

Electroweak Baryogenesis without Electric Dipole Moments

Majid Ekhterachian (EPFL)

Zurich Phenomenology Workshop (ZPW2025) January 2025

Based on the work with:

Irwan Le Dorze, Riccardo Rattazzi & Stefan Stelzl

Baryon Asymmetry of Universe

• From CMB:

 $\Omega_B h^2 = 0.02237 \pm 0.00015$

• From BBN: Abundance of light elements depends on $\frac{n_B}{n_{\gamma}}$ $\frac{n_B}{n_{\gamma}} \approx (6.04 \pm 0.2) \times 10^{-10}$ $Y_{\Delta B} = \frac{n_B - n_{\overline{B}}}{s} \approx 8 \times 10^{-11}$

Electroweak baryogenesis

Dimopoulos & Susskind 1978 Kuzmin, Rubakov & Shaposhnikov 1985 Cohen, Kaplan & Nelson 1990

• The observed baryon asymmetry not explained within the SM

EW baryogenesis provides a mechanism

- ✓ Closely tied to the physics at the EW scale
- ✓ Testable at colliders and low-energy experiments

Three Sakharov conditions for generating baryon asymmetry:

- Baryon number violation: electroweak sphalerons
- Out of equilibrium dynamics: a first order electroweak phase transition (with a modified dynamics compared to the SM)
- C and CP violation: new source of CP violation

Electric dipole moment constraints

- The CP violation introduced for EWBG generically feeds into electron EDM at two loops
- Current bound on electron EDM:

 $d_e < 4 \times 10^{-30} \text{ e cm}$ Roussy, Caldwell et al, 2022

$$\frac{d_e}{e} \sim \delta_{\rm CP} \frac{g^2 \alpha}{(4\pi)^3} \frac{m_e}{M^2} \sim \frac{\delta_{\rm CP}}{10^{-2}} g^2 \left(\frac{300 \text{ GeV}}{M}\right)^2 4 \times 10^{-30} \text{ cm}$$

Electric dipole moment constraints

• Current bound on electron EDM:

 $d_e < 4 \times 10^{-30}$ e cm [Roussy, Caldwell et al, 2022]

• Significant further improvement expected

What are the scenarios of EWBG that can avoid EDM bounds?

Avoiding EDM bounds

- Electroweak symmetry non-restoration
 - Introduce new degrees of freedom interacting with Higgs such that EW

symmetry is not restored until $T \gg m_w$

- States of $M \gg m_w$ with CPV interactions can be active during the EWPT
- Sequestering: CP violation in a dark sector
 - CP asymmetry produced in a dark sector and transferred to the visible sector
 - Contribution to EDM suppressed
- Spontaneous CP violation

Weinberg 1974 Meade & Ramani 2018 Baldes & Servant 2018 Glioti, Rattazzi & Vecchi 2018

e.g. Carena, Quiros, Zhang 2018

EW baryogenesis with spontaneous CP violation

• New source of CP violation active at the EWPT but relaxed to zero at T = 0

✓ CP violation responsible for EWBG does not contribute to EDMs

McDonald 1994 McDonald 1995 Comelli, Pietroni & Riotto 1993

In Composite Higgs models: Espinosa Gripaios Konstandin & Riva 2012

EWBG with spontaneous CP violation

- New source of CP violation active at the EWPT but relaxed to zero at T = 0
 - ✓ CP violation responsible for EWBG does not contribute to EDMs
- Simplest example: SM+ a singlet (CP-odd) scalar
- New scalar provides also the possibility of a first order PT

$$\mathcal{L} \supset -V(h,\eta) + i y_t \, b \frac{\eta}{f} \, \overline{t}_L H \, t_R$$

$$\delta_{\rm CP} \sim b \frac{\Delta \eta}{f}$$

McDonald 1994 McDonald 1995 Comelli, Pietroni & Riotto 1993

In Composite Higgs models: Espinosa Gripaios Konstandin & Riva 2012

EW phase transition and EW baryogenesis

EWBG with spontaneous CPV: need for *explicit* CPV

- Only spontaneous CPV not enough
- Different domains with opposite asymmetry formed
- Final asymmetry averages to zero
- A small explicit breaking biases domains with a particular sign
- A tiny explicit breaking is enough for the domains with the wrong

sign to vanish before the EWPT

• Negligible contribution to EDMs

$$\frac{\Delta V}{T^4} \gg \frac{H}{T} \sim \frac{T}{M_{\rm Pl}} \sim 10^{-16}$$

McDonald 1995 Espinosa Gripaios Konstandin & Riva 2012

Outline

- Introduction: Electroweak baryogenesis and EDMs
- Electroweak baryogenesis with spontaneous CP violation
- Realization in Composite Higgs: A problem of double tuning

