

Precision flavour physics from the lattice

Matteo Di Carlo

8th January 2025

Funded by the European Union **Zürich Phenomenology Workshop 2025** Particle physics from low to high energies

Flavour physics

Flavour physics offers opportunities to test the Standard Model and probe new physics effects

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
 In the Standard Model:
3 mixing angles + 1 CPV phase

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Matrix elements can be extracted e.g. from leptonic and semileptonic decays of hadrons

in the Ctondard Madel

The strong coupling constant

PDG, PRD 110 (2024) 3

see A.Ramos talk

- The strong coupling constant $\alpha_{\!s}(Q^2)$ runs with the energy Q
- At high energies $Q \sim m_Z$ the coupling is small:
 - perturbative expansion
 - quarks are asymptotically free
- At small energies $Q\sim\Lambda_{\rm QCD}$ the coupling is strong:
 - non-perturbative
 - quarks are confined

Lattice QCD

Key points

- A regularisation of QCD:
 - > the lattice spacing a is the UV cutoff
- Finite-sized Euclidean spacetime
 - > rigorous and computable definition of path integrals using Monte Carlo methods
- Allows for first-principle numerical calculations > physical results obtained by taking continuum and infinite-volume limits

Precise predictions \leftrightarrow good control of statistical & systematic uncertainties

M.C. Escher, "Cubic space division" (1953)

Flavour physics on the lattice

The plan of this talk:

Cabibbo anomaly

 $V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

CPV in neutral mesons

Flavour physics on the lattice

The plan of this talk:

Cabibbo anomaly

CPV in neutral mesons

The Cabibbo anomaly

$$\begin{aligned} \frac{|V_{us}|}{|V_{ud}|} & \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.27599(41) \end{aligned} & \text{M.Moulson, PoS CKM2016 (20)} \\ \frac{|V_{ud}|}{|V_{us}|} & \frac{f_{K^{\pm}}}{|f_{+}^{K^{0}\pi^{-}}(0)|} = 0.21654(41) \end{aligned}$$

Different **tensions** in the V_{us} - V_{ud} plane:

$$|V_u|_{\mathcal{O}}^2 - 1 = 2.8\sigma$$
$$|V_u|^2 - 1 = 3.1\sigma \qquad |V_u|^2 - 1 = 1.7\sigma$$

Experimental and **theoretical** control of these quantities is of crucial importance to solve the issue

Lattice QCD inputs

 $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1934\,(19)$

LAGS f_K/f_{π} and $f_+^{K\pi}(0)$ determined from lattice Averaging Group Group Croup Averaging Group Croup Averaging Group Averaging Averagin

QED and isospin-breaking effects

Current level of precision requires the inclusion of isospin-breaking corrections due to

strong effects $[m_u - m_d]_{QCD} \neq 0$ electromagnetic effects $\alpha \neq 0$

$$\frac{\Gamma(K \to \ell \nu_{\ell})}{\Gamma(\pi \to \ell \nu_{\ell})} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \left(\frac{f_K}{f_{\pi}}\right)^2 \left(1 + \delta R_{K\pi}\right)$$

- results currently quoted in the PDG come from χPT V.Cirigliano & H.Neufeld, PLB 700 (2011)
- fully non-perturbative (structure dependent) quantities
- first-principle lattice calculations are possible!

- $\sim \mathcal{O}(1\%)$

$$\Gamma(K \to \pi \ell \nu_{\ell}) \propto |V_{us}|^2 |f_+^{K\pi}(0)|^2 \mathcal{I}_{K\pi}^{\ell} \left(1 + \delta R_{K\pi}^{\ell}\right)$$

Lattice QCD + QED

A conceptual challenge: how to define QED in a finite periodic box?

- need to circumvent Gauss' law: no charged states in a periodic box
- finite-volume effects can be sizeable and power-like
- logarithmic infrared divergences arise when studying decays

Problems well studied. Different lattice QED formulations proposed and used.

