Recent Developments in Exclusive Semileptonic *B* Decays

Marzia Bordone

ZPW2025: Particle Physics from low to high energies 08.01.2025

Long-standing puzzles in semileptonic decays

• Inclusive determination: $B \to X_c \ell \bar{\nu}$

 \Rightarrow Stable against various datasets

- Exclusive decays: $B \to D^{(*)} \ell \bar{\nu}$, $\Lambda_b \to \Lambda_c \ell \bar{\nu}$
 - ⇒ Lattice QCD results are in tension
 - ⇒ Experimental measurement show various disagreements

Lepton flavour universality

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})}$$

- Current discrepancy at the order of 3.3σ
- Theory prediction is the arithmetic average of before 2021 estimates

Why we need a better determination of V_{cb} ?

- The value of V_{cb} has a major impact on flavour observables like $\mathcal{B}(B_s\to\mu^+\mu^-)$ or ϵ_K
- A resolution of the puzzle is central given the perspective sensitivities at Belle II and LHCb

The theory drawback

Fundamental challenge to match partonic and hadronic descriptions

Exclusive matrix elements

$$\langle H_c | J_\mu | H_b \rangle = \sum_i S^i_\mu \mathcal{F}_i$$

Exclusive matrix elements

 $\langle H_c | J_\mu | H_b \rangle = \sum_i S^i_\mu \mathcal{F}_i \quad \mbox{form factor}$ independent scale Λ_{QCD} Lorentz structures

Exclusive matrix elements

Form factors determinations

- Lattice QCD
- QCD SR, LCSR

Form factors parametrisations

- HQET (CLN + improvements) ⇒ reduce independent degrees of freedom
- Analytic properties \rightarrow BGL

only points at specific kinematic points

data points needed to fix the coefficients of the expansion

The *z*-expansion and unitarity

[Boyd, Grinstein, Lebed, '95, Caprini, Lellouch, Neubert, '98]

- in the complex plane form factors are real analytic functions
- q^2 is mapped onto the conformal complex variable z

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

 q^2 is mapped onto a disk in the complex z plane, where $|z(q^2,t_0)|<1$

$$F_{i} = \frac{1}{P_{i}(z)\phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k}$$
$$\sum_{k=0}^{n_{i}} |a_{k}^{i}|^{2} < 1$$

$B \rightarrow D^*$ before 2021

Recent developments

$B \rightarrow D^*$ from lattice away from zero recoil

- Are these results compatible with each other?
- Are they compatible with experimental data?

What about previous determinations?

- FNAL/MILC '21
- HQE@ $1/m_c^2$
- Exp data (BGL)
- JLQCD '23
- HPQCD '23

$$R_2(w) = \frac{rh_{A_2}(w) + h_{A_3}(w)}{h_{A_1}(w)}$$

- What's the source of the discrepancy with HQET? [MB, Harrison, Jung, ongoing]
- Why are experimental data (Belle 2018) so different from LQCD data?

New $B \to D^* \ell \bar{\nu}$ Belle and Belle II data

$$\begin{split} \frac{d\Gamma}{dwd\cos(\theta_{t})d\cos(\theta_{v})d\chi} &= \frac{3G_{F}^{2}}{1024\pi^{4}}|V_{d}|^{2}\eta_{EW}^{2}M_{B}r^{2}\sqrt{w^{2}-1}q^{2} \\ &\times \left\{(1-\cos(\theta_{t}))^{2}\sin^{2}(\theta_{v})H_{+}^{2}(w) + (1+\cos(\theta_{t}))^{2}\sin^{2}(\theta_{v})H_{-}^{2}(w) \\ &+ 4\sin^{2}(\theta_{t})\cos^{2}(\theta_{v})H_{0}^{2}(w) - 2\sin^{2}(\theta_{t})\sin^{2}(\theta_{v})\cos(2\chi)H_{+}(w)H_{0}(w) \\ &- 4\sin(\theta_{t})(1-\cos(\theta_{t}))\sin(\theta_{v})\cos(\theta_{v})\cos(\chi)H_{+}(w)H_{0}(w) \\ &+ 4\sin(\theta_{t})(1+\cos(\theta_{t}))\sin(\theta_{v})\cos(\theta_{v})\cos(\chi)H_{-}(w)H_{0}(w)\} \end{split}$$

- Between 7 to 10 bins per kinematic variable
- Available on HEPData with correlations
- Angular observables analysis are available, data just newly released

Analysis strategies

Setup

- BGL parametrisation
- · Bayesian inference to apply unitarity

Flynn, Jüttner, Tsang, '23

Questions

- Combine the three LQCD datasets
 - \Rightarrow Is the combination acceptable?
- Combine with experimental data
- What are the consequences for phenomenology?