Solutions

- > Quartic couplings without mass terms
- Symmetry breaking with higher representations: a new parameter in power counting

Composite Higgs

Composite Higgs models:

- Highly motivated as they address the large hierarchies
- Higgs a confined composite state of strong dynamics around the TeV scale
- Can both the Higgs and the new singlet scalar be composite PNGBs of the strong dynamics?

Minimal Composite Higgs model

- A strongly coupled sector with a SO(5) global symmetry broken spontaneously to SO(4)
- 4 Goldstones : the 4 (real) fields form the Higgs doublet
- $SO(4) \simeq SU(2)_L \times SU(2)_R$
- $SU(2)_L$ and $T_R^3 + X$ gauged
- Explicit breaking of symmetry by composite-elementary mixing and gauge interactions → generate a potential for the Higgs

 $\mathcal{L}_{\rm mix} = g A_{\mu} J^{\mu} + \lambda_i \psi_i O_i$

Agashe Contino Pomarol 2004 review: Panico & Wulzer 2015

Estimating the parameters of the potential

$$V = \frac{3y_t^2}{16\pi^2} g_*^2 f^4 \left(a_h \left(\frac{h}{f}\right)^2 + \frac{b_h}{2} \left(\frac{h}{f}\right)^4 \right), \quad a_h, b_h = \mathcal{O}(1) \quad \text{expected}$$

Current data can be accommodated by $g_* \sim 2$, $b_h \sim 1$, $a_h \leq 0.1$

 \blacktriangleright Higgs quartic obtained for $g_* \sim 2$, $b_h \sim 1$

$$\succ a_h = \frac{m_h^2}{m_*^2} \frac{4\pi^2}{3y_t^2} \approx \left(\frac{450 \text{ GeV}}{m_*}\right)^2 \lesssim \mathcal{O}(0.1)$$

Bound from direct searches for top partners: $m_* \gtrsim 1.5~{
m TeV}$

Need $a_h \leq 0.1$ to accommodate the observed m_h

Matsedonskyi Panico & Wulzer 2015 CMS 229.07327, ATLAS 2210.15413

Although bound on vector resonances $m_{\rho} \gtrsim 4.5$ TeV suggests $a_h \leq \mathcal{O}(0.01)$, unless top partners lighter

→ Higgs precision measurements, requires
$$\left(\frac{v}{f}\right)^2 \leq 0.1$$

Need $a_h/b_h \leq \mathcal{O}(0.1)$ to accommodate the current precision, no more tuning needed

Realization of EWBG with spontaneous CPV in Composite Higgs

- A strongly coupled sector with SO(6) symmetry broken spontaneously to SO(5)
- 5 Goldstones : H and η
- Possible two-step PT
- CPV phase by the coupling to top

 $i b y_t \frac{\eta}{f} \overline{t}_L H t_R$ $\delta_{\rm CP} \sim b \frac{\Delta \eta}{f}$ Gripaios Pomarol Riva & Serra 2009

Espinosa Gripaios Konstandin & Riva 2012

De Curtis, Delle Rose & Panico 2019

Estimating the parameters of the potential

• Terms involving *h* only:

$$\frac{3y_t^2}{16\pi^2}g_*^2 f^4\left(a_h\left(\frac{h}{f}\right)^2 + \frac{b_h}{2}\left(\frac{h}{f}\right)^4\right), \qquad a_h, b_h = \mathcal{O}(1)$$

• The little hierarchy:

