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Figure 3: The systematic uncertainties for the electron channel measurement (left) and muon channel measurement
(right) for the normalized ?

✓✓

T (upper row) and normalized q
⇤

[
(lower row). The statistical uncertainties are a

combination of the uncertainties due to limited data and MC sample sizes. The ?
✓✓

T distribution is split into linear
and logarithmic scales at 30 GeV. Some uncertainties are larger than 2% for ?✓✓T > 200 GeV and hence cannot be
displayed. The corresponding uncertainties are also summarized in Table 4.

The normalized di�erential cross-sections 1/ffid ⇥ dffid/d?
✓✓

T and 1/ffid ⇥ dffid/dq
⇤

[
measured in the

two decay channels as well as their combination are illustrated in Figure 4. When building the j
2 for

combination procedure, the measurement uncertainties are separated into those from bin-to-bin uncorrelated
sources and those from bin-to-bin correlated sources, the latter largely reduced due to the normalization
by the fiducial cross-section. The normalized di�erential measurements are combined at Born level
following the B��� prescription. The resulting j

2
/#dof = 47/44 for the combination for ?

✓✓

T and the
j

2
/#dof = 32/36 for q⇤

[
indicate good agreement between the two channels.3 The combined precision is

between 0.1% and 0.5% for ?✓✓T < 100 GeV, rising to 10% towards the high end of the spectrum, where the
overall precision is limited by the data and MC sample size. The combined results for both distributions are
presented in Table 4 including statistical and bin-to-bin uncorrelated and correlated systematic uncertainties.
The measurement results are reported at Born level and factors :dr, the binwise ratio of dressed and born
level results, are given to transfer to the dressed particle level.

3 The j
2
/#dof is still good when taking into account only bins with ?

✓✓

T > 50 GeV.
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LHC — FROM A DISCOVERY TO A PRECISION MACHINE
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7 Discussion

In this paper we report the first W boson mass measurement by the CMS Collaboration at the
CERN LHC. The result is significantly more precise than previous LHC measurements. The W
boson mass is extracted from a sample of 117 million selected W → µν events, collected in 2016
at the proton-proton collision energy of 13 TeV, via a highly granular binned maximum likeli-
hood fit to the three-dimensional distribution of the muon pµ

T, ηµ , and electric charge. Novel
experimental techniques have been used, together with state-of-the-art theoretical models, to
improve the measurement accuracy. The muon momentum calibration, based on J/ε → µµ
decays, as well as the data analysis methods and the treatment of the theory calculations used
in the mW measurement have been extensively validated by extracting mZ and pZ

T both from a
direct Z → µµ dimuon analysis and from a W-like analysis of the Z boson data.

Figure 4: Comparison with other experiments and the EW fit prediction. The mW measurement
from this analysis (in red) is compared with the combined measurement of experiments at
LEP [54], and with the measurements performed by the D0 [55], CDF [11], LHCb [9], and
ATLAS [10] experiments. The global EW fit prediction [5] is represented by the gray vertical
band, with the shaded band showing its uncertainty.

As shown in Fig. 4, the measured value, mW = 80 360.2 ± 9.9 MeV, agrees with the standard
model expectation from the electroweak fit and is in disagreement with the measurement re-
ported by the CDF Collaboration. Our result has similar precision to the CDF Collaboration
measurement and is significantly more precise than all other measurements. The dominant
sources of uncertainty are the muon momentum calibration and the parton distribution func-
tions. Uncertainties in the modeling of W boson production are subdominant due to novel
approaches used to parameterize and constrain the predictions and their corresponding un-
certainties in situ with the data. This result constitutes a significant step towards achieving
an experimental measurement of mW with a precision matching that of the EW fit. Together
with other recent measurements performed by the CMS Collaboration, including the top quark
mass [56] and the effective electroweak mixing angle [57], this work demonstrates the power of
the CMS detector and of the LHC as instruments for precision measurements of the parameters
of the standard model.

MW

[CMS 2412.13872]
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WHAT IS THE UNCERTAINTY  OF MY RESULT?ΔTH

๏ increasingly urgent to address with    (  HL-LHC) 

‣ what does  mean if  non-negligible?

‣ interpretation of data in need for robust :  precision measurements, PDF fits, …

๏ various sources that contribute to :

‣ , :  parametric uncertainties    exp. extraction

‣ :  parton distribution functions (PDFs)    fits to data, lattice, … 

‣ :  intrinsic , hadronisation, UE, …    TMD, parton showers, …

‣ :  missing higher-order corrections    conceptually tricky

ΔEXP ↘ ↭

5σ ΔTH

ΔTH

ΔTH

Δαs
Δparam ↭

ΔPDF ↭

Δnon pert. kT ↭

Δpert. ↭
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OUTLINE

๏ MOTIVATION  

1. Scale Variations 

2. Bayesian Estimates 

3. Theory Nuisance Parameters 

4. Parton Distribution Functions 

๏ CONCLUSIONS 

αs⏟

“QCD modelling”

focus on dominant sources of 
 in precision measurementsΔTH



GENERAL IDEA & CONVENTIONS 

๏ approximation for an observable   
  @  (next-to-)  leading order:

๏ truncation of series induces a sensitivity to terms of the next order

n

6

dσNnLO = dσ(0) + αs dσ(1) + … + αn
s dσ(n)

∝ αn0
s

μ
d

dμ
σNnLO(μ) = 𝒪(αn0+n+1

s ) = 𝒪(Δpert.)

Canonical scale variation

Canonical method: Scale Variation

Variation by a factor of 2 about a “central” scale µ0

⌃ ⇡ ⌃NnLO(µ0) ± max
µ0/2µ2µ0

|⌃NnLO(µ) � ⌃NnLO(µ0)|
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Very often, the uncertainty is left asymmetric

Marco Bonvini Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders 10
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1 SCALE VARIATION
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Figure 6: Ratios of the theoretical predictions for the TEEC functions at LO and NNLO to the NLO calculations,
together with the ratios of the data to NLO predictions. The hatched band, where visible, shows the statistical
uncertainty in the NNLO prediction. The predictions use the MMHT2014 PDF, where the value of the strong
coupling constant is set to Us (</ ) = 0.1180. The uncertainty bands correspond to the scale uncertainties for each
perturbative order.
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pp → 3j
[Czakon, Mitov, Poncelet ’21]

Standard Model and Higgs Theory                                               Daniel de Florian 21

Inclusive Higgs : an example of precision  

Georgi et al
1978

Dawson, Spira et al
1991-2003

M. Grazzini, D. de Florian
2003-2016

Anastasiou et al
2016-

from M. Grazzini[slide by M.Grazzini]
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pp → γ + j

[Chen, Gehrmann, Glover, Höfer, Huss ’19]
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Figure 3: Rapidity and transverse momentum distributions of the most energetic jet at the 8 TeV

LHC. The insets show ratios of di↵erential cross sections at di↵erent orders in perturbation theory

for the factorization and the renormalization scales set to the mass of the Higgs boson.

The latter includes the transverse momentum and the rapidity distributions as well as the

distribution of the photon decay angle in the Collins-Soper reference frame. We can compute

all these kinematic distributions through NNLO in perturbative QCD, using exactly the same

setup that the ATLAS collaboration employs in the actual measurement.

We begin with the discussion of the rapidity and the transverse momentum distributions

of the Higgs boson in events with at least one jet, see Fig. 2. The pattern of radiative

corrections is similar to the fiducial cross section case that we just discussed. In the two

plots in Fig. 2 the relative magnitude of radiative corrections is illustrated in lower panes,

where ratios of NLO to LO and NNLO to NLO distributions at µ = mH are displayed. We

will refer to such ratios as K-factors. We note that similar to the case of the inclusive Higgs

boson production pp ! H, the NNLO enhancement of the Higgs boson rapidity distribution

in pp ! H + j process is independent of the rapidity. On the contrary, the K-factors

for transverse momenta distributions have a more interesting shape. Indeed, we observe

the instability of d�/dp?,H at the value of the Higgs boson transverse momentum equal to

the value of the jet transverse momentum cut. This is the manifestation of the so called

Sudakov-shoulder e↵ect [27]. Just above p?,H ⇠ 30 GeV, the NNLO corrections are small

but they increase to about 30% at around p?,H ⇠ 75 GeV and then start to decrease again.