RM123 approach:

$$\langle \mathcal{O} \rangle = \int \mathcal{D}\Phi \, \mathcal{O} \, e^{-S_{\rm iso} - \Delta S} = \langle \mathcal{O} \rangle_{\rm iso} + \langle \Delta S \, \mathcal{O} \rangle_{\rm iso} + \dots$$

G.M.de Divitiis et al. [RM123], PRD 87 (2013)

"iso" =
$$\begin{cases} m_{\rm u} = m_{\rm d} \\ \alpha_{\rm em} = 0 \end{cases}$$

Hadron mass splitting

Pioneering work on neutron-proton mass difference BMW Collaboration, Science 347 (2015)

Pion & kaon mass splittings now computed by different collaborations - \vee \cup & d quark masses

Weak decays — some recent works

N.Carrasco et al., PRD 91 (2015) V.Lubicz et al., PRD 95 (2017) N.Tantalo et al., [1612.00199v2] D.Giusti et al., PRL 120 (2018) MDC et al., PRD 100 (2019) MDC et al., PRD 105 (2022) P.Boyle, MDC et al., JHEP 02 (2023) N.Christ et al., [2304.08026]

R.Frezzotti et al., [2402.03262]

D.Giusti et al., [2302.01298]

G.M.de Divitiis et al., [1908.10160] C.Kane et al., [1907.00279 & 2110.13196] R.Frezzotti et al., PRD 103 (2021) A.Desiderio et al., PRD 102 (2021) R.Frezzotti et al., [2306.05904]

```
C.Sachrajda et al., [1910.07342]
N.Christ et al., PRD 108 (2023)
N.Christ et al., [2402.08915]
```


G.Gagliardi et al., Phys. Rev. D 105 (2022) R.Frezzotti et al., [2306.07228]

R.Abbott et al., PRD 102 (2020) Z.Bai et al., PRL 115 (2015) N.Christ et al., PRD 106 (2022) N.Christ & X.Feng, EPJ Web Conf. 175 (2018) Y.Cai & Z.Davoudi, [1812.11015]

Leptonic decays of pseudoscalar mesons

Can be studied in an effective Fermi theory with the W-boson integrated out and the local interaction described by

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{q_1 q_2}^* \left[\bar{q}_2 \,\gamma_\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_2 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_1 \right] \left[\bar{\nu}_\ell \,\gamma^\mu (1 - \gamma_5) \, q_$$

In the PDG convention, the tree-level decay rate takes the form

$$\Gamma_P^{\text{tree}} = \frac{G_F^2}{8\pi} m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_P^2} \right)^2 m_P \left[f_{P,0} \right]$$

with the non-perturbative dynamic encoded in the **decay constant**

$$\mathcal{Z}_0 \langle 0 | \bar{q}_2 \gamma_0 \gamma_5 q_1 | P, \mathbf{0} \rangle^{(0)} = i \, m_{P,0} f_{P,0}$$

 $(-\gamma_5)\ell$

- $1/a \ll m_W$

1	2

Leptonic decay rate at $\mathcal{O}(\alpha)$

- The decay constant $f_{P,0}$ becomes an ambiguous and unphysical quantity
- IR divergences appear in intermediate steps of the calculation

$$\Gamma(P_{\ell 2}) = \lim_{\Lambda_{\rm IR} \to 0} \left\{ \begin{array}{c} \mathbf{P} \\ \mathbf{P} \\ \mathbf{IR} \end{array} + \mathbf{P} \\ \mathbf{IR} \end{array} \right\}$$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{q_1 q_2}^* \left(1 + \frac{\alpha_{\text{em}}}{\pi} \ln\left(\frac{M_Z}{M_W}\right) \right) \left[\bar{q}_2 \gamma_\mu (1 - \gamma_5) q_1 \right]$$
$$O_1^{\text{W-reg}}(M_W) = Z^{\text{W-S}}\left(\frac{M_W}{\mu}, \alpha_s(\mu), \alpha_{\text{em}}\right) O_1^{\text{S}}(\mu)$$

F. Bloch & A. Nordsieck, PR 52 (1937) 54

• UV divergences: need to include QED corrections to the renormalization of the weak Hamiltonian