▶ Need $a_h \leq \mathcal{O}(0.1)$ to accommodate m_h

▶ Need $a_h/b_h \leq O(0.1)$ to accommodate Higgs precision

measurements, requiring
$$\left(\frac{v}{f}\right)^2 \lesssim 0.1$$

Estimating the parameters of the potential

Terms involving η

• $SO(6) \supset SO(4) \times SO(2)_{\eta}$

•
$$\eta$$
 shifts under $SO(2)_{\eta}$

• Mixing of the elementary fermions can be chosen to respect $SO(2)_{\eta}$

or break it by an arbitrarily small amount ($\delta_\eta \ll 1$)

• Parameterize the suppression of $U(1)_{\eta}$ symmetry breaking by $\delta_{\eta} < 1$:

$$\frac{3y_t^2}{16\pi^2}g_*^2f^2\,\delta_{\eta}\left(a_{\eta}\left(\frac{\eta}{f}\right)^2 + \frac{b_{\eta}}{2}\left(\frac{\eta}{f}\right)^4 + b_{h\eta}\left(\frac{h}{f}\right)^2\left(\frac{\eta}{f}\right)^2\right), \qquad a_{\eta}, b_{\eta}, b_{h\eta} = \mathcal{O}(1)$$

 $\begin{pmatrix} SO(4) \\ SO(2)_{\eta} \end{pmatrix}$

• η can be naturally as light or lighter than the Higgs for $\delta_\eta \ll 1$

Gripaios Pomarol Riva & Serra 2009

Thermal history: big picture

- The strongly coupled sector confines/ develops a mass gap at $T \sim m_*$
- Below m_* the PNGBs and the SM particles dominate the dynamics
- At some T_s , η gets a VEV
- At T_c , EWSB vacuum becomes preferable and the EWPT begins
- EWPT completes at T_n by nucleation of the bubbles

Baryon asymmetry generated at the bubble walls

 Rate of sphalerons suppressed inside the bubbles, baryon number freezes out

EW Phase transition and EW baryogenesis

(h

$$\begin{aligned} \langle \eta \rangle &= 0 \\ \langle h \rangle \neq 0 \end{aligned} \qquad \cdot \quad \Gamma_{\rm sph} \sim 20 \; \alpha_w^5 \; T \sim 10^{-6} \; T \quad \langle \eta \rangle \neq 0 \\ \langle h \rangle &= 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_B = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac{\delta_{\rm CP} \; \alpha_w^5}{g_*} \qquad \langle h \rangle = 0 \\ \cdot \; Y_E = Y_L \propto \frac$$

Problem of double-tuning

• Necessary condition to achieve a two-step PT:

 $c_{\eta} > 0 \rightarrow \mu_{\eta}^2 < 0$

• Stability of EWSB vacuum at T=0:

 $m_{\eta}^2 = \mu_{\eta}^2 + \lambda_{h\eta} v^2 > 0$

• Need $\lambda_{h\eta}$ big enough $|b_{h\eta}| \left(\frac{v}{f}\right)^2 \gtrsim |a_{\eta}|$

$$|a_{\eta}/b_{h\eta}| \lesssim \left(\frac{\nu}{f}\right)^2 \lesssim \mathcal{O}(0.1)$$

$$V(h,\eta) = \frac{1}{2}\mu_h^2 h^2 + \frac{1}{2}\mu_\eta^2 \eta^2 + \frac{1}{4}\lambda_h h^4 + \frac{1}{4}\lambda_\eta \eta^4 + \frac{1}{2}\lambda_{h\eta} h^2 \eta^2 + \frac{1}{2}c_h T^2 h^2 + \frac{1}{2}c_\eta T^2 \eta^2$$

Problem of double-tuning

• Necessary condition to achieve a two-step PT:

 $c_{\eta} > 0 \rightarrow \mu_{\eta}^2 < 0$

• Stability of EWSB vacuum at T=0:

 $m_\eta^2 = \mu_\eta^2 + \lambda_{h\eta} v^2 > 0$

• Need $\lambda_{h\eta}$ big enough $|b_{h\eta}| \left(\frac{v}{f}\right)^2 \gtrsim |a_{\eta}|$

$$|a_{\eta}/b_{h\eta}| \lesssim \left(\frac{v}{f}\right)^2 \lesssim \mathcal{O}(0.1)$$

A second tuning in the realizations so far in the literature

- Is there a more natural realization?
- ✓ Can be solved if there a natural way to generate quartic couplings, but with suppressed mass terms

Quartic couplings without (with suppressed)mass terms?

