

Hidden charm production in pp collisions at 13.6 TeV

Measurement of the $\eta_c(1S)$, J/ ψ , $\psi(2S)$ yields using hyperon decay channel with ALICE

David Dobrigkeit Chinellato¹, Romain Schotter ¹,

Wednesday 6th of October 2024

¹ Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences

Hidden-charm meson production

ALICE

Understand better the charm-quark hadronisation in a collective medium (in AA but also pp)

- Provide a better understanding of charm baryon production
- Provide a better understanding of open- and hidden-charm meson productions

Charmonium production is essentially studied with J/ ψ and ψ (2S) particles

η_c is relatively unexplored experimentally

 $\eta_{\rm C}(1{\rm S}) \to {\rm p}{\rm \overline{p}} ~({\rm B.R.}~1.35 \times 10^{-3})$

 \rightarrow challenging combinatorial background

LHCb Collaboration, Eur. Phys. J. C 80, 191

Measurement of the $\eta_c(1S)$ production cross-section in ppcollisions at $\sqrt{s} = 13$ TeV

LHCb collaboration \dagger

Abstract

Using a data sample corresponding to an integrated luminosity of 2.0 fb⁻¹, collected by the LHCb experiment, the production of the $\eta_c(1S)$ state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV is studied in the rapidity range 2.0 < y < 4.5 and in the transverse momentum range $6.5 < p_{\rm T} < 14.0$ GeV. The cross-section for prompt production of $\eta_c(1S)$ mesons relative to that of the J/ψ meson is measured using the $p\overline{p}$ decay mode and is found to be $\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.69 \pm 0.15 \pm 0.10 \pm 0.18$. The quoted uncertainties are, in order,

low-p_T production is the most interesting ←

Hidden-charm meson production

Understand better the charm-quark hadronisation in a collective medium (in AA but also pp)

- Provide a better understanding of charm baryon production
- Provide a better understanding of open- and hidden-charm meson productions

Charmonium production is essentially studied with J/ ψ and ψ (2S) particles

η_c is relatively unexplored experimentally

 $\eta_{\rm C}(1{\rm S}) \rightarrow {\rm p}\overline{{\rm p}} \quad ({\rm B.R.} \ 1.35 \times 10^{-3})$

 \rightarrow challenging combinatorial background

Could drastically be reduced by exploiting (multi-)strange baryons

Hidden-charm meson production

ALICE

Understand better the charm-quark hadronisation in a collective medium (in AA but also pp)

- Provide a better understanding of charm baryon production
- Provide a better understanding of open- and hidden-charm meson productions

Charmonium production is essentially studied with J/ ψ and ψ (2S) particles

η_c is relatively unexplored experimentally

 $\eta_{\rm C}(1{\rm S}) \rightarrow {\rm p}\overline{{\rm p}} \quad ({\rm B.R.} \ 1.35 \times 10^{-3})$

 \rightarrow challenging combinatorial background

 $\eta_{\rm C}(1{\rm S}) \to \Lambda \overline{\Lambda} \quad ({\rm B.R. \ } 1.02 \times 10^{-3})$ $J/\psi \to \Lambda \overline{\Lambda} \quad ({\rm B.R. \ } 1.89 \times 10^{-3})$ $\chi_{\rm c0}(1{\rm P}) \to \Lambda \overline{\Lambda} \quad ({\rm B.R. \ } 3.59 \times 10^{-4})$ $\chi_{\rm c1}(1{\rm P}) \to \Lambda \overline{\Lambda} \quad ({\rm B.R. \ } 1.27 \times 10^{-4})$ $\chi_{\rm c2}(1{\rm P}) \to \Lambda \overline{\Lambda} \quad ({\rm B.R. \ } 1.07 \times 10^{-4})$ $\psi(2{\rm S}) \to \Lambda \overline{\Lambda} \quad ({\rm B.R. \ } 3.81 \times 10^{-4})$