Strategy A: Lattice only

see also G. Martinelli, S. Simula, L. Vittorio, '23,'24

Strategy B: Lattice + experimental data

- Good fit quality for Strategy B (p-value $\sim 18\%$)
- Adding experimental data reduces the uncertainties, especially at large w
- Especially for \mathcal{F}_1 and \mathcal{F}_2 , the shape changes between Strategy A and B

- Fit to HPQCD and FNAL/MILC misses experimental points
- BGL fit to experimental and lattice data has $p{\rm -value} \sim 18\%$
- BGL coefficients shift of a few σ between Strategy A and B

Integrated observables

- · Significant scatter between various combinations of lattice results
 - · We apply a systematic error to account for the spread
- Consistent scatter of the experimental results independently of the lattice information

$|V_{cb}|$ - Strategy A

Blue band

- Frequentist fit p-value $\sim 0\%$
- Affected by d'Agostini Bias

Red band

- Frequentist fit $p-value \sim 0\%$
- Akaike-Information-Criterion analysis: average over all possible fits with at least two data points and then weighted average

$$\begin{split} w_{\{\alpha,i\}} &= \mathcal{N}^{-1} \exp\left(-\frac{1}{2}(\chi^2_{\{\alpha,i\}} - 2N_{\mathrm{dof},\{\alpha,i\}})\right) \qquad \text{where} \quad \mathcal{N} = \sum_{\mathrm{sets}\,\{\alpha,i\}} w_{\mathrm{set}} \\ |V_{cb}| &= \langle |V_{cb}| \rangle \equiv \sum_{\mathrm{sets}\,\{\alpha,i\}} w_{\mathrm{set}} |V_{cb}|_{\mathrm{set}} \end{split}$$

- Analysis based on Strategy A
- The AIC nicely reduces the d'Agostini bias
- Some lattice data behave strangely
- Would it be safer to discard the angular distributions?
- Combining the three lattice datasets doesn't help, shape driven by FNAL/MILC and HPQCD
- Good compatibility with Strategy B

see also G. Martinelli, S. Simula, L. Vittorio, '23,'24

$|V_{cb}|$ - Summary

- Residual 2σ difference with inclusive
- The AIC produces slightly larger uncertainties, overall all results are quite consistent

What about HQET?

- Can we understand the differences between HQET and LQCD data?
- Can the HQET accomodate the new LQCD datasets?
- HQET connects $B \to D$ and $B \to D^*$
 - ⇒ What is of this correlation from the Lattice perspective?

- HPQCD has data for $1.5m_c < m_h < 0.9m_b$
- Can we use them to further study the HQE and higher order corrections?

A first glance to HQET+LQCD

- HQET allows to determine $B \rightarrow D$ and $B \rightarrow D^*$ form factors with a unique parametrisation
- HQET can accommodate the new lattice $B \rightarrow D^*$ data

- The inclusion of $B \rightarrow D$ data helps changing slightly the slope
 - \Rightarrow Motivates a correlated $B \rightarrow D$ and $B \rightarrow D^*$ lattice analysis

Higher orders from the lattice

[MB, J. Harrison, M. Jung, in preparation]

Sub-leading Isgur-Wise functions: η

- From QCDSR, $\eta(1)$ should be positive and different from zero
- Even without QCDSR, $\eta(1)$ comes out positive from the HQE fit
- Considering the full HPQCD datasets at different m_h masses yield something somewhat in the middle

- The interplay between various datasets is not trivial
- Can we use HPQCD data to better understand HQET? MB, J. Harrison, M. Jung, in preparation
- A complete HQET analysis of all lattice datasets is ongoing

MB, N. Gubernari, M. Jung, D. van Dyk, in preparation

A glance into V_{ub}

The inclusive V_{ub} is difficult

- The $B \to X_u \ell \bar{\nu}$ rate is extracted from the sum $B \to X_u \ell \bar{\nu} + B \to X_c \ell \bar{\nu}$
- Kinematic cuts are needed to suppress the $B \to X_c \ell \bar{\nu}$ components
- From a theory point of view, we need to extrapolate introducing shape functions

The exclusive V_{ub} has also some problems

- On the lattice, calculations are not performed in the helicity basis
- It has been noted that performing the chiral continuum extrapolation and then changing basis, is a bit subtle because of the presence of resonances
- WIP to understand the issue and consequences

Conclusions

- Semileptonic *B* decays are at the centre of attention due to their important phenomenological consequences
- There are still many open questions
- These puzzles stem from the high precision that both theoretical predictions and experimental measurements have achieved
- Interplay between continuum, lattice and data is crucial

Conclusions

- Semileptonic *B* decays are at the centre of attention due to their important phenomenological consequences
- There are still many open questions
- These puzzles stem from the high precision that both theoretical predictions and experimental measurements have achieved
- Interplay between continuum, lattice and data is crucial

Stay tuned for upcoming results!