 $egin{aligned} & O_1^{ ext{W-reg}}(M_W) \ & \left[ar{q}_2 \, \gamma_\mu (1-\gamma_5) \, q_1 \,
ight] \left[ar{
u}_\ell \, \gamma^\mu (1-\gamma_5) \, \ell \,
ight] \end{aligned}$

A.Sirlin, NPB 196 (1982) E.Braaten & C.S.Li, PRD **42** (1990)

perturbative @ 2 loops in QCD+QED

non-perturbative in lattice QCD+QED

MDC et al., PRD 100 (2019)

Leptonic decay rate at $\mathcal{O}(\alpha)$ Defining the isospin symmetric world

• The full QCD+QED theory is unambiguously defined after matching a set of observables to the real world

$$\begin{bmatrix} \hat{\mathbf{M}}_j \\ \hat{\mathbf{\Lambda}} \end{bmatrix}^2 (g, e^{\phi}, \hat{\mathbf{m}}^{\phi}) = \left(\frac{\mathbf{M}_j^{\phi}}{\mathbf{\Lambda}^{\phi}}\right)^2 \longrightarrow \hat{\mathbf{m}}^{\phi}(g)$$
$$j = 1, \dots, N_f$$

 The definition of QCD or isoQCD requires a prescription, i.e. some renormalization conditions to fix the bare parameters of the action

$$\boldsymbol{\sigma}^{\text{QCD}} = (g^{\text{QCD}}, 0, \hat{\mathbf{m}}^{\text{QCD}}) \qquad \hat{\mathbf{m}}^{\text{QCD}} = (\hat{m}_{ud}^{\text{QCD}}, \delta \hat{m}^{\text{QCD}}, \hat{m}_{s}^{\text{QCD}}, \hat{m}_{s}^{\text{QCD}$$

FLAG 2024 now includes a discussion on this topic where a reference scheme is proposed.

• •

Leptonic decay rate at $\mathcal{O}(\alpha)$ The RM123+Soton approach

IR finite

IR divergent

IR divergent

F. Bloch & A. Nordsieck, PR **52** (1937)

N. Carrasco et al., PRD **91** (2015)

D. Giusti et al., PRL 120 (2018)

MDC et al., PRD 100 (2019)

P.Boyle, MDC et al., JHEP **02** (2023)

Leptonic decay rate at $\mathcal{O}(\alpha)$ The RM123+Soton approach

F. Bloch & A. Nordsieck, PR **52** (1937)

- N. Carrasco et al., PRD **91** (2015)
 - D. Giusti et al., PRL 120 (2018)
 - MDC et al., PRD 100 (2019)
- P.Boyle, MDC et al., JHEP **02** (2023)

Leptonic decay rate at $\mathcal{O}(\alpha)$ The RM123+Soton approach

F. Bloch & A. Nordsieck, PR **52** (1937)

- N. Carrasco et al., PRD **91** (2015)
 - D. Giusti et al., PRL 120 (2018)
 - MDC et al., PRD 100 (2019)
- P.Boyle, MDC et al., JHEP **02** (2023)

D. Giusti et al., [2302.01298] R.Frezzotti et al., [2306.05904]

IB corrections to the decay amplitude

RM123 perturbative method: expand lattice path-integral around isosymmetric point $\alpha = m_{\rm u} - m_{\rm d} = 0$

- Current calculations have been performed in the electro-quenched approximation (sea quarks electrically neutral). Work is in progress to compute the remaining diagrams.
 - T.Harris et al., PoS LATTICE 2022 (2023) 013

Results for $\delta R_{K\pi}$

• $\delta R_{K\pi} = -0.0086 \, (13)(39)_{\text{vol.}}$

- Good evidence that $\delta R_{K\pi}$ can be computed from first principles non-perturbatively on the lattice!
- **RBC-UKQCD error** dominated by a large systematic uncertainty related to finite-volume effects (!) Work in progress to improve the result.
- Errors on $|V_{\mu s}| / |V_{\mu d}|$ from theoretical inputs could become comparable with those from experiments

Some comments on light mesons...

- Theory uncertainties on K/π leptonic decays can become comparable with experimental ones • Current kaon experiments: NA62 (CERN) & KOTO (J-PARC)
- Proposal for high intensity kaon program at CERN (HIKE) was not approved [March '24], so the future of kaon measurements is a bit unclear...
- New analyses of old datasets possible?