Two solutions:

(1) There are spurions that (at leading order) give rise to quartic couplings only

Mass terms arise at higher orders in the spurion(s)

(2) A new parameter: large charge (or large representations)

Explicit symmetry breaking by a large charge spurion enhances the higher order terms

Quartic couplings without mass terms

- Is there a spurion that gives rise to only quartic couplings and vanishing mass terms?
- Yes, there is a unique totally symmetric traceless rank 4- tensor breaking SO(5) to SO(4):

$$T_{IJKL} = \left(\delta_{IJ}^{(4)}\delta_{KL}^{(4)} + \text{perms.}\right) - 6\left(\delta_{IJ}^{(4)}\delta_{K5}\delta_{L5} + \text{perms.}\right) + 8\,\delta_{I5}\delta_{J5}\delta_{K5}\delta_{L5}$$

• Gives *opposite sign* contributions for λ_{η} and $\lambda_{h\eta}$:

 $\Delta V \propto (h^4 - 8 h^2 \eta^2 + 12 \eta^4)$

• Relative sign dictated by traceless condition

$$\Delta V \propto T_{IJKL} \Sigma_I \Sigma_J \Sigma_K \Sigma_L.$$

$$\Sigma \equiv U[\pi] \langle \Phi \rangle = \left(h_1, h_2, h_3, h_4, \eta, \sqrt{f^2 - \sum_i h_i^2 - \eta^2} \right)^T$$

A larger coset: SO(7)/SO(6)

- Another extra singlet PNGB (ρ), which can be naturally heavier and decoupled from EWPT
- Similar spurion can give positive λ_η , $\lambda_{h\eta}$ and λ_h , negative sign appearing only in couplings of ρ

$$\Delta V = \frac{\kappa}{4} \left((h^2 + \eta^2)^2 - 14(h^2 + \eta^2)\rho^2 + \frac{35}{3}\rho^4 \right)$$

• Large ρ mass from the top coupling contributions can lead to $\langle \rho \rangle = 0$

Contribution to the mass term

- Considering only κ , no mass terms generated
- As a consequences of symmetry, the quadratically divergent contributions cancel
- A finite IR contribution, as $m_{
 ho}$ gets its mass from other spurions (top contribution) $\Delta \mu_{\eta}^2 \sim \frac{14\kappa}{16\pi^2} m_{
 ho}^2 \ln \frac{m_*}{m_{
 ho}}$

• Enough suppression to be smaller than the contribution from top

The potential

- Top embeddings: t_R in the 7 and Q_L in the 27 (two-index symmetric traceless irrep)
- Q_L embedding breaks η shift symmetry by a small amount (δ_η)

$$V_t = c \frac{3y_t^2}{16\pi^2} g_*^2 \left(\epsilon f^2 h^2 + h^4 + f^2 \rho^2 + 2\delta_\eta f^2 \eta^2 + 2\delta_\eta \eta^2 h^2 + \rho^2 h^2\right)$$

- t_R embedding such that it only breaks the shift symmetry associated with ρ (no contribution to H and η potentials) $\Delta V_t = \tilde{c} \frac{3g_*^2}{16\pi^2} m_*^2 \rho^2$
- Additional contribution by the new spurion:

$$\Delta V = \frac{\kappa}{4} \left((h^2 + \eta^2)^2 - 14(h^2 + \eta^2)\rho^2 + \frac{35}{3}\rho^4 \right)$$

The potential

• Top induced potential:

From
$$Q_L$$
 mixing: $V_t = c \frac{3y_t^2}{16\pi^2} g_*^2 \left(\epsilon f^2 h^2 + h^4 + f^2 \rho^2 + 2\delta_\eta f^2 \eta^2 + 2\delta_\eta \eta^2 h^2 + \rho^2 h^2\right)$

- Contribution by the new spurion: $\Delta V = \frac{\kappa}{4} \left((h^2 + \eta^2)^2 14(h^2 + \eta^2)\rho^2 + \frac{35}{3}\rho^4 \right)$
- The leading thermal correction is captured by a thermal masses:

$$\Delta V_t(h,\eta) = \frac{1}{2}c_h T^2 h^2 + \frac{1}{2}c_\eta T^2 \eta^2 \qquad c_h = \frac{1}{48} \left(9g^2 + 3g'^2 + 12y_t^2 + 24\lambda_h + 2\lambda_{h\eta}\right) \\ c_\eta = \frac{1}{12} \left(4\lambda_{h\eta} + \lambda_\eta\right)$$