Appendix

Unitarity Bounds

$$= i \int d^4x \, e^{iqx} \langle 0|T\left\{j_{\mu}(x), j_{\nu}^{\dagger}(0)\right\} |0\rangle = (g_{\mu\nu} - q_{\mu}q_{\nu})\Pi(q^2)$$

- If $q^2 \ll m_b^2$ we can calculate $\Pi(q^2)$ via perturbative techniques $\Rightarrow \chi(0)$
- Dispersion relations link Im $(\Pi(q^2))$ to sum over matrix elements

$$\sum_{i} \left| F_i(0) \right|^2 < \chi(0)$$

[Boyd, Grinstein,Lebed, '95 Caprini, Lellouch, Neubert, '97]

- The sum runs over all possible states hadronic decays mediated by a current $\bar{c}\Gamma_{\mu}b$
 - The unitarity bounds are more effective the most states are included in the sum
 - The unitarity bounds introduce correlations between FFs of different decays
 - $B_s \to D_s^{(*)}$ decays are expected to be of the same order of $B_{u,d} \to D_{u,d}^{(*)}$ decays due to $SU(3)_F$ simmetry

How to apply unitarity

• Penalty function in the χ^2 or likelihood

[P. Gambino, M. Jung, S. Schacht, '19]

$$\chi^2 \to \chi^2(a_k^i, a_k^i|_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1\right)$$

How to apply unitarity

• Penalty function in the χ^2 or likelihood

[P. Gambino, M. Jung, S. Schacht, '19]

$$\chi^2 \rightarrow \chi^2(a_k^i, a_k^i|_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1\right)$$

Dispersive Matrix Method

[M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, '21] [G. Martinelli, S. Simula, L. Vittorio, '21,'23]

$$\mathbf{M} = \begin{pmatrix} \chi & \phi f & \phi_1 f_1 & \phi_2 f_2 & \dots & \phi_N f_N \\ \phi f & \frac{1}{1-z^2} & \frac{1}{1-zz_1} & \frac{1}{1-zz_2} & \dots & \frac{1}{1-zz_N} \\ \phi_1 f_1 & \frac{1}{1-z_{12}} & \frac{1}{1-z_1^2} & \frac{1}{1-z_{12}z_2} & \dots & \frac{1}{1-z_{1N}} \\ \phi_2 f_2 & \frac{1}{1-z_{22}} & \frac{1}{1-z_{22}} & \frac{1}{1-z_2^2} & \dots & \frac{1}{1-z_{2N}} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \phi_N f_N & \frac{1}{1-z_N z_1} & \frac{1}{1-z_N z_1} & \frac{1}{1-z_N z_2} & \dots & \frac{1}{1-z_N^2} \end{pmatrix}$$

$$\det \mathbf{M} > 0 \Rightarrow \beta - \sqrt{\gamma} \le f_0 \le \beta + \sqrt{\gamma}$$

How to apply unitarity

• Penalty function in the χ^2 or likelihood

[P. Gambino, M. Jung, S. Schacht, '19]

$$\chi^2 \rightarrow \chi^2(a_k^i, a_k^i|_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1\right)$$

Dispersive Matrix Method

[M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, '21] [G. Martinelli, S. Simula, L. Vittorio, '21,'23]

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{F} \mathbf{J} & \mathbf{F} \mathbf{I} \mathbf{J} & \mathbf{F} \mathbf{J} \mathbf{J} & \mathbf{F} \mathbf{I} \mathbf{J} \\ \phi \mathbf{f} & \frac{1}{1-z^2} & \frac{1}{1-zz_1} & \frac{1}{1-zz_2} & \cdots & \frac{1}{1-zz_N} \\ \phi_1 \mathbf{f}_1 & \frac{1}{1-z_{12}} & \frac{1}{1-z_1^2} & \frac{1}{1-z_{12}^2} & \cdots & \frac{1}{1-zz_N} \\ \phi_2 \mathbf{f}_2 & \frac{1}{1-z_{22}} & \frac{1}{1-z_{22}} & \frac{1}{1-z_{22}} & \cdots & \frac{1}{1-zz_N} \\ & \cdots & \cdots & \cdots & \cdots & \cdots \\ \phi_N \mathbf{f}_N & \frac{1}{1-z_Nz} & \frac{1}{1-z_Nz_1} & \frac{1}{1-z_Nz_1} & \cdots & \frac{1}{1-zz_N^2} \end{pmatrix}$$