Next, we consider kinematic distributions of the QCD radiation that accompanies the

Higgs boson production. The rapidity and the transverse momentum distributions of the

hardest jet are shown in Fig. 3. Similar to the QCD corrections to the Higgs boson rapidity
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pp → H + j

[Caola, Melnikov, Schulze, ’15]

[Catani, Devoto, Grazzini, Kallweit, 
Mazzitelli, Savoini ’22]
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Figure 1: LO, NLO and NNLO cross sections with their perturbative uncertainties as functions of the centre-of-mass energy,
computed as discussed in the text. The experimental results from ATLAS [3] and CMS [4] at

p
s = 13TeV are also shown for

comparison. The lower panel illustrates the impact of NNLO corrections with respect to the NLO result. The inner NNLO band
denotes the uncertainty from the soft approximation combined with the systematic uncertainty from the subtraction procedure.

computations of two-loop amplitudes for processes in which a Higgs boson is produced in asso-

ciation to heavy quarks. Since the quantitative impact of the genuine two-loop contribution in

our computation is relatively small, our approximation allows us to control the NNLO tt̄H cross

section to better than 1%. The NNLO corrections are moderate, and range from about +4%

at
p
s = 13TeV to +2% at

p
s = 100TeV, while QCD perturbative uncertainties are reduced

to the few-percent level. When combined with NLO EW corrections, our calculation allows us

to obtain the most advanced perturbative prediction to date for the tt̄H cross section.
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pp → tt̄H
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1 SCALE VARIATION

CREDIT WHERE CREDIT IS DUE 

๏ quite neat & simple 

๏ can work very well… 
… lot of experience if it doesn’t 

  new channels, jet bins,  
      “giant  factors”, ratios, … 

  strategies to mitigate

↪
K

↪



0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8
0.9

1
1.1
1.2

D
at

a 
/ T

he
or

y  > 1000 GeVT2H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9
1

1.1

1.2

D
at

a 
/ T

he
or

y  < 1200 GeVT21000 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9

1

1.1

1.2

D
at

a 
/ T

he
or

y

 < 1400 GeVT21200 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8
0.9

1
1.1
1.2

D
at

a 
/ T

he
or

y  < 1600 GeVT21400 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9

1

1.1

1.2

D
at

a 
/ T

he
or

y

 < 1800 GeVT21600 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8
0.9

1
1.1
1.2

D
at

a 
/ T

he
or

y  < 2000 GeVT21800 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9

1

1.1

1.2

D
at

a 
/ T

he
or

y

 < 2300 GeVT22000 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9
1

1.1

1.2

D
at

a 
/ T

he
or

y  < 2600 GeVT22300 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9

1

1.1

1.2

D
at

a 
/ T

he
or

y

 < 3000 GeVT22600 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9

1

1.1

1.2

D
at

a 
/ T

he
or

y  < 3500 GeVT23000 GeV < H

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8
φcos 

0.8

0.9

1

1.1

1.2

D
at

a 
/ T

he
or

y

 > 3500 GeVT2H

ATLAS
Particle-level TEEC

-1 = 13 TeV; 139 fbs

 R = 0.4tanti-k

 > 60 GeV
T

p

| < 2.4η|

MMHT 2014 (NNLO)
Data
LO
NLO
NNLO

TH = 
R,F
µ

) = 0.1180
Z

(msα

Figure 6: Ratios of the theoretical predictions for the TEEC functions at LO and NNLO to the NLO calculations,
together with the ratios of the data to NLO predictions. The hatched band, where visible, shows the statistical
uncertainty in the NNLO prediction. The predictions use the MMHT2014 PDF, where the value of the strong
coupling constant is set to Us (</ ) = 0.1180. The uncertainty bands correspond to the scale uncertainties for each
perturbative order.
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Figure 3: Rapidity and transverse momentum distributions of the most energetic jet at the 8 TeV

LHC. The insets show ratios of di↵erential cross sections at di↵erent orders in perturbation theory

for the factorization and the renormalization scales set to the mass of the Higgs boson.

The latter includes the transverse momentum and the rapidity distributions as well as the

distribution of the photon decay angle in the Collins-Soper reference frame. We can compute

all these kinematic distributions through NNLO in perturbative QCD, using exactly the same

setup that the ATLAS collaboration employs in the actual measurement.

We begin with the discussion of the rapidity and the transverse momentum distributions

of the Higgs boson in events with at least one jet, see Fig. 2. The pattern of radiative

corrections is similar to the fiducial cross section case that we just discussed. In the two

plots in Fig. 2 the relative magnitude of radiative corrections is illustrated in lower panes,

where ratios of NLO to LO and NNLO to NLO distributions at µ = mH are displayed. We

will refer to such ratios as K-factors. We note that similar to the case of the inclusive Higgs

boson production pp ! H, the NNLO enhancement of the Higgs boson rapidity distribution

in pp ! H + j process is independent of the rapidity. On the contrary, the K-factors

for transverse momenta distributions have a more interesting shape. Indeed, we observe

the instability of d�/dp?,H at the value of the Higgs boson transverse momentum equal to

the value of the jet transverse momentum cut. This is the manifestation of the so called

Sudakov-shoulder e↵ect [27]. Just above p?,H ⇠ 30 GeV, the NNLO corrections are small

but they increase to about 30% at around p?,H ⇠ 75 GeV and then start to decrease again.

Next, we consider kinematic distributions of the QCD radiation that accompanies the

Higgs boson production. The rapidity and the transverse momentum distributions of the

hardest jet are shown in Fig. 3. Similar to the QCD corrections to the Higgs boson rapidity
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pp → H + j

[Caola, Melnikov, Schulze, ’15]

[Catani, Devoto, Grazzini, Kallweit, 
Mazzitelli, Savoini ’22]
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Figure 1: LO, NLO and NNLO cross sections with their perturbative uncertainties as functions of the centre-of-mass energy,
computed as discussed in the text. The experimental results from ATLAS [3] and CMS [4] at

p
s = 13TeV are also shown for

comparison. The lower panel illustrates the impact of NNLO corrections with respect to the NLO result. The inner NNLO band
denotes the uncertainty from the soft approximation combined with the systematic uncertainty from the subtraction procedure.

computations of two-loop amplitudes for processes in which a Higgs boson is produced in asso-

ciation to heavy quarks. Since the quantitative impact of the genuine two-loop contribution in

our computation is relatively small, our approximation allows us to control the NNLO tt̄H cross

section to better than 1%. The NNLO corrections are moderate, and range from about +4%

at
p
s = 13TeV to +2% at

p
s = 100TeV, while QCD perturbative uncertainties are reduced

to the few-percent level. When combined with NLO EW corrections, our calculation allows us

to obtain the most advanced perturbative prediction to date for the tt̄H cross section.
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Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.

Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content

– 7 –

[Duhr, Dulat, Mistlberger ‘20] 

pp → W+ @ N3LO
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1 SCALE VARIATION

MAIN ISSUES WITH SCALES 

๏ choice of the central scale 

๏ no probabilistic interpretation

๏ no correlation model
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Figure 20: Ratio of 13 TeV single jet inclusive cross sections to the µ = 2 pT scale choice

at (a) NLO and (b) NNLO with R = 0.4 and CMS cuts.

of the knowledge of the higher order QCD corrections to the observable, to the extent

that pathological behaviours are avoided. We have observed that the best perturbative

stability can be obtained for µ = 2 pT or µ = ĤT, where the perturbative convergence

of the individual jet contributions is vastly improved with respect to the other functional

forms of the scale choice. It is therefore not surprising that these scales tend to show

smaller NNLO corrections and lead to smaller residual NNLO scale uncertainties.

In the remainder of this paper we will employ these two functional forms of the central

scale choice to compare our predictions with jet data from the CMS dataset at
p
s = 13

TeV for the first time.

5 Comparison with CMS jet measurements at
p
s = 13 TeV

Having discussed how the jet kinematics at the LHC di↵erently a↵ects each of the event-

based and jet-based scale choices, in this section we present predictions for the double

di↵erential jet cross section at NLO and NNLO for the CMS measurement at
p
s = 13

TeV [12]. We use the same numerical setup as described in Section 3.1 and do not include

non-perturbative e↵ects from underlying event and hadronization in our predictions. An

assessment of the size of the non-perturbative contributions has been presented in [12] and

we note that these can vary significantly with the jet pT and the R cone size. In the study

in [12] the non-perturbative corrections are expected to be negligible for R = 0.4 but can

reach up to 10%-15% for R = 0.7 at low-pT .

– 36 –

[Currie, Gehrmann–De Ridder, Gehrmann, Glover, Huss, Pires '18]

μ0 = pT

μ0 = pT,1

μ0 = 2pT,1

μ0 = ĤT

μ0 = ĤT /2

incl. jets @ NNLO 
w.r.t.  μ0 = 2pT

⏟

invoke some  
principle

or combination: 
๏ convergence 
๏ band overlap 
๏ stability 
๏ …

1



8

1 SCALE VARIATION

MAIN ISSUES WITH SCALES 

๏ choice of the central scale 

๏ no probabilistic interpretation

๏ no correlation model

μ01

2

3

๏ meaning of the envelope? 

    box , Gaussian , …

๏ to correlate, or not to correlate 

Eur. Phys. J. C (2019) 79 :868 Page 7 of 10 868

Fig. 4 Ratios of Z/W+ and W−/W+ normalised differential distri-
butions at NLL + LO (green, dotted), NNLL+NLO (blue, dashed) and
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2 BAYESIAN ESTIMATES

GENERAL IDEA 

๏ consider the perturbative series as a sequence of dimensionless numbers 

๏ Q:  after observing   ,  prob. to observe  ?δn ≡ (δ0, δ1, …, δn) δn+1

9

[Cacciari, Houdeau ’11],  [Bonvini '20] 
[Duhr, Huss, Mazeliauskas, Szafron '21]

dσ = dσ(0) [1 + δ1 + δ2 + …]   ⇝ δk = 𝒪(αk
s )

P(δn+1 |δn) =
P(δn+1, δn)

P(δn)
=

∫ dmp P(δn+1, δn | p) P0(p)
∫ dmp P(δn | p) P0(p)

Model:   
 

Priors:  

P(δn | p)
⊕

P0(p)