Parameter space

- Potential terms involving h and η contain
 5 parameters
- fixing observed m_h and , v and setting

 $\left(\frac{v}{f}\right)^2 = 0.1$, leaves only 2 parameters

$$V_t = c \frac{3y_t^2}{16\pi^2} g_*^2 \left(\epsilon f^2 h^2 + h^4 + f^2 \rho^2 + 2\delta_\eta f^2 \eta^2 + 2\delta_\eta \eta^2 h^2 + \rho^2 h^2 \right)$$
$$\Delta V = \frac{\kappa}{4} \left((h^2 + \eta^2)^2 - 14(h^2 + \eta^2)\rho^2 + \frac{35}{3}\rho^4 \right)$$

Parameter space

Constraints:

• Thermal history: A first order phase transition from $\langle \eta \rangle \neq 0$ to $\langle h \rangle \neq 0$ The transition completes via bubble nucleation

- $m_\eta > m_h/2$ to avoid $h o \eta \eta$ decay
- v/T ≥1, large enough to avoid washout of the baryon asymmetry

Quartic couplings without mass terms?

Two solutions:

(1) There are spurions that (at leading order) give rise to quartic couplings only

Mass terms arise at higher orders in the spurion(s)

(2) A new parameter: large charge (or large representations)

Explicit symmetry breaking by a large charge spurion enhances the higher order terms

A new parameter in power counting: a toy model

$$V(\Phi) = g^2 (|\Phi|^2 - f^2)^2 + \epsilon \frac{g^2}{f^{N-4}} (\Phi^n + \Phi^{*n}) \qquad (\epsilon \ll 1)$$

• Potential for the PNGB:

$$V(\pi) = 2 \epsilon g^2 f^2 \cos\left(n\frac{\pi}{f}\right)$$

= $V(0) + \epsilon n^2 g^2 f^2 \left(-\pi^2 + \frac{n^2}{12 f^2} \pi^4 + \cdots\right)$

• Explicitly symmetry breaking by a large charge spurion enhances the higher order terms

The non-abelian version: Gegenbauer polynomials

$$\Phi = (\Phi_1, \Phi_2, \dots, \Phi_N)^T$$

$$V(\Phi) = g^2 ((\Phi, \Phi)^2 - f^2)^2 + \epsilon T_{i_1 i_2 \dots i_n} \frac{g^2}{f^{N-4}} \Phi_{i_1} \Phi_{i_2} \dots \Phi_{i_n} \qquad (\epsilon \ll 1)$$

- SO(N) broken spontaneously to SO(N-1)
- Small explicit breaking to SO(N-1) by an operator in the n-index symmetric traceless irrep
- T totally symmetric and traceless

The non-abelian version: Gegenbauer polynomials

$$\Phi = (\Phi_1, \Phi_2, \dots, \Phi_N)^T$$

$$W(\Phi) = g^2 ((\Phi, \Phi)^2 - f^2)^2 + \epsilon T_{i_1 i_2 \dots i_n} \frac{g^2}{f^{N-4}} \Phi_{i_1} \Phi_{i_2} \dots \Phi_{i_n} \qquad (\epsilon \ll 1)$$

- SO(N) broken spontaneously to SO(N-1)
- Small explicit breaking to SO(N-1) by an operator in the n-index symmetric traceless irrep
- T totally symmetric and traceless
- Potential for the PNGB:

$$V(\pi) = a \epsilon g^2 f^2 G_n^{\frac{N}{2}-1} \left(\cos \frac{\Pi}{f} \right)$$

Durieux, McCullough & Salvioni 2021
$$= const + a' \epsilon n^2 g^2 f^4 \left(-\sin^2 \frac{\Pi}{f} + \frac{(n+6)(n-2)}{28 f^2} \sin^4 \frac{\Pi}{f} + \cdots \right)$$