... and heavy ones

- Lattice QCD+QED calculations of **D** and **Ds** mesons decays are under study
- B-meson decays require very fine lattices, but exploratory work on radiative decay $B^+ \rightarrow \mu^+ \bar{\nu} \gamma$ is ongoing

18

Charmed QCD decay constants

 $f_{D_s}/f_D = 1.1783(0.0016)$

Inclusive hadronic τ decays

Alternative determinations of $|V_{\mu s}|$ can be obtained from inclusive hadronic τ decays

- And yet another **puzzle**: lower value of $|V_{us}|_{\tau-incl.}$
- Inclusive $au o X_{us}
 u_{ au}$ result in HFLAV plot obtained using truncated operator product expansion (OPE)
- Exclusive channels give results larger than $|V_{us}|_{\tau-\text{incl.}}$ but smaller than that obtained imposing CKM unitarity

Inclusive hadronic τ decays

finite-volume Euclidean lattice correlators M.Hansen, A.Lupo & N.Tantalo, PRD 99 (2019)

$$\rho(\omega) = \langle \tau^{-} | H_{w}^{us} (2\pi) \delta(\mathbb{H} - \omega) H_{w}^{us} | \tau^{-} \rangle$$

$$\hat{\rho}_L(E,\epsilon) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \Delta_\epsilon(E,\omega) \,\rho_L(\omega)$$
$$= \sum_{t=0}^T g_t(E,\epsilon) \,C_L(t)$$
$$\Gamma(\tau \to X_{ue}\nu_{\tau}) = \lim \lim \frac{\hat{\rho}_L(m_{\tau},\epsilon)}{2\pi}$$

$$\Rightarrow \Gamma(\tau \to X_{us}\nu_{\tau}) = \lim_{\epsilon \to 0} \lim_{L \to \infty} \frac{1}{2m_{\tau}}$$

> Next step: inclusion of QED and strong isospin-breaking effects

A.Evangelista et al. (ETMC), PRD 108 (2023) C.Alexandrou et al. (ETMC), PRL 132 (2024)

Recent calculation obtains inclusive decay rate using smeared spectral densities reconstructed from

CP violation in neutral kaons

flavour eigenstates

$$i\frac{\partial}{\partial t} \begin{pmatrix} K^0(t) \\ \overline{K}^0(t) \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} K^0(t) \\ \overline{K}^0(t) \end{pmatrix}$$

weak eigenstates

$$|K_{L,S}\rangle = \frac{1}{\sqrt{1+|\bar{\epsilon}|^2}} \left(\bar{\epsilon} |K_{\pm}\rangle + |K_{\mp}\rangle\right)$$

CP eigenstates

$$|K_{\pm}\rangle = \frac{1}{\sqrt{2}} \left(|K^0\rangle \pm |\overline{K}^0\rangle\right)$$

Neutral mesons can mix because the flavour eigenstates are different from the weak eigenstates

Indirect CP violation in the mixing

 $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3}$ PDG, PTET **2022** (2022)

• "Direct" CP violation in the decay

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- | \mathcal{H}_{w} | K_L \rangle}{\langle \pi^+ \pi^- | \mathcal{H}_{w} | K_S \rangle} = \epsilon + \epsilon'$$
$$\eta_{00} = \frac{\langle \pi^0 \pi^0 | \mathcal{H}_{w} | K_L \rangle}{\langle \pi^0 \pi^0 | \mathcal{H}_{w} | K_S \rangle} = \epsilon - 2\epsilon'$$

 $\operatorname{Re}(\epsilon'/\epsilon) = (1.66 \pm 0.23) \times 10^{-3}$

PDG, PTET **2022** (2022)

22

CP violation in neutral kaons

lattice: $\text{Re}(\epsilon'/\epsilon) = 21.7 \, (2.6)_{\text{stat.}} (8.0)_{\text{sys.}} \times 10^{-4}$ experiments: $\text{Re}(\epsilon'/\epsilon) = 16.6 \, (2.3) \times 10^{-4}$