 $\left(\begin{array}{ccc} \chi & \phi f & \phi_1 f_1 & \phi_2 f_2 & \phi_N f_N \end{array} \right)$

$$\det \mathbf{M} > 0 \Rightarrow \beta - \sqrt{\gamma} \le f_0 \le \beta + \sqrt{\gamma}$$

Bayesian inference

[J. Flynn, A. Jüttner, T. Tsang, '23]

$$\langle g(\mathbf{a}) \rangle = \mathcal{N} \int d\mathbf{a} \, g(\mathbf{a}) \, \pi(\mathbf{a} | \mathbf{f}, C_{\mathbf{f}}) \pi_{\mathbf{a}}$$

contains the lattice χ^2

Fitting HPQCD lattice data at multiple m_h with HQE

Lattice data includes $m_h = 1.5m_c$, $m_h = 0.9m_b$

- need to add $1/m_h^2$ terms to continuum HQE parameterisation.
- Also add generic α_s and α_s^2 contributions

$$F_{i} = \left(a_{i} + b_{i}\frac{\alpha_{s}}{\pi} + k_{i}\frac{\alpha_{s}^{2}}{\pi^{2}}\right)\xi + \frac{\Lambda_{\text{QCD}}}{2m_{h}}\sum_{j}c_{ij}\xi_{\text{SL}}^{j} + \frac{\Lambda_{\text{QCD}}}{2m_{c}}\sum_{j}d_{ij}\xi_{\text{SL}}^{j}$$
$$+ \left(\frac{\Lambda_{\text{QCD}}}{2m_{c}}\right)^{2}\sum_{j}g_{ij}\xi_{\text{SSL}}^{j} + \left(\frac{\Lambda_{\text{QCD}}}{2m_{h}}\right)^{2}\sum_{j}h_{ij}\xi_{\text{SSL}}^{j}$$
$$+ \sum_{\substack{n,m=1,2\\q=h,c}}\left(\frac{\Lambda_{\text{QCD}}}{2m_{q}}\right)^{n}\left(\frac{\alpha_{s}}{\pi}\right)^{m}\zeta_{i}^{n,m,q}$$

with $\zeta = \zeta(1) + \zeta'(1)(w - 1)$

- Use the same uniform prior widths for ξ , $\xi_{\rm SL}^j$ and $\xi_{\rm SSL}^j$, use gaussian priors of 0 ± 10 for $\zeta_i^{n,m,q(\prime)}(1)$, h_{ij} , k_i
- discretisation and chiral effects added analogously to 2304.03137

What changes in terms of parameters?

Isgur-Wise function: ξ

- Discrepancies arise in ξ at higher order in (w-1), reflects difference seen in slope
- Similar situation comparing to combined fit posteriors

What changes in terms of parameters?

Sub-leading Isgur-Wise functions: χ_2 , χ_3

What changes in terms of parameters?

Sub-leading Isgur-Wise functions: η

• From QCDSR, $\eta(1)$ should be positive and different from zero

What else?

Measurements of angular observables:

$$\begin{split} \frac{\mathrm{d}\Gamma(\bar{B} \to D^*\ell\bar{\nu}_\ell)}{\mathrm{d}w\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_\mathrm{V}\,\mathrm{d}\chi} &= \frac{2G_\mathrm{F}^2\eta_\mathrm{Ew}^2|V_\mathrm{cb}|^2m_B^4m_{D^*}}{2\pi^4} \times \left(J_{1*}\sin^2\theta_\mathrm{V} + J_{1c}\cos^2\theta_\mathrm{V} \right. \\ &+ \left(J_{2*}\sin^2\theta_\mathrm{V} + J_{2c}\cos^2\theta_\mathrm{V}\right)\cos2\theta_\ell + J_{3}\sin^2\theta_\mathrm{V}\sin^2\theta_\ell\cos2\chi \\ &+ J_4\sin2\theta_\mathrm{V}\sin2\theta_\ell\cos\chi + J_5\sin2\theta_\mathrm{V}\sin\theta_\ell\cos\chi + \left(J_{6*}\sin^2\theta_\mathrm{V} + J_{6c}\cos^2\theta_\mathrm{V}\right)\cos\theta_\ell \\ &+ J_7\sin2\theta_\mathrm{V}\sin\theta_\ell\sin\chi + J_8\sin2\theta_\ell\sin2\theta_\ell\sin\chi + J_9\sin^2\theta_\ell\sin^2\theta_\ell\sin2\chi \right). \end{split}$$