A more natural EWBG- Gegenbauer contribution

Assume new source of explicit breaking with a spurion transforming

in a higher representation of SO(6)

 $V(h,\eta) = V_t(h,\eta) + V_G(h,\eta)$

$$V_{\rm G}({\rm h},\eta) = \epsilon_G g_*^2 f^2 G_n^2 \left(\sqrt{1 - (h/f)^2 - (\eta/f)^2} \right)$$

$$V_t(h,\eta) = \frac{1}{2}\mu_{h,t}^2 h^2 + \frac{1}{2}\mu_{\eta,t}^2 \eta^2 + \frac{1}{4}\lambda_{h,t}h^4 + \frac{1}{4}\lambda_{\eta,t}\eta^4 + \frac{1}{2}\lambda_{h\eta,t}h^2 \eta^2$$

A more natural EWBG- Gegenbauer contribution

 $V(h,\eta) = V_t(h,\eta) + V_G(h,\eta)$

$$V_{G}(h,\eta) = \epsilon_{G} g_{*}^{2} f^{2} G_{n}^{2} \left(\sqrt{1 - (h/f)^{2} - (\eta/f)^{2}} \right)$$
$$V_{t}(h,\eta) = \frac{1}{2} \mu_{h,t}^{2} h^{2} + \frac{1}{2} \mu_{\eta,t}^{2} \eta^{2} + \frac{1}{4} \lambda_{h,t} h^{4} + \frac{1}{4} \lambda_{\eta,t} \eta^{4} + \frac{1}{2} \lambda_{h\eta,t} h^{2} \eta^{2}$$

• V_G gives parametrically enhanced $\lambda_{h\eta}$:

$$rac{\lambda_{h\eta}}{\mu_{\eta}^2} \propto n^2/f^2$$

Finite temperature corrections

- The corrections controlled by ϵ_G are restricted to have the
 - same form by symmetry

Koutroulis, McCullough, Merchand Pokorskia & Sakurai 2023

$$V_{\rm G}({\rm h},\eta,T) = \left(1 - \left(\frac{{\rm T}}{{T_{\rm F}}}\right)^2\right) \epsilon_G g_*^2 f^2 G_n^2 \left(\sqrt{1 - (h/f)^2 - (\eta/f)^2}\right) \qquad \qquad T \ll T_{\rm F} \\ T_{\rm F} \sim 5f/n$$

• The leading effect of other couplings is to provide a thermal mass

$$\Delta V_t(h,\eta) = \frac{1}{2} c_h T^2 h^2 + \frac{1}{2} c_\eta T^2 \eta^2 \qquad c_h > c_\eta$$

The more natural regime: Gegenbauer co-dominance

• Top induced potential:

Top embeddings: t_R mixing with the singlet and Q_L with the 14 (two-index symmetric traceless irrep)

From Q_L mixing:

•

$$V_t(h,\eta) = c \frac{3y_t^2}{16\pi^2} g_*^2 (\epsilon f^2 h^2 + h^4 + 2\delta_\eta f^2 \eta^2 + 2\delta_\eta h^2 \eta^2)$$

• Contribution of the new spurion:

$$V_{G}(h,\eta) = \epsilon_{G} g_{*}^{2} f^{2} G_{n}^{2} \left(\sqrt{1 - (h/f)^{2} - (\eta/f)^{2}} \right)$$

Fixing observed m_{h} and , v and setting $\left(\frac{v}{f}\right)^{2} = 0.1$, and choosing n
leaves only 2 more parameters

Parameter space

- Only the usual tuning needed for the Higgs mass
- Thermal history:

A first order phase transition from $\langle \eta \rangle \neq 0$ to $\langle h \rangle \neq 0$

The transition completes via bubble nucleation

- $m_\eta > m_h/2$ to avoid $h \to \eta \eta$ decay
- $v/T \gtrsim 1$, to avoid washout of the baryon asymmetry

Large charge, low cutoff

• Perturbative unitarity constraints for processes involving large number of particle

require lower cutoff of the EFT as *n* increases

• For a toy model

EFT as *n* increases

$$V(\varphi) = -\lambda \frac{f^4}{n^4} \cos\left(\frac{n\varphi}{f}\right)$$
Figy within the EFT:

$$E \leq \frac{4\pi f}{\sqrt{27}n} \log^{3/2} \left[\frac{8\pi}{\lambda} \left(\frac{2}{3} \log(8\pi/\lambda)\right)^3\right]$$