Hidden  
parameters 

p

Known orders:  δn

Unknown orders: 
P(δn+1 |δn)

Bayes:  P(p |δk) ∝ P(δk | p) P0(p)
 P(A, B) = P(A |B) P(B)

P(A) = ∫ dB P(A, B)



2 BAYESIAN ESTIMATES

THE CH MODEL 

๏ pert. exp.    bounded by geometric series:   

THE GEOMETRIC MODEL 

๏ let the model learn the expansion parameter:   

      model:                                        priors: 

δk = ck αk
s |ck | ≤ c̄ ∀k

|δk | ≤ c ak ∀k

10

[Bonvini '20]

  1 param:  ↭ c̄

  2 params:  ,  ↭ a c

[Cacciari, Houdeau ’11]

P(k)
geo(δk |a, c) =

1
2c ak

Θ(c −
|δk |
ak )

δk

P(k)
geo(δk |a, c)

−cak +cak

P0(a) = (1 + ω) (1−a)ω Θ( |a | < 1)

 at what scale?  why not:  ,  ,  ,  , … ?αs αs/π αs/(4π) αs ln2(v) αs ln(v)

1

2

3

0 0.5 1

ω = 0
ω = 1
ω = 2

P0(c) =
ε

c1+ε
Θ(c−1)

   
( : regulator) 
dc/c ∼ d ln(c)
ε
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2 BAYESIAN ESTIMATES

  THE GEOMETRIC MODEL 

๏ full prob. dist.  

๏ broad lower orders: 
  stronger dependence  

      on priors 

๏ narrow higher orders: 
  inference of  

      hidden parameters  

P(σ)

↪
P0

↪

11

[Bonvini '20]



2 BAYESIAN ESTIMATES

THE ABC MODEL 

๏ allow for a bias & alt. series:    

INCORPORATION OF SCALES 

๏ scale marginalisation (sm)

๏ scale average (sa)

12

1

[Duhr, Huss, Mazeliauskas, Szafron '21]

b − c ≤
δk

ak
≤ b + c ∀k

δk

P(k)
abc(δk |a, b, c)

(b − c)ak (b + c)ak

∫ dμ P(δn+1 |δn; μ) P(μ |δn)

∝ P(δn; μ) P0(μ)⏟

⏟prior

∫ dμ w(μ) P(δn+1 |δn; μ)

⏟weight

1
2μ ln F Θ(ln F − ln( μ

μ0
) )2
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Figure 16. The 68% and 95% CIs for the VBF cross-sections for Higgs and di-Higgs production
for the geometric and abc-models using the sa- and sm-prescriptions. The scale variation intervals
using 7 and 9 points are shown for comparison.

As before the centre-of-mass energy is √
s = 13TeV. The central scale is given by the vector

boson momentum [123] and we take into account the dependence on both factorisation and
renormalisation scales. Computations were performed with the proVBFH code [124].

In the left panel of figure 16 we display the CIs for different models and prescriptions for
single Higgs VBF production. For n < 2 the Bayesian approach gives a larger uncertainty
(68% CIs) than the traditional scale variation. Because the NLO correction is negative,
the abc-model anticipates an alternating series, and consequently the CIs for n = 1 for
the abc-model are positively shifted compared to the NLO result. However, the NNLO
corrections are again negative, and for n = 2 all studied models and prescriptions give
very similar 68% CIs, although the abc-model has much larger 95% CIs than the geometric
model. For n = 3 the 68% CIs shrink even further and become somewhat smaller than the
scale variation intervals. For the single Higgs VBF cross-section (σVBF-H)n at n = 3 these
CIs are:

model prescription CI68 (fb) CI95 (fb) 7 point (fb) 9 point (fb)
abc sa [3.9306, 3.9357] [3.9287, 3.9478]

[3.9304, 3.9367] [3.9304, 3.9367]abc sm [3.9304, 3.9337] [3.9290, 3.9430]
geo sa [3.9305, 3.9343] [3.9287, 3.9385]
geo sm [3.9304, 3.9324] [3.9293, 3.9355]

We note that the sm-prescription gives much smaller CIs than the sa-prescription. In fact,
the 95% CIs of the scale-marginalised geometric model is smaller and does not contain
the scale-variation interval, demonstrating that the bounds discussed in section 2.3 do not
necessarily apply to the sm-prescription. In contrast the 95% CIs for the geometric model
in sa-prescription contain the scale variation intervals, as expected.

In the right panel of figure 16 we display the CIs for different models and prescriptions
for di-Higgs VBF production. We observe very good convergence of the cross-section, and
correspondingly the CIs from Bayesian inference shrink rapidly. We observe that the sa-
prescription gives larger CIs than the sm-prescription, which is due to the presence of an
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Figure 17. The 68% and 95% CIs for the neutral-current Drell-Yan cross-section and charged-
current lepton-charge asymmetry for the geometric and abc-models using the sa- and sm-
prescriptions. The scale variation intervals using 7 and 9 points are shown for comparison.

conventional 7-point scale variation at n = 2 [127]. The CIs for the neutral-current Drell
Yan cross-section (σDY-NC)n at n = 3 are:

model prescription CI68 (nb) CI95 (nb) 7 point(nb) 9 point (nb)
abc sa [45.6, 46.6] [44.8, 49.0]

[45.6, 46.4] [45.5, 46.4]abc sm [45.9, 46.5] [45.1, 48.3]
geo sa [45.5, 46.4] [44.6, 47.2]
geo sm [45.8, 46.3] [45.0, 46.9]

We observe that the 68% CIs are similar in size among themselves, and to the scale-
variation intervals, but the CIs from the abc-model are slightly shifted upwards in the
anticipation of a positive MHO correction.

In the right panel of figure 17 we show results for the lepton charge asymmetry for
µ0 = Q = mW . The perturbative expansion for AW (m2

W ) is quickly convergent with only
a mild scale dependence, because some corrections cancel in the ratio. The perturbative
coefficients feature a monotonic increase with the perturbative order, and the abc-model
correctly anticipates positive contributions from MHOs. The CIs from the abc-model are
slightly smaller than for the geometric model. We do not observe significant differences
between the sm- and sa-prescriptions, except for n = 3, where scale-marginalisation gives
more aggressive CIs. We note that the traditional 7-point scale variation intervals for
n = 0, 1 fail to include the next correction, but for n = 2 they are similar to the 68% CIs
obtained from Bayesian inference. The results for the CIs for AW (m2

W ) at N3LO are:

model prescription CI68 CI95 7 point 9 point
abc sa [0.1489, 0.1494] [0.1486, 0.1497]

[0.1488, 0.1493] [0.1485, 0.1494]abc sm [0.1491, 0.1494] [0.1488, 0.1497]
geo sa [0.1487, 0.1493] [0.1484, 0.1495]
geo sm [0.1490, 0.1494] [0.1485, 0.1495]
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Figure 17. The 68% and 95% CIs for the neutral-current Drell-Yan cross-section and charged-
current lepton-charge asymmetry for the geometric and abc-models using the sa- and sm-
prescriptions. The scale variation intervals using 7 and 9 points are shown for comparison.

conventional 7-point scale variation at n = 2 [127]. The CIs for the neutral-current Drell
Yan cross-section (σDY-NC)n at n = 3 are:

model prescription CI68 (nb) CI95 (nb) 7 point(nb) 9 point (nb)
abc sa [45.6, 46.6] [44.8, 49.0]

[45.6, 46.4] [45.5, 46.4]abc sm [45.9, 46.5] [45.1, 48.3]
geo sa [45.5, 46.4] [44.6, 47.2]
geo sm [45.8, 46.3] [45.0, 46.9]

We observe that the 68% CIs are similar in size among themselves, and to the scale-
variation intervals, but the CIs from the abc-model are slightly shifted upwards in the
anticipation of a positive MHO correction.

In the right panel of figure 17 we show results for the lepton charge asymmetry for
µ0 = Q = mW . The perturbative expansion for AW (m2

W ) is quickly convergent with only
a mild scale dependence, because some corrections cancel in the ratio. The perturbative
coefficients feature a monotonic increase with the perturbative order, and the abc-model
correctly anticipates positive contributions from MHOs. The CIs from the abc-model are
slightly smaller than for the geometric model. We do not observe significant differences
between the sm- and sa-prescriptions, except for n = 3, where scale-marginalisation gives
more aggressive CIs. We note that the traditional 7-point scale variation intervals for
n = 0, 1 fail to include the next correction, but for n = 2 they are similar to the 68% CIs
obtained from Bayesian inference. The results for the CIs for AW (m2

W ) at N3LO are:

model prescription CI68 CI95 7 point 9 point
abc sa [0.1489, 0.1494] [0.1486, 0.1497]

[0.1488, 0.1493] [0.1485, 0.1494]abc sm [0.1491, 0.1494] [0.1488, 0.1497]
geo sa [0.1487, 0.1493] [0.1484, 0.1495]
geo sm [0.1490, 0.1494] [0.1485, 0.1495]
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VBF—H DY—NC AW = W+ − W−

W+ + W−

๏ :   bigger than 9pt

๏      alternating

๏ :  all prescriptions similar

n < 2 CI68

δ1 < 0 ⇝ abc

n > 2

๏  is large and outside of 9pt!

