wider class of observables!

Thank you for your friendship, Daniel