Re(e'/e) currently at 40% precision (RBC-UKQCD).
 Significant improvements expected in next couple of years -> QED?

$$\langle \overline{K}^0 | \mathcal{H}_w | K^0 \rangle_{SD}$$
 P.A.Boyle et al. PRD 110 (2024)
 $\langle \overline{K}^0 | \mathcal{H}_w | K^0 \rangle_{LD}$ Z.Bai et al. PRD 109 (2024)

- $(\epsilon_K)_{LD}$ also at **40% precision** (RBC-UKQCD). Errors of ~10% can be achieved on the long term
- Lattice inputs to $(\epsilon_K)_{SD}$ can be computed with high precision, but overall uncertainty is dominated by $|V_{cb}|$
- $|V_{cb}|$ -puzzle affects the SM prediction for $|\epsilon_K|$

The muon anomalous magnetic moment The picture in 2020-2021

Standard Model prediction based on the White Paper of the Muon g-2 Theory Initiative Aoyama et al., 2006.04822

The muon anomalous magnetic moment The picture in 2024

Standard Model prediction based on the White Paper of the Muon g-2 Theory Initiative Aoyama et al., 2006.04822

The situation is now more complicated...

Boccaletti et al. [BMW], 2407.10913

The muon anomalous magnetic moment The picture in 2024

D.Djukanovic et al. [Mainz/CLS], 2411.07969

 a_{I}^{hlbl}

Exp. Average Mainz/CLS 24 RBC/UKQCD 24 BMW-DMZ 24 Aubin et al. 22 Lehner & Meyer 20 BMW 20 **—** Mainz/CLS 19 FHM 19 PACS 19 ETMC 19 RBC/UKQCD 18 White Paper 20 Boito et al. 22 18202224

 $a_{\mu} \cdot 10^9 - 1165900$

26

Conclusions

- Flavour physics offers unique opportunities for indirect searches of New Physics
- Lattice QCD is at a mature stage on many flavour observables and is now in the precision era: towards physical pion masses, QED & isospin-breaking effects, physical b quarks, ...
- Progress expected on various flavour observables in next years Maybe some of the tensions will be clarified?
- Developments of new techniques & algorithmic advances make it possible to study long-distance observables considered before unaccessible
- The muon g-2 effort teaches us that the lattice calculations can get precise impactful results. What will be the next "g-2"?

27

Thank you

This work has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101108006

Backup slides

Semileptonic kaon decays

To go beyond current precision, we need to include isospin-breaking effects computed from first principles lattice QCD+QED.

- integration over three-body phase-space
- problems of analytical continuation from Euclidean to Minkowski when intermediate on shell π - ℓ states are lighter than external ones

under study by different groups.

Significant additional **difficulties** compared to leptonic decays:

- Proper finite-volume QED formalism is still missing, but solutions are
- Recent QED proposal: N.Christ et al., PRD 108 (2023) & PoS LATTICE2023 (2024) 266

Direct CP violation in $K \rightarrow \pi \pi$

If isospin-symmetry is conserved, then the CP violation parameters can be expressed as

$$\frac{\epsilon'}{\epsilon} = \frac{i \mathrm{e}^{i(\delta_2 - \delta_0)}}{\sqrt{2}\epsilon} \frac{\mathrm{Re}(A_2)}{\mathrm{Re}(A_0)} \left[\frac{\mathrm{Im}(A_2)}{\mathrm{Re}(A_2)} - \frac{1}{2} \right]$$

- **RBC-UKQCD** performed **first calculation** of ϵ' in 2015 1.
- 2. Improved result in 2020: 3.5x more statistics + improved systematics

lattice: $\operatorname{Re}(\epsilon'/\epsilon) =$ experiments: $\operatorname{Re}(\epsilon'/\epsilon) =$

$[\operatorname{m}(A_0)]$	
$\overline{\operatorname{Re}(A_0)}$	

$$A_{I} = \langle (\pi \pi)_{I} | H_{W}^{\Delta S=1} | K \rangle$$

$$\delta_{I} = \pi \pi \text{ scattering phase shifts}$$

$$(I = \text{isospin})$$

Z.Bai et al., PRL 115 (2015)

R.Abbott et al., PRD 102 (2020)

=
$$21.7 (2.6)_{\text{stat.}} (8.0)_{\text{sys.}} \times 10^{-4}$$

= $16.6 (2.3) \times 10^{-4}$

Direct CP violation in $K \rightarrow \pi \pi$

Systematic error budget

- **IB correction will soon become relevant!** (but very tricky to compute on the lattice) Usually O(1%), but the " $\Delta I = 1/2$ rule" can give a ~20x enhancement in ϵ'/ϵ .