- Angular observables are a complete base
- It is not redundant

[2010:20200]
—O MILC+HPQCD+JLQCD (p=0.75)
MILC (p=0.81)
HPQCD (p=0.50)
JLQCD (p=0.83)
MILC+HPQCD+JLQCD (p=0.39)
MILC (p=0.26)
HPQCD (p=0.37)
JLQCD (p=0.72)
MILC+HPQCD+JLQCD (p=0.16)
h _{A1} (1) (p=0.07)
MILC+HPQCD+JLQCD (p=0.04
Excl. CLN HELAV Summer 2021
_
41 42 43 44
cb × 10 ³

[2310.20286]

Strategy A

Frequentist fit

K	$_{f} K_{\mathcal{F}}$	$K_1 K_f$	$E_2 K_g$	$a_{g,0}$	$a_{g,1}$	$a_{g,2}$	$a_{g,3}$	p	$\chi^2/N_{ m dof}$	$N_{\rm dof}$
2	2	2	2	0.03138(87)	-0.059(24)	-	-	0.95	0.62	30
3	3	3	3	0.03131(87)	-0.046(36)	-1.2(1.8)	-	0.90	0.67	26
4	4	4	4	0.03126(87)	-0.017(48)	-3.7(3.3)	49.9(53.6)	0.79	0.75	22

- good fit quality
- lattice data are compatible
- no unitarity

Bayesian Fit

K	$_{f} K_{J}$	- KJ	$F_2 K_g$	$a_{g,0}$	$a_{g,1}$	$a_{g,2}$	$a_{g,3}$
2	2	2	2	0.03018(76)	-0.101(21)	-	-
3	3	3	3	0.03034(78)	-0.087(24)	-0.34(45)	-
4	4	4	4	0.03035(77)	-0.089(23)	-0.27(41)	-0.04(45)

- unitarity regulates higher orders
- truncation dependent

Comparison with DM

Results from the DM method

 \Rightarrow similar behaviour as we observe

The Heavy Quark Expansion in a nutshell

The HQE exploits the fact that the b and c quarks are heavy

- Double expansion in $1/m_{b,c}$ and α_s
- The HQE symmetries relate $B^{(*)} \rightarrow D^{(*)}$ form factors
- At $1/m_{b,c}$ drastic reduction of independent degrees of freedom

With current precision we know we have to go beyond the $1/m_{b,c}$ order and we use the following form

$$F_{i} = \left(a_{i} + b_{i}\frac{\alpha_{s}}{\pi}\right)\xi + \frac{\Lambda_{\rm QCD}}{2m_{b}}\sum_{j}c_{ij}\xi_{\rm SL}^{j} + \frac{\Lambda_{\rm QCD}}{2m_{c}}\sum_{j}d_{ij}\xi_{\rm SL}^{j} + \left(\frac{\Lambda_{\rm QCD}}{2m_{c}}\right)^{2}\sum_{j}g_{ij}\xi_{\rm SSL}^{j}$$

- Total of 10 independent structures to be extracted from data
- We use the conformal mapping $q^2\mapsto z(q^2)$ to include bounds and have a well-behaved series

Differential observables

- The combined lattice + experimental precision makes it possible to study the differences in the shape
- It is clear that there is a distinct difference between JLQCD and FNAL/MILC+HPQCD
- Difficult to understand what is going on, JLQCD errors are also a bit larger

[MB, A. Jüttner, '24]

- If for *V* and *A*₁ everything aligns well, for *A*₁₂ and *A*₀ there is an evident shift in slopes
- In the combination difference is milder

Posterior distribution

- · Small shifts between lattice only and lattice + data
- · Higher order coefficients well constrained by unitarity
- a_{F2,2} has a strange behaviour, maybe kinematic constraints?

What about HQET?

[MB, J. Harrison, M. Jung, in preparation]

- All LQCD $B \rightarrow D^*$ results can be described in a global fit to the HQE
- R_D is in tension with $B \rightarrow D$ LQCD w/o LCSRs