๏ similar unc.:  sa    9pt

๏ :  sm   others  ( ) 

๏ :  all prescriptions similar

δ3

≃

n = 2 ≪ μFAC

n = 3

๏ large cancellations in the ratio

๏ :  9pt performs poorly

๏    (anticipated by ) 

๏ size:      others

n < 2

(AW)n ↗ abc

abc ≲

overall: not radically different estimates for    Δpert. (n ≥ 2)

2 BAYESIAN ESTIMATES ⏟
⏟

CI68 CI95

[Duhr, Huss, Mazeliauskas, Szafron '21]
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[Duhr, Huss, Mazeliauskas, Szafron '21]2 BAYESIAN ESTIMATES

๏ :  

‣  bigger than 9pt

‣   captures pos. shift

๏ :  

‣ almost identical bands

‣  very robust

๏ sm  vs.  sa

‣ almost identical 

n < 2

CI68

abc

n = 2

ΔMHO

CI



3 THEORY NUISANCE PARAMETERS

GENERAL IDEA & STEPS 

๏ parametrise the unknown order using nuisance parameters    (TNP) 
 
 
 

๏ assign a probability distribution   
  stat. interpretation & correlation model 

๏ possibility to constrain  using data

⃗θ

P( ⃗θ)
↪

⃗θ

15

[McGowan, Cridge, Harland-Lang, Thorne '23] 
[Tackmann ’24],  [Lim, Poncelet '24]

dσ = dσ(0)+αs dσ(1)+α2
s dσ(2)

TNP( ⃗θ)
⏟

𝒩 θ (simplest case)

1

2

3

most interesting when we have 
information on the functional 
dependence of an observable 

  correlations↭



RESUMMED PREDICTION 

๏ factorization in limit     functional dependence known  
 
 
 
 
 

‣ boundary conditions:   

‣ anomalous dimensions:

pT → 0 ⇝

16

[Tackmann ’24]

1

dσ
dpT

= [H ⊗ Ba ⊗ Bb ⊗ S](αs; L) +𝒪(pT /Q) L ≡ ln(pT /Q)

𝒳(αs; L) = 𝒳(αs) exp∫
L

0
dL′￼{Γ(αs(L′￼)) L′￼ + γ𝒳(αs(L′￼))}𝒳 ∈ {H, Ba, Bb, S}

𝒳(αs) = 𝒳0+αs 𝒳1+α2
s 𝒳2+…

Γ(αs) = αs [Γ0+αs Γ1+α2
s Γ2+…] γ𝒳(αs) = αs [γ0+αs γ1+α2

s γ2+…]

RGE

3 THEORY NUISANCE PARAMETERS



RESUMMED PREDICTION 

๏ parametrise unknown resummation ingredients using nuisance parameters  

‣ boundary conditions:   
 

‣ anomalous dimensions:   
(+ beta function   &  splitting functions )  
 

๏ implements a correlation model for the (low-ish)  spectrum

⃗θ

β Pa→b

pT

17

1’

𝒳n = 𝒩(n)
𝒳 θ𝒳

𝒳 ∈ {H, Ba, Bb, S}
⏟

actually functions:  Bi(xi)

Γn = 𝒩(n)
Γ θΓ γ𝒳, n = 𝒩(n)

γ𝒳
θγ𝒳

[Tackmann ’24]3 THEORY NUISANCE PARAMETERS



RESUMMED PREDICTION 

๏ assign a probability distribution  (statistics over  calculations)   
  assume universality in order  as well as processes/ingredients

∃
↭ n

18

[Tackmann ’24]

2

  CHOICES (  ambiguities)  

๏ scheme dependence 
(scale, ren. scheme, IR subtr., …)

๏ parametrisation freedom 
( :  changes what is  
uncorrelated/independent)

↭

⃗θ → ⃗θ′￼
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Figure 3. Distribution of true values of theory nuisance parameters for QCD matrix-element
constants (left) and anomalous dimensions (right) for nf = 5 combining all available orders.

identification in eq. (5.11), we find the distribution p(ωn) in eqs. (5.9) and (5.10) to have

approximately zero mean and unit variance, confirming our original estimate of un = 0

with !un = 1. We further find it to be well approximated by a Gaussian in agreement

with our original assumption.

5.3.3 Further discussion

The fact that our estimation procedure yields distributions closely resembling Gaussians as

in figure 3 speaks for itself. This can be contrasted with the very long-tailed distributions

obtained from an analogous exercise using scale variations in ref. [7] or the typically very

non-Gaussian distributions produced by the methods of refs. [2–5].

It is also undeniable that the distributions are closer to a Gaussian than a flat box,

in contrast to what one might have expected, as such a box-like distribution is sometimes

advocated to be more appropriate than a Gaussian for perturbative theory uncertainties

(albeit typically in the context of scale variations). We might also ask why to expect the

distributions p̂Fn(ω̂n) and p̂F (ω̂n) to be sensible or useful in the first place. In fact, even

though the f̂n → Fn all belong to some common category of perturbative series, we want this

category to be as broad as possible to be as useful as possible. This means the distribution

of f̂n, which is solely a property of the collection Fn might very well be quite irregular and

not very useful by itself. However, as we have stressed already, the distribution p̂Fn(ω̂n) is

a property of our estimation procedure for Fn. Its goal is precisely to strip the f̂n of their

individuality and reduce them to a generic bunch of numbers of a common more-or-less

random origin, namely arising as a more-or-less random sum of Feynman diagrams. It

is then perhaps not surprising after all that the resulting population of ω̂n can be well

described by a Gaussian distribution. We might think of it as the central-limit theorem of

Feynman diagrams.17

It is also instructive to think about how we would notice if there was something going

wrong in our estimation procedure. If we find a Gaussian with di”erent mean or variance,

17
The credit for coining this term goes to Glen Cowan.
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Matrix Elements anomalous dimensions

𝒩(n)
𝒳 = 4n Cr Cn−1

A (n − 1)! 𝒩(n)
Γ = 4n Cr Cn

A

(&  to scale like )𝒳 → 𝒳δ ℳ1→1
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selection bias?

“massaging”

valid?



RESUMMED PREDICTION 

๏ 100% correlation of 

‣ large cancellation in 

‣ dominant residual 
uncertainties from  

๏ similar absolute errors to 

๏ valid at low  
  requires matching  

      @ high   ( , )

๏ missing:  non-pert. modelling

⃗θ

W+/Z

Bab

Δscl

pT
↪

pT μR μF
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[Tackmann ’24]
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Figure 5. Breakdown of the relative uncertainties in the leading-power qT → p
Z,W
T spectrum at the

13 TeV LHC at N2+1LL (left panels) and N3+1LL (right panels) for pp ↑ Z (top row), pp ↑ W
+

(middle row), and their ratio (bottom row). The di!erent lines show the impact of varying the
corresponding theory nuisance parameter by +1 or ↓1, corresponding to 68% theory CL. The
yellow band shows their sum in quadrature. See the text for more details.

support the required theory nuisance parameter variations. Since we only consider the

leading-power spectrum without matching to the full fixed-order result at large qT , we

restrict ourselves to qT ↔ 30GeV, where the neglected O(q2
T
/Q

2) and higher power cor-

rections amount to at most a few-percent correction and the uncertainties associated with

the matching procedure are also not yet relevant [40].

In figure 4, we start by presenting the Z qT spectrum at di!erent subsequent orders

up to N3+1LL. The uncertainty bands show the total theory uncertainty at 95% theory

CL from varying all TNPs by ”un = ±2. Note that the N3+0LL result is an intermediate
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20

Kenneth Long 37

★ Extracting mw from fit to (ημ, pTμ)
- Total uncertainty of 9.9 MeV 

- Muon momentum scale and PDF dominant unc.

Kenneth Long 28

Perturbative uncertainties
- “Theory nuisance parameters” calculated from SCETlib at N3LL and propagated through analysis 

- Structure of resummation is known to all orders, many corrections are (unknown) numerical constants 
- Parameterize elements of resummation series, uncertainties directly represent unknown terms 
- Meaningful shape variation (critical!) and meaningful constraints from data 

- Unc. in mW ~0.5 MeV
CMS  MEASUREMENT 

๏ constrain  using data

MW

⃗θ3

FI
T

[CMS arXiv:2412.13872 [hep-ex]]

driven by correlations
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CMS  MEASUREMENT 

๏ constrain  using data

MW

⃗θ

21

3

FI
T

6.3 Measurement of the W boson mass 9

Figure 2: Validation of the theory model. Unfolded measured pZ
T distribution (points) com-

pared with the generator-level SCETLIB+MINNLOPS predictions before (prefit, gray) and af-
ter adjusting the nuisance parameters to the best fit values obtained from the W-like mZ fit
(magenta) or from the direct fit to the pµµ

T distribution (blue). The center panel shows the ratio
of the predictions and unfolded data to the prefit prediction. The uncertainty in the prefit pre-
diction is shown by the shaded gray area. The bottom panel shows the ratio of the predictions
and unfolded data to the prediction adjusted to the best fit values obtained from the fit to the
(pµµ

T , yµµ) distribution. The uncertainties in the predictions after the maximum likelihood fits
are shown in the shaded magenta and blue bands. The vertical bars represent the total uncer-
tainty in the unfolded data.

likelihood fit to data. To test the accuracy of the adjusted predictions in describing our data, we
account for effects of the detector response and resolution by “unfolding” our measurement to
the generator level, as described in Section A.9. The consistency of the distributions obtained
from the direct pµµ

T fit and from the W-like mZ fit, as well as the consistency between each of
them and the data, confirms the robustness of the predictions and of the uncertainty model, as
well as the ability of the (pµ

T, ηµ) distribution to constrain the pV
T modeling in situ. This result

supports adopting the same treatment for the pW
T distribution in the mW analysis, where pW

T
cannot be precisely measured without theoretical input, and allows our mW measurement to
be independent of the assumed correlation between pZ

T and pW
T .