(from C.Kelly @Lattice2023)

 $\sim 12\%$) Perturbation theory in Wilson coeffs to match 3f – 4f weak EFT at m_c Improve with 4f calculation (active charm) : computationally infeasible? Non-perturbative calculation of matching matrix : investigation underway

(~23%) Lack of EM+isospin-breaking contributions in lattice calculation Lattice measurement of these effects extremely challenging but approach is [Phys.Rev.D 106 (2022) 1, 014508] V.Cirigliano et al., [Christ, PoS LATTICE2021 (2022) 312] JHEP **02** (2020)

2%) Use of single lattice spacing to compute I=0 amplitude Repeat calculation with multiple, finer lattice spacings: my current focus

• Intense work by RBC-UKQCD to reduce $\sim 12\%$ error due single lattice spacing (C.Kelly @Lattice2024) + parallel ongoing project using different computational approach (M.Tomii @Lattice2024)

32

Indirect CP violation in kaon mixing

$$\epsilon = \mathrm{e}^{\mathrm{i}\phi_{\epsilon}}\sin(\phi_{\epsilon})\left(\frac{-\mathrm{Im}M_{\bar{0}0}}{\Delta M_{K}} + \frac{\mathrm{Im}(A_{0})}{\mathrm{Re}(A_{0})}\right)$$

The quantity $M_{\bar{0}0}$ splits into a short and long distance parts

$$M_{\overline{0}0} = \langle \overline{K}^{0} | \mathcal{H}_{w} | K^{0} \rangle = \langle \overline{K}^{0} | \mathcal{H}_{w} | K^{0} \rangle_{SD} + \langle \overline{K}^{0} | \mathcal{H}_{w} | K^{0} \rangle_{LD}$$
$$= \langle \overline{K}^{0} | \mathcal{H}_{w}^{\Delta S=2} | K^{0} \rangle + \mathcal{P} \sum_{n} \frac{\langle \overline{K}^{0} | \mathcal{H}_{w}^{\Delta S=1} | n \rangle \langle n | \mathcal{H}_{w}^{\Delta S=1} | K^{0} \rangle}{M_{K} - E_{n}}$$

On the lattice, we can compute both:

• $\langle \overline{K}^0 | \mathcal{H}_w | K^0 \rangle_{SD}$ e.g. P.A.Boyle et al. PRD 110 (2024) <- dominating contribution • $\langle \overline{K}^0 | \mathcal{H}_w | K^0 \rangle_{\text{LD}}$ Z.Bai et al. PRD 109 (2024)

$$\tan(\phi_{\epsilon}) = \frac{\Delta M_K}{\Delta \Gamma_K / 2} \qquad \begin{array}{c} \Delta \Gamma_K = \Gamma_{K_S} - \Gamma_{K_L} \\ \Delta M_K = M_{K_L} - M_{K_S} \end{array}$$

33

The muon anomalous magnetic moment The picture in 2024

Fermilab/HPQCD/MILC 24 (M_{Ω}) Fermilab/HPQCD/MILC 24 (f_{π}) Mainz/CLS 24RBC/UKQCD 24 Aubin et al. 22 BMW 21Lehner & Meyer 20 Aubin et al. 19 ETM 18/19 Mainz/CLS 19 Fermilab/HPQCD/MILC 19 PACS 19 RBC/UKQCD 18 Benton et al. (KNT) 24 Benton et al. (DHMZ) 24 600

A.Bazavov et al. [Fermilab/HPQCD/MILC], 2412.18491

34

Current accuracy on some QCD quantities

35

ϵ_K and $|V_{cb}|$ puzzle

36