Change & Luty 2019 Falkowski & Rattazzi 2019 Craig, Garcia Garcia & Kribs 2019 ME, Hook, Kumar, Tsai 2021

- > Bound on the CM energy within the EFT:
- ▶ For $k_* \rightarrow k_*$ scattering with

$$k_* \simeq rac{1}{2} \log \left[rac{8\pi}{\lambda} \left(rac{2}{3} \log(8\pi/\lambda)
ight)^3
ight]$$

- UV physics should modify the amplitude before reaching such CM energy
- While not obvious how precisely this translates to a bound on the cutoff applying to general UV completions, the bound should lie between $(E/k)_{max} \leq \Lambda_{max} \leq E_{max}$

Large charge, low cutoff

- Perturbative unitarity constraints for processes involving large number of particle require lower cutoff of the EFT as n increases
- UV physics should modify the amplitude before reaching such CM energy
- Bound on the cutoff considering general UV completions bound should lie between

$$\frac{E_{\max}}{k_*} \lesssim \Lambda_{\max} \lesssim E_{\max}$$

For the complete model.	n	$\Lambda_{\max} \sim E_{\max}$	$\Lambda_{\max} \sim (E/k)_{\max}$
	8	$\Lambda \lesssim 19 \ { m f}$	$\Lambda \lesssim 5 \ { m f}$
(for $\frac{\epsilon}{\lambda_h^{\text{SM}}} = 2$)	12	$\Lambda \lesssim 11 \ { m f}$	$\Lambda \lesssim 2.2 \text{ f}$
	16	$\Lambda \lesssim 8 \ { m f}$	$\Lambda \lesssim 1.5 \ { m f}$

Summary and conclusions

- Electroweak baryogenesis an intriguing possibility for explaining the baryon asymmetry, potentially testable
- EDM measurements already strongly constrain the models; significant further improvements are expected
- Spontaneous CP violation at the EW PT provides a scenario to hide EWBG from EDMs
- Realization in Composite Higgs: SO(6)/SO(5) symmetry gives rise to H and a new SM singlet pseudoscalar
- First/simplest models realizing a 2-step PT have a double-tuning problem
- Two solutions for the new tuning problem:
 - > A new 4-index symmetric traceless spurion, giving rise to quartic couplings only, realization in SO(7)/SO(6)
 - > explicit symmetry breaking involves operators of higher representations/ large charge

Thank you!

Extra Slides

Analytic study: Gegenbauer dominance

- A simplifying regime: the SO(5)-symmetric part of the potential dominates
- Goldstones $\vec{\Pi} = (h1, h2, h3, h4, \eta)$ transform as 5 of SO(5)
- A VEV for $\overrightarrow{\Pi}$ breaks SO(5) spontaneously to SO(4)
- 4 Goldstones: at a generic VEV, EW symmetry broken, 3 eaten by the EW gauge bosons, one remains (θ)
- Dynamics of the PT more simply analyzed in terms of θ

Analytic study: Gegenbauer dominance

• The SO(5)-breaking part of the potential:

$$\Delta \mathbf{V} = \frac{1}{4} \lambda_{h,t} h^4 + \frac{1}{4} \left(\mu_{h,t}^2 - \mu_{\eta,t}^2 + \left(c_h - c_\eta \right) T^2 \right) (h^2 - \eta^2)$$

• Parametrizing
$$h = v_c \cos\theta$$
, $\eta = v_c \sin\theta$:

$$\Delta V(\theta, T) = -\frac{\lambda_{h,t}}{8} v_c^4 \left[\cos(4\theta) + 4 \alpha(T) \cos(2\theta) \right]$$
$$\alpha(T) = \frac{\mu_{h,t}^2 - \mu_{\eta,t}^2 + (c_h - c_\eta)T^2 + 2\lambda_{h,t} v_c^2}{-2 \lambda_{h,t} v_c^2}$$