Section A.9 gives more details on the stability of our W-like Z boson mass measurement under
different modeling assumptions and its consistency with the measured pµµ

T distribution.

6.3 Measurement of the W boson mass

Having validated the analysis steps using the Z boson data, we proceed with the determina-
tion of the W boson mass. A binned maximum likelihood template fit is performed to the
(pµ

T, ηµ , qµ) distribution, shown in Fig. A.16, and the observed mW value is

mW = 80 360.2 ± 2.4 (stat) ± 9.6 (syst) = 80 360.2 ± 9.9 MeV,

A.6 Modeling of the W and Z boson transverse momentum distributions 23

SCETLIB+DYTURBO uncertainties.

Figure A.6: Measured and simulated pµµ
T (left) and pµ

T (right) distributions in selected
Z → µµ events. The standalone uncorrected MINNLOPS predictions are shown by the
dashed gray line. The nominal predictions (blue) correct the POWHEG MINNLOPS pV

T with
SCETLIB+DYTURBO at N3LL+NNLO, as described in the text. The vertical bars represent
the statistical uncertainties in the data. The bottom panel shows the ratio of the number of
events observed in data to that of the total nominal prediction, as well as the relative impact
of variations of the predictions. Different sources of uncertainty are shown as solid bands in
the lower panel: the fixed-order uncertainty and the uncertainty in the resummation and fixed-
order matching (orange), resummed prediction using TNPs (pink), the Collins–Soper (CS) ker-
nel nonperturbative uncertainty (green), and other nonperturbative uncertainties (light blue).
Additional sources of experimental and theoretical uncertainty that impact the agreement with
the data are not shown.

As illustrated in Fig. A.6, the SCETLIB+DYTURBO correction substantially improves the de-
scription of pµµ

T and pµ
T data in selected Z → µµ events when compared with the standalone

MINNLOPS predictions. Uncertainties in the pW
T prediction, particularly those impacting the

low-pW
T region, can shift the Jacobian peak of the pµ

T distribution in a way similar to a variation
of mW. Therefore, the sensitivity of the analysis to mW critically relies on differentiating the
uncertainty in pW

T and its impact on the pµ
T distribution from mW variations. As can be appre-

ciated from Fig. A.6, different sources of uncertainty contribute predominantly to different pV
T

regions. The nonperturbative uncertainty is most pronounced at low pV
T . Uncertainties in the

resummation calculation and in the matching of the resummed and fixed-order calculations
are relevant up to pV

T ↑ 40 GeV. The nonperturbative and resummation uncertainties have the
largest impact on the pµ

T distribution around the Jacobian peak region that is sensitive to the
mW value. Consequently, their contributions have an important impact on the measurement
of mW. The perturbative uncertainties in fixed-order QCD, which are dominant at high pV

T ,
have a small impact on pµ

T in the region sensitive to mW. The uncertainties are estimated by
varying the relevant parameters of the SCETLIB+DYTURBO calculation to obtain alternative
predictions that are propagated through the full experimental analysis via event-level weights.

[CMS arXiv:2412.13872 [hep-ex]]
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BEYOND RESUMMED SPECTRA 

๏ pull out the Born prediction and split off leading-colour factor at each order 

๏ parametrise first unknown order as superposition of lower-order 

๏         approach to approx. N3LO in MSHT PDF fit

n

K(n)

k = 0 ⇒ f ( j)
0 ( ⃗θ; x) → θ( j)

0 ↭
22

dσ
dx

=
dσ(0)

dx [1 + αsNc K(1)(x) + α2
s N2

c K(2)(x) +…] K(n)(x) ≡
1

Nn
c

dσ(n)/dx
dσ(0)/dx

K(n+1)
TNP ( ⃗θ; x) =

n

∑
j=1

f ( j)
k ( ⃗θ; x) K( j)(x)

⏟
f ( j)
k ( ⃗θ; x) =

k

∑
i=0

θ( j)
i (k

i) xk−i (1−x)i

f ( j)
k ( ⃗θ; x) =

1
2

k

∑
i=0

θ( j)
i Ti(x)

⏟

polyn. modulation

(Bernstein)

(Chebyshev)

:   uniform in  ,  normal with P(θ( j)
i ) [−1, + 1] σ = 1

[McGowan, Cridge, Harland-Lang, Thorne '23] 
[Lim, Poncelet '24]
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  BEYOND RESUMMED SPECTRA 

๏ LO:  no uncertainty estimate

๏ NLO:  effectively a   
modulation of NLO correction

๏ NNLO:  first time an interplay 
between two independent  

∼ αs Nc 𝒪(1)

K(1,2)

23

[Lim, Poncelet '24]
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pp ! tt̄ ! ��̄ 2b�jets, LHC @ 13 TeV central scale: µ = HT /4 Bernstein parameterisation (k=2)

FIG. 1. Comparison between MHOU estimates from TNP and scale variation for di!erential distributions in tt̄ production, with
QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
and the ratio of the lepton transverse momenta pT (ω1)/pT (ω2). We take µ = HT /4 as our central scale choice and use a
Bernstein parameterisation. The solid lines represent the LO (green), NLO (blue) and NNLO (red) central predictions and the
corresponding bands of the estimated MHOU. The vertical lines indicate statistical uncertainties. We do not associate a TNP
uncertainty with the LO prediction – see text for details.
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FIG. 1. Comparison between MHOU estimates from TNP and scale variation for di!erential distributions in tt̄ production, with
QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
and the ratio of the lepton transverse momenta pT (ω1)/pT (ω2). We take µ = HT /4 as our central scale choice and use a
Bernstein parameterisation. The solid lines represent the LO (green), NLO (blue) and NNLO (red) central predictions and the
corresponding bands of the estimated MHOU. The vertical lines indicate statistical uncertainties. We do not associate a TNP
uncertainty with the LO prediction – see text for details.
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FIG. 1. Comparison between MHOU estimates from TNP and scale variation for di!erential distributions in tt̄ production, with
QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
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uncertainty with the LO prediction – see text for details.
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FIG. 1. Comparison between MHOU estimates from TNP and scale variation for di!erential distributions in tt̄ production, with
QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
and the ratio of the lepton transverse momenta pT (ω1)/pT (ω2). We take µ = HT /4 as our central scale choice and use a
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corresponding bands of the estimated MHOU. The vertical lines indicate statistical uncertainties. We do not associate a TNP
uncertainty with the LO prediction – see text for details.
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FIG. 1. Comparison between MHOU estimates from TNP and scale variation for di!erential distributions in tt̄ production, with
QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
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FIG. 1. Comparison between MHOU estimates from TNP and scale variation for di!erential distributions in tt̄ production, with
QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
and the ratio of the lepton transverse momenta pT (ω1)/pT (ω2). We take µ = HT /4 as our central scale choice and use a
Bernstein parameterisation. The solid lines represent the LO (green), NLO (blue) and NNLO (red) central predictions and the
corresponding bands of the estimated MHOU. The vertical lines indicate statistical uncertainties. We do not associate a TNP
uncertainty with the LO prediction – see text for details.
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QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
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corresponding bands of the estimated MHOU. The vertical lines indicate statistical uncertainties. We do not associate a TNP
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uncertainty with the LO prediction – see text for details.
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FIG. 1. Comparison between MHOU estimates from TNP and scale variation for di!erential distributions in tt̄ production, with
QCD corrections to the production and decay processes treated separately and combined in the narrow width approximation.
From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
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uncertainty with the LO prediction – see text for details.
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From left to right, we show the lepton pair invariant mass m(ωω̄), the transverse momentum of the hardest b-jet pT (b1)
and the ratio of the lepton transverse momenta pT (ω1)/pT (ω2). We take µ = HT /4 as our central scale choice and use a
Bernstein parameterisation. The solid lines represent the LO (green), NLO (blue) and NNLO (red) central predictions and the
corresponding bands of the estimated MHOU. The vertical lines indicate statistical uncertainties. We do not associate a TNP
uncertainty with the LO prediction – see text for details.
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FIG. 3. As in fig. 1, but for o!-shell, fully decayed WW production. We take µ = HT /2 as our central scale choice and use a
Bernstein parameterisation. From left to right we show the pair invariant mass m(W+

W
→), the transverse momentum of the

muon pT (µ
→) and the rapidity of one boson y(W→).

Another criticism that one might reasonably level is
that we are still required to make a choice for the central
value of our scales, which remains arbitrary. By examin-
ing di!erent central choices, we have found that our un-
certainty estimates remain consistent, regardless of what
choice one makes. The underlying reason for this is that
our construction naturally overcomes ‘poor’ scale choices,
in the sense that these result in large K-factors which
then inflate the TNP uncertainty. This issue is also dis-
cussed in detail in Ref. [5].

III. RESULTS

We obtain our NLO and NNLO cross sections from
published results obtained within the STRIPPER frame-
work [10–13], a full list of included processes can be found
in Tab. I. We study both NLO uncertainties (where the
NNLO corrections are known) and NNLO uncertainties
(for cases where the N3LO corrections are at present
unknown). We explicitly present here results for three
processes, namely pp → tt̄ → bb̄ωω̄, pp → εjj and
pp → W

+
W

→
→ ωω̄ϑϑ̄, all defined in appropriate fidu-

cial regions3. Each case has a distinct behaviour with
respect to scale variations. The first and second pro-
cesses feature coloured final states and large higher-order
corrections, where typically the leading-order scale band
does not contain the NLO result. The third example
is pathological with respect to scale variations, and the
NNLO uncertainty band lies completely outside that of
the NLO. This allows us to test our TNP procedure in
di!erent scenarios. For the original NNLO computations
of each process, see Refs. [15–18].

For each process and distribution we consider, we com-
pute the central curve using a fixed scale choice. We
provide uncertainty estimates computed in two di!erent
ways. In the first method, we generate random values of
the ϖi uniformly in the interval [↑1, 1] and take a band of
the (bin-wise) maximum and minimum deviations thus
obtained. 4 We note that this latter part of the pro-
cedure is non-ideal if one wishes to propagate the un-
certainties correctly – each set of the ϖi essentially rep-
resents a correlation model, and by taking a band one

3 More processes are available using a Jupyter notebook interface
to HighTEA at Ref. [14].

4 We have verified that the size of the band is independent of the
number of samples above N = 100.
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in the sense that these result in large K-factors which
then inflate the TNP uncertainty. This issue is also dis-
cussed in detail in Ref. [5].

III. RESULTS

We obtain our NLO and NNLO cross sections from
published results obtained within the STRIPPER frame-
work [10–13], a full list of included processes can be found
in Tab. I. We study both NLO uncertainties (where the
NNLO corrections are known) and NNLO uncertainties
(for cases where the N3LO corrections are at present
unknown). We explicitly present here results for three
processes, namely pp → tt̄ → bb̄ωω̄, pp → εjj and
pp → W

+
W

→
→ ωω̄ϑϑ̄, all defined in appropriate fidu-

cial regions3. Each case has a distinct behaviour with
respect to scale variations. The first and second pro-
cesses feature coloured final states and large higher-order
corrections, where typically the leading-order scale band
does not contain the NLO result. The third example
is pathological with respect to scale variations, and the
NNLO uncertainty band lies completely outside that of
the NLO. This allows us to test our TNP procedure in
di!erent scenarios. For the original NNLO computations
of each process, see Refs. [15–18].

For each process and distribution we consider, we com-
pute the central curve using a fixed scale choice. We
provide uncertainty estimates computed in two di!erent
ways. In the first method, we generate random values of
the ϖi uniformly in the interval [↑1, 1] and take a band of
the (bin-wise) maximum and minimum deviations thus
obtained. 4 We note that this latter part of the pro-
cedure is non-ideal if one wishes to propagate the un-
certainties correctly – each set of the ϖi essentially rep-
resents a correlation model, and by taking a band one

3 More processes are available using a Jupyter notebook interface
to HighTEA at Ref. [14].

4 We have verified that the size of the band is independent of the
number of samples above N = 100.

W+W−

๏ more robust?  channel?gg



DATASET & TOLERANCES 

๏  datapoints in a global fits 
  inconsistencies between data,  

      unknown/underestimated  
      EXP/TH uncertainties, model, …

๏  for 68% C.L. not suited 
  “tolerance”  10–30

THEORY UNCERTAINTIES IN PDFS 

๏ NNPDF4+        (scale variation) 
MSHT aN3LO  (nuisance parameter)

๏ mandatory in aN3LO as (almost) no 
predictions available at this order

𝒪(4000)
↪

Δχ2 = 1
⇝ T2 =

24

4 PARTON DISTRIBUTION FUNCTIONS

NLO NNLO aN3LO

Dataset Ndat no MHOU MHOU Ndat no MHOU MHOU Ndat no MHOU MHOU

DIS NC 1980 1.30 1.22 2100 1.22 1.20 2100 1.22 1.20

DIS CC 988 0.92 0.87 989 0.90 0.90 989 0.91 0.92

DY NC 667 1.49 1.32 736 1.20 1.15 736 1.17 1.16

DY CC 193 1.31 1.27 157 1.45 1.37 157 1.37 1.36

Top pairs 64 1.90 1.24 64 1.27 1.43 64 1.23 1.41

Single-inclusive jets 356 0.86 0.82 356 0.94 0.81 356 0.84 0.83

Dijets 144 1.55 1.81 144 2.01 1.71 144 1.78 1.67

Prompt photons 53 0.58 0.47 53 0.76 0.67 53 0.72 0.68

Single top 17 0.35 0.34 17 0.36 0.38 17 0.35 0.36

Total 4462 1.24 1.16 4616 1.17 1.13 4616 1.15 1.14

Table 4.1. The number of data points and the ω2 per data point obtained in the NLO, NNLO, and aN3LO NNPDF4.0
fits without and with MHOUs, see text for details. The datasets are grouped according to the same process catego-
rization as that used in Ref. [38].
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Figure 4.1. The values of the total ω2 per data point in the NNPDF4.0 NLO, NNLO, and aN3LO fits without and
with MHOUs.

4.1 Fit quality

Tables 4.1-4.4 display the number of data points and the ω2 per data point obtained in the NLO, NNLO,
and aN3LO NNPDF4.0 fits with and without MHOUs. In Table 4.1 the datasets are grouped according
to the process categorization used in Ref. [38]. Results for individual datasets are displayed in Table 4.2,
(NC and CC DIS), in Table 4.3 (NC and CC DY), and in Table 4.4 (top pairs, single-inclusive jets, dijets,
isolated photons, and single top). The naming of the datasets follows Ref. [37]. The value of the total ω2

per data point is also shown as a function of the perturbative order in Fig. 4.1.
The NLO and NNLO results without MHOUs are obtained using the NLO and NNLO NNPDF4.0 PDF

sets [37]. The NNLO result with MHOUs is obtained using the NNPDF4.0MHOU NNLO set from Ref. [38],
while, as already mentioned, the NNPDF4.0MHOU NLO presented here for the first time uses an identical
methodology to NNPDF4.0MHOU NNLO [38], but the same dataset as NNPDF4.0 NLO [37]. Hence, the
datasets with and without MHOU are always the same, but the NLO and NNLO datasets are not the same
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Figure 11. The cross-sections of Tables 1-2, shown both in absolute scale (top) or as ratios to the result found
using the MSHT20xNNPDF40 nnlo baseline combination. In all cases, N3LO matrix elements are used. The results for
hW

→ are qualitatively similar as those for hW+ and not shown. The inner interval is the pure PDF uncertainty (first
uncertainty in Tables 1-2) while the outer interval is the sum in quadrature of the PDF uncertainty and the MHOU
uncertainty on the hard cross section (second uncertainty in Tables 1-2).
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Figure 9. Parton luminosities for the LHC
→
s = 13.6 TeV computed from the MSHT20xNNPDF40 aN3LO pure

QCD and QCD+QED sets, compared to the NNLO PDF4LHC21 result, and shown a ratio to the latter.

corrections. Results obtained by using perturbatively mismatched NNLO PDFs together with the N3LO
matrix element are also shown, both for the PDF4LHC21 and MSHT20xNNPDF40 NNLO combined sets.
In order to visually assess the error involved in this procedure, in Fig. 11 we also show results as a ratio of
the result to that found using mismatched NNLO PDFs, specifically from the MSHT20xNNPDF40 NNLO
combined baseline set.

The percentage error made when using mismatched NNLO PDFs is

!exact
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∣∣∣∣∣
ω

N3LO
N3LO→PDF ↓ ω

N3LO
NNLO→PDF

ωN3LO
N3LO→PDF
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An approximate way of estimating this error before knowledge of aN3LO PDFs, based on the behavior seen
at one less perturbative order, was suggested in Refs. [43, 44] and it is given by

!app
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1

2

∣∣∣∣∣
ω

NNLO
NNLO→PDF ↓ ω

NNLO
NLO→PDF

ωNNLO
NNLO→PDF
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The values of!exact
NNLO of!app

NNLO obtained for each process are also included in Tables 1-2, both for NNPDF4.0,
MSHT20, and the combined PDF sets constructed here, using in each case PDFs at the required perturbative
orders from the same set. For the computation of!app

NNLO for the combined set we use as a value for ωNNLO
NLO→PDF

the average of the cross-sections computed using NNPDF4.0 and MSHT20 NLO PDFs.
It is clear that, as already noticed from the comparison of parton luminosities of Figs. 9-10, the e”ect of

using aN3LO PDFs is most substantial for gluon fusion and vector boson fusion, which depend on the gluon-
gluon and quark-quark luminosity respectively, and is small for associated hV production, which depends
on the quark-antiquark luminosity. It follows that for gluon fusion and VBF using mismatched NNLO PDFs
leads to a large error !exact