Prefers one phase over the other

Provides a barrier between two phases

• At T_c : $lpha(T_c)=0$,

 \succ Need $\lambda_{h,t} < 0$

Analytic study: Gegenbauer dominance

 $\Delta V(\theta, T) = -\frac{\lambda_{h,t}}{8} v_c^4 \left[\cos(4\theta) + 4 \alpha(T) \cos(2\theta) \right]$

 \succ Need $\lambda_{h,t} < 0$

• Thermal history determined by $\alpha(T)$

$$\alpha(T) = \frac{\mu_{h,t}^2 - \mu_{\eta,t}^2 + (c_h - c_\eta)T^2 + 2\lambda_{h,t} v_c^2}{-2 \lambda_{h,t} v_c^2}$$

Gegenbauer dominance- bubble nucleation

$$\Delta V(\theta, T) = -\frac{\lambda_{h,t}}{8} v_c^4 \left[\cos(4\theta) + 4 \alpha(T) \cos(2\theta) \right]$$

Bubble nucleation rate:

$$\Gamma \sim T^4 \exp\left(-\frac{S_3}{T}\right)$$

• PT completes when $\Gamma \gtrsim H^4 \rightarrow \frac{S_3}{T} \approx 4 \ln\left(\frac{M_{\rm Pl}}{T_c}\right) \approx 140$

• Or by "zero-T (quantum)" bubbles when

$$S_4 \approx 4 \ln \left(\frac{M_{\rm Pl}}{T_C}\right) \approx 140$$

0

• Near T_c , thin wall bubbles

$$S_3^{ ext{thinwall}} = rac{2\piarphi}{3|\lambda_{4 heta}|^{1/2}lpha^2}.$$

• Outside this regime:

$$S_3 = \frac{4\pi\varphi}{|\lambda_{4\theta}|^{1/2}} \left[\frac{(1-\alpha^2)^{5/2}(1+1.87\alpha^2)}{6\alpha^2} + 0.19(1+\alpha)^{1/2} \right]$$

Gegenbauer dominance- bubble nucleation

- Depending on the parameters two cases possible
 - i. The barrier persists until T = 0
 - $>S_3/T$ reaches a minimum at a finite *T*, possible that PT does not complete
 - ii. The barrier disappears before T = 0

 $>S_3/T$ approaches zero as barrier shrinks, PT always completes while the barrier is present

Parameter space: Gegenbauer-dominance

Partial compositeness

• Elementary quark fields mixing with operators of the strongly coupled sector:

$$\lambda_{q_i} \, \bar{q}_i O_q^i + \lambda_{d_i} \, \bar{d}_i O_d^i + \lambda_{u_i} \, \bar{u}_i O_u^i$$

• Yukawa couplings: $y_u^i \sim \frac{\lambda_{q_i}\lambda_{u_i}}{g_*}$ $y_d^i \sim \frac{\lambda_{q_i}\lambda_{d_i}}{g_*}$

> Small difference between operator dimensions generates large flavor hierarchies

- Composite operators *O* fall in representation of the symmetry group of the strong sector, (e.g of SO(5) in the minimal model)
- Embedding of the elementary quarks in these representation dictates the form of their coupling structure as well as their contribution to the Higgs potential/interactions

EW Precision and Flavor constraints

- Flavor constraint on generic CH with partial compositeness, very strong
- However imposing flavor (and CP) symmetries they can be relaxed: with $g_* \sim 3$,

 $f \sim 1.5 \text{ TeV}$ could be compatible with bounds

Glioti, Rattazzi, Ricci, Vecchi 2024

• EW precision:
$$\hat{S} \sim \frac{m_w^2}{m_*^2} \sim 10^{-3} \left(\frac{2.5 \text{ TeV}}{m_*}\right)^2$$
 Giudice, Grojean, Pomarol, Rattazzi 2008

• With custodial symmetry, $m_* \sim 2-3$ TeV compatible with current bounds

Phenomenology of η

- Coupling to top: $i b y_t \frac{\eta}{f} \overline{t}_L H t_R$
- Cross section for production: $\sim \left(\frac{\nu}{f}\right)^2 \times \sigma_H$ with similar mass SM H
- Branching ratios depend on embeddings, in particular of b (if decay to $t\bar{t}$ not allowed)
- Current bound from $H \rightarrow \gamma \gamma$, at ~ 1/4-1/3 of a SM-like Higgs with similar branching ratios