NNLO. Furthermore, the approximate estimate of this error !app
NNLO is very unreliable,
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corrections. Results obtained by using perturbatively mismatched NNLO PDFs together with the N3LO
matrix element are also shown, both for the PDF4LHC21 and MSHT20xNNPDF40 NNLO combined sets.
In order to visually assess the error involved in this procedure, in Fig. 11 we also show results as a ratio of
the result to that found using mismatched NNLO PDFs, specifically from the MSHT20xNNPDF40 NNLO
combined baseline set.
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The values of!exact
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NNLO obtained for each process are also included in Tables 1-2, both for NNPDF4.0,
MSHT20, and the combined PDF sets constructed here, using in each case PDFs at the required perturbative
orders from the same set. For the computation of!app

NNLO for the combined set we use as a value for ωNNLO
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the average of the cross-sections computed using NNPDF4.0 and MSHT20 NLO PDFs.
It is clear that, as already noticed from the comparison of parton luminosities of Figs. 9-10, the e”ect of

using aN3LO PDFs is most substantial for gluon fusion and vector boson fusion, which depend on the gluon-
gluon and quark-quark luminosity respectively, and is small for associated hV production, which depends
on the quark-antiquark luminosity. It follows that for gluon fusion and VBF using mismatched NNLO PDFs
leads to a large error !exact
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9 Uncertainties in the PDFs
The observed AFB values depend on the size of the dilution effect, as well as on the relative
contributions from u and d valence quarks to the total dilepton production cross section. The
uncertainties in the PDFs translate into sizable changes in the observed AFB values. However,
changes in PDFs affect the AFB(m``, y``) distribution in a different way than changes in sin2 q`eff.

Changes in PDFs produce large changes in AFB, when the absolute values of AFB are large, i.e.,
at large and small dilepton mass values. In contrast, the effect of changes in sin2 q`eff are largest
near the Z boson peak, and are significantly smaller at high and low masses. Because of this
behavior, which is illustrated in Fig. 5, we apply a Bayesian c2 reweighting method to constrain
the PDFs [48–50], and thereby reduce their uncertainties in the extracted value of sin2 q`eff.

FBA

0.2−

0

0.2

POWHEG

 (GeV)llm
70 80 90 100 110

FBA
∆

0.005−

0

0.005

0.0012±0.0008, ±0.0004, ± = l
effθ2sinδ

NNPDF3.0 uncertainty
NNPDF3.0 replicas

Figure 5: Distribution in AFB as a function of dilepton mass, integrated over rapidity (left), and
in six rapidity bins (right) for sin2 q`eff = 0.23120 in POWHEG. The solid lines in the bottom panel
correspond to six changes at sin2 q`eff around the central value, corresponding to: ±0.00040,
±0.00080, and ±0.00120. The dashed lines refer to the AFB predictions for 100 NNPDF3.0 repli-
cas. The shaded bands illustrate the standard deviation in the NNPDF3.0 replicas.

As a baseline, we use the NLO NNPDF3.0 PDFs. In the Bayesian c2 reweighting method,
PDF replicas that offer good descriptions of the observed AFB distribution are assigned large
weights, and those that poorly describe the AFB are given small weights. Each weight factor is
based on the best-fit c2

min,i value obtained by fitting the AFB (m``,y``) distribution with a given
PDF replica i:

wi =
e�

c2
min,i

2

1
N ÂN

i=1 e�
c2

min,i
2

, (13)

where N is the number of replicas in a set of PDFs. The final result is then calculated as a
weighted average over the replicas: sin2 q`eff = ÂN

i=1 wisi/N, where si is the best-fit sin2 q`eff
value obtained for the ith replica.

Figure 6 shows a scatter plot of the c2
min vs. the best-fit sin2 q`eff value for the 100 NNPDF3.0

replicas for the µµ and ee samples, and for the combined dimuon and dielectron results. All
sources of statistical and experimental systematic uncertainties are included in a 72⇥72 covari-
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Figure 6: The upper panel in each figure shows a scatter plot in c2
min vs. the best-fit sin2 q`eff for

100 NNPDF replicas in the muon channel (upper left), electron channel (upper right), and their
combination (below). The corresponding lower panels have the projected distributions in the
best-fit sin2 q`eff for the nominal (open circles) and weighted (solid circles) replicas.

Figure 7: The extracted values of sin2 q`eff in the muon and electron channels, and their combi-
nation. The horizontal bars include statistical, experimental, and PDF uncertainties. The PDF
uncertainties are obtained both without (left) and with (right) using the Bayesian c2 weighting.
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variations for each eigenvector. As expected for Gaussian distributions, we obtain the same
central values and the total uncertainties that are extracted from Bayesian reweighting of the
corresponding set of replicas.

Table 4: The central value and the PDF uncertainty in the measured sin2 q`eff in the muon and
electron channels, and their combination, obtained without and with constraining PDFs using
Bayesian c2 reweighting.

Channel Not constraining PDFs Constraining PDFs
Muons 0.23125 ± 0.00054 0.23125 ± 0.00032
Electrons 0.23054 ± 0.00064 0.23056 ± 0.00045

Combined 0.23102 ± 0.00057 0.23101 ± 0.00030

Finally, as a cross-check, we also repeat the measurement using different mass windows for
extracting sin2 q`eff, and for constraining the PDFs. Specifically, we first use the central five bins,
corresponding to the dimuon mass range of 84 < mµµ < 95 GeV, to extract sin2 q`eff. Then, we
use predictions based on the extracted sin2 q`eff in the lower three (60 < mµµ < 84 GeV) and
the higher four (95 < mµµ < 120 GeV) dimuon mass bins, to constrain the PDFs. We find
that the statistical uncertainty increases by only about 10%, and the PDF uncertainty increases
by only about 6% relative to the uncertainties obtained when using the full mass range to
extract the sin2 q`eff and simultaneously constrain the PDFs. The test thereby confirms that the
PDF uncertainties are constrained mainly by the high- and low-mass bins, and that we obtain
consistent results with these two approaches.

Figure 8: Extracted values of sin2 q`eff from the dimuon data for different sets of PDFs with the
nominal (left) and c2-reweighted (right) replicas. The horizontal error bars include contribu-
tions from statistical, experimental, and PDF uncertainties.

10 Summary
The effective leptonic mixing angle, sin2 q`eff, has been extracted from measurements of the mass
and rapidity dependence of the forward-backward asymmetries AFB in Drell–Yan µµ and ee
production. As a baseline model, we use the POWHEG event generator for the inclusive pp !
Z/g ! `` process at leading electroweak order, where the weak mixing angle is interpreted
through the improved Born approximation as the effective angle incorporating higher-order
corrections. With more data and new analysis techniques, including precise lepton-momentum
calibration, angular event weighting, and additional constraints on PDFs, the statistical and
systematic uncertainties are significantly reduced relative to previous CMS measurements. The
combined result from the dielectron and dimuon channels is:

sin2 q`eff = 0.23101 ± 0.00036 (stat) ± 0.00018 (syst) ± 0.00016 (theo) ± 0.00031 (PDF), (16)

or summing the uncertainties in quadrature,

sin2 q`eff = 0.23101 ± 0.00053. (17)
still almost 

50% of Δtot
how sensible is that  extra datapoints have such a big impact? 

  this data effectively carries a very high weight!
𝒪(100)
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The coupling constant of the strong force is determined from the transverse-momentum
distribution of 𝐿 bosons produced in 8 TeV proton–proton collisions at the LHC and recorded
by the ATLAS experiment. The 𝐿-boson cross sections are measured in the full phase space
of the decay leptons using 15.3 million electron and muon pairs, in a dataset collected in
2012 and corresponding to an integrated luminosity of 20.2 fb→1. The analysis is based on
predictions evaluated at third order in perturbative QCD, supplemented by the resummation
of logarithmically enhanced contributions in the low transverse-momentum region of the
lepton pairs. The determined value of the strong coupling at the reference scale corresponding
to the 𝐿-boson mass is 𝑀s(𝑁𝐿 ) = 0.1183 ± 0.0009. This is the most precise experimental
determination of 𝑀s(𝑁𝐿 ) achieved so far.
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Table 2: Summary of N3LL fits with NNLO PDFs.

PDF set 𝑁s(𝑀𝐿 ) PDF uncertainty 𝑂 [GeV2] 𝐿 [GeV4]

MSHT20 [37] 0.11839 0.00040 0.44 →0.07
NNPDF4.0 [84] 0.11779 0.00024 0.50 →0.08
CT18A [29] 0.11982 0.00050 0.36 →0.03
HERAPDF2.0 [65] 0.11890 0.00027 0.40 →0.04

1.5–2.5 GeV→1 yield 𝑁s(𝑀𝐿 ) variations of +0.00012
→0.00020. Variations of 𝑃0 in the range 0.5–2 GeV yield 𝑁s(𝑀𝐿 )

variations of +0.00006
→0.00002. Variations of 𝑂0 in the range 0.1–0.5 yield 𝑁s(𝑀𝐿 ) variations which are at the level

of ±0.00002. Variations of 𝑄 in the range 0.5–2 GeV2 yield 𝑁s(𝑀𝐿 ) variations of +0.00011
→0.00019. The envelope of

these variations is +0.00012
→0.00020, which is used as an estimate of the uncertainty in the non-perturbative model.

PDF profiling. Pulls and constraints on the nuisance parameters associated with the PDF uncertainties
in Eq. (1) can be reinterpreted in the PDF space through a Hessian profiling procedure [66]. Such a
reinterpretation provides valuable information about the sensitivity of the measured cross sections to the
PDFs. The largest observed e!ects are on the gluon and sea-quark PDFs, which are shown in Figure 6.

Fits with NNLO PDFs. At order N4LLa+N3LO, only one N3LO PDF set is currently available, namely
the MSHT20aN3LO [59] PDF set. In order to study the dependence of the results on the choice of PDF set,
fits are performed at a lower order, N3LL+N3LO, using NNLO PDF sets. Table 2 shows results of fits with
various PDF sets. At this order, the spread observed in the values of 𝑁s(𝑀𝐿 ) extracted with di!erent PDF
sets is ±0.00102, which is driven by the di!erence between the NNPDF4.0 and CT18A PDF sets.

The determination of 𝑁s(𝑀𝐿 ) from the transverse-momentum distribution of 𝑅 bosons is particularly
sensitive to the gluon PDF. The PDF determinations at NNLO are a!ected by significant tension between
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PERTURBATIVE    NON-PERTURBATIVE 

๏ Parton showers (PS) model all-order QCD emissions  
through the evolution from hard to soft scales

๏ no systematic approach (afaik) to assess  
perturbative uncertainties in PS

๏ tuning of PS further entangles the  
pert. part with the non-pert. (NP) model  

  latter very sizeable  
  difficult to assess due to the notorious  

         “Herwig vs. Pythia” 
      effective two-point systematics
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X PARTON SHOWERS bin. For the last y⇤ bin in the dijet measurement, a fixed range 0.92-1.07 is conservatively taken for all
m j j bins due to lack of statistical precision at large m j j.
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Figure 3: Non-perturbative correction factors for the (inclusive jet, dijet) NLO pQCD prediction as a function of
(jet pT, mj j) for ((a),(c)) the first (rapidity, y⇤) bin and for ((b),(d)) the last (rapidity, y⇤) bin. The corrections are
derived using Pythia 8 with the A14 tune with the NNPDF2.3 LO PDF set. The envelope of all MC configuration
variations is shown as a band.

9.3 Electroweak corrections

The NLO pQCD predictions are corrected for the e↵ects of � and W±/Z interactions at tree and one-loop
level. They are derived using an NLO calculation of electroweak (EW) contributions to the LO pQCD

15
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collinear
Figure 6: Nonperturbative correction factors obtained for jets with R = 0.4 (left) and 0.8 (right)
as a function of m1,2, illustrated here in the rapidity region (yb < 0.5, y→ < 0.5). Individual
correction factors are first derived from simulation using eight different MC configurations.
The largest and smallest value obtained in each observable bin is then used to define the final
correction factor and its associated uncertainty. The correction values are larger for jets with
R = 0.8, increasing to over 20% in the lowest m1,2 bin.
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FIG. 2. Test of NNLL accuracy of the PanGlobal (PGsdf
ω=0)

shower for the cumulative distribution of the Cambridge y23

resolution variable, compared to known results for Z →
qq̄ [52] (left) and H → gg [77] (right). The curves show the
di!erence relative to NNLL for various subsets of ingredients.
Starting from the red curve, DS additionally includes double
soft contributions and 2-jet NLO matching; 3ω includes 3-loop
running of εs and the Kresum

2 term. Including all e!ects (blue
line) gives a result that is consistent with zero, i.e. in agree-
ment with NNLL.

FIG. 3. Summary of NNLL tests across observables and
shower variants. Results consistent with zero (shown in green)
are in agreement with NNLL. The observables correspond to
the event shapes used in Ref. [5] and they are grouped accord-
ing to the power (ϑobs) of their dependence on the emission
angle. All showers that include the corrections of this Letter
agree with NNLL.

Tests across a wider range of observables and shower
variants are shown in Fig. 3 for a fixed value of ω =
εs ln v = →0.4. With the drifts and all other contribu-
tions included, there is good agreement with the NNLL
predictions [45–52, 58, 61, 77].

Earlier work on NLL accuracy had found that the co-
e!cients of NLL violations in common showers tended
to be moderate for relatively inclusive observables like
event shapes [5]. In contrast, here we see that non-NNLL

FIG. 4. Results for the Thrust and Durham y23 [78] ob-
servables with the PanGlobal showers compared to ALEPH
data [79], using εs(MZ) = 0.118. The lower (middle) panel
shows the ratios of the NNLL (NLL) shower variants to data.

showers di”er from NNLL accuracy with coe!cients of
order one. That suggests a potential non-negligible phe-
nomenological e”ect.
Fig. 4 compares three PanGlobal showers with ALEPH

data [79] using Rivet v3 [80], illustrating the showers in
their NLL and NNLL variants, with ε

ms
s (MZ) = 0.118 for

both. We use 2-jet NLO matching [74], and the NODS
colour scheme [6], which guarantees full-colour accuracy
in terms up to NLL for global event shapes. Our showers
are implemented in a pre-release of PanScales [81] v0.2.0,
interfaced to Pythia v8.311 [3] for hadronisation, with
non-perturbative parameters tuned to ALEPH [79, 82]
and L3 [83] data (starting from the Monash 13 tune [84],
cf. Ref. [72] § 5; the tune has only a modest impact on the
observables of Fig. 4). The impact of the NNLL terms is
significant and brings the showers into good agreement
with ALEPH data [79], both in terms of normalisation
and shape. Some caution is required in interpreting the
results: given that the logarithms are not particularly
large at LEP energies, NLO 3-jet corrections (not in-
cluded) may also play a significant role and should be
studied in future work. Furthermore, the PanGlobal
showers do not include finite quark-mass e”ects. Still,
Fig. 4 suggests that NNLL terms have the potential to
resolve a long-standing issue in which a number of dipole
showers (including notably the Pythia 8 shower, but also
the PanGlobal NLL shower) required an anomalously
large value of εs(mZ) ↭ 0.130 [84] to achieve agreement
with the data.
The parton showers developed here are expected to

achieve NNLL (leading-colour) accuracy also for non-
global event shapes such as hemisphere or jet observ-
ables, and ε

n
sL

n→1 (NSL) accuracy [54, 62–64, 68, 85, 86]
for the soft-drop [87, 88] family of observables, in the
limit where either their zcut parameter is taken small
or ϑsd > 0. (We have not carried out corresponding
logarithmic-accuracy tests, because the small zcut limit
renders them somewhat more complicated than those of

[PanScales 2406.02661]

FORMAL ACCURACY 

๏ tremendous progress in improving the 
formal accuracy of PS to 

  NLL 
  NNLL

๏ addresses long-standing issue with 
dipole showers that required an 
anomalously large  

๏ NP effectively absorbing pert. effects? 
  can formally accurate PS lead to  

      better alignment in NP modelling?

↪
↪

αs(MZ) ≳ 0.130

⇒
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X PARTON SHOWERS

[Alaric, Deductor, Herwig, Apollo, FHP, Panscales]

[PanScales 2406.02661]



WORK IN PROGRESS  —  CORRELATIONS

๏ idea:  if two bins show similar (opposite) perturbative behaviour 
  two bins should be partially (anti-)correlated.

๏ we want:  joint probability distribution  for two bins  &  
  preserve projections for compatibility: 

 
 
 

  hidden parameter    to smoothly implement the correlation

๏ possibilities:  algorithmic “earth movers distance”;  map  onto , … 
  can be done much simpler 

      

↪

P(x, y) x y
↪

↪ −1 < c < + 1

P(x) P(y)
↪
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P(x) = ∫ dy P(x, y) = ∫ dz P(x, z)

[AH, Mazeliauskas w.i.p] 



WORK IN PROGRESS  —  CORRELATION MODEL

๏ projections of multi-dim. Gaussians (+ correlation matrix) are again Gaussian 
  map  onto Gaussians, implement correlations, map back↪ Pi

33

× = ⇝
c = − 0.5 c = 0 c = 0.9

use inference to constrain c

[AH, Mazeliauskas w.i.p] 



PULL  CONSTRAINTS ON TNPS±
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Kenneth Long

−2 −1 0 1 2

FO μ R ,μ F  Z [avg.]

FO μ R ,μ F  Z [diff.]

Resum. TNP Hard func.

Resum. TNP Soft func.

Resum. TNP qg BF

Resum. TNP qqS BF

Resum. TNP qqV BF

Resum. TNP qqV̄ BF

Resum. TNP qqΔS BF

Resum. TNP Γ cusp 

Resum. TNP γ μ q  

Resum. TNP γ ν 

Resum.-FO transition Z [avg.]

Resum.-FO transition Z [diff.]

SCETLib Nonpert. CS c ν ⋅ω ν 

SCETLib Nonpert. Δλ²(Z)

SCETLib Nonpert. λ²(Z)

SCETLib Nonpert. λ⁴(Z)

 m Z  (p T  μ , η μ , q μ ) fit (p T  μμ , y μμ ) fit

Pull ± ConstraintCMS
Preliminary
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Parameter level view of the theory model

- Small pulls/constraints on TNPs 
- Nonperturbative terms most important 

- Different behaviour of Λ(2) and CS 
terms due to degeneracy 

- Consistent impact on pTZ


 

[slide by K. Long] 