Could drastically be reduced by exploiting (multi-)strange baryons

$$\begin{aligned} \eta_{\rm C}(1{\rm S}) &\to \Xi^{-}\overline{\Xi}^{+} \quad ({\rm B.R.} \ 9.0 \times 10^{-4}) \\ {\rm J}/\psi &\to \Xi^{-}\overline{\Xi}^{+} \quad ({\rm B.R.} \ 9.7 \times 10^{-4}) \\ \chi_{\rm c0}(1{\rm P}) &\to \Xi^{-}\overline{\Xi}^{+} \quad ({\rm B.R.} \ 4.45 \times 10^{-4}) \\ \chi_{\rm c1}(1{\rm P}) &\to \Xi^{-}\overline{\Xi}^{+} \quad ({\rm B.R.} \ 6.0 \times 10^{-5}) \\ \chi_{\rm c2}(1{\rm P}) &\to \Xi^{-}\overline{\Xi}^{+} \quad ({\rm B.R.} \ 1.46 \times 10^{-4}) \\ \psi(2{\rm S}) &\to \Xi^{-}\overline{\Xi}^{+} \quad ({\rm B.R.} \ 2.87 \times 10^{-4}) \end{aligned}$$

 \rightarrow Pave the way towards a precise exploration of the whole charmonium spectroscopy

Romain Schotter

Data samples and event selections

- **Data:** pp collisions at $\sqrt{s} = 13.6$ TeV, 2023 thinned
 - strangeness derived data sample (*LF_LHC23_pass4_Thin_Strangeness*)
 - used only a chunk (50 files): 16.7 x 10⁶ events, **pass4**
- Simulated data: pp collisions at \sqrt{s} = 13.6 TeV, Pythia 8 Monash 2013 + Geant4
 - strangeness derived data sample (local simulations done by David)
 - 0.5 x 10⁶ events, enriched (via triggering) in $\eta_c \rightarrow \Lambda \overline{\Lambda}$, $J/\psi \rightarrow \Lambda \overline{\Lambda}$ and $\psi(2S) \rightarrow \Lambda \overline{\Lambda}$
 - 0.5 x 10⁶ events, enriched (via triggering) in $\eta_c \to \Xi^- \overline{\Xi}^+$, $J/\psi \to \Xi^- \overline{\Xi}^+$ and $\psi(2S) \to \Xi^- \overline{\Xi}^+$

• Event selections:

- minimum-bias events (*sel8*)
- $|z_{\text{prim. vtx}}| < 10 \text{ cm}$
- Not at the ITS ROF or TF border
- IsGoodZvtxFT0VsPV
- NoSameBunchPileup

Candidate selections

The $\eta_c(1S)$, J/ ψ and $\psi(2S)$ are studied in the following decay channels:

 $\begin{cases} \Lambda \to \mathbf{p} \ \pi^- & \text{B.R. 63.9 \%} \quad c \cdot \tau = 7.89 \text{ cm} \\ \overline{\Lambda} \to \overline{\mathbf{p}} \ \pi^+ & \text{B.R. 63.9 \%} \quad c \cdot \tau = 7.89 \text{ cm} \end{cases}$

$$\begin{cases} \eta_{\rm C}(1{\rm S}) \to \Lambda \overline{\Lambda} & ({\rm B.R.} \ 1.02 \times 10^{-3}) \\ {\rm J}/\psi \to \Lambda \overline{\Lambda} & ({\rm B.R.} \ 1.89 \times 10^{-3}) \\ \psi(2{\rm S}) \to \Lambda \overline{\Lambda} & ({\rm B.R.} \ 3.81 \times 10^{-4}) \end{cases}$$

V0 reconstruction using topological selections:

η _{daughters}	< 0.8
Nbr of TPC crossed rows	> 70
DCA proton to PV	> 0.05 cm
DCA pion to PV	> 0.1 cm
TPC d <i>E</i> /dx	< 5 σ
DCA between V0 daughters	< 1σ
V0 Radius	> 1.2 cm
V0 cos PA	> 0.97
V0 Mass cut	< 0.005 GeV/ <i>c</i> ²
Competing mass rejection	> 0.008 GeV/c ²
Lifetime cut	< 3.8 с т

וען	< 0.5
Correct MC association	Yes (only MC)

Romain Schotter

Candidate selections

The $\eta_c(1S)$, J/ ψ and $\psi(2S)$ are studied in the following decay channels:

Romain Schotter

7/14

$\Lambda\Lambda$ and $\Xi^{-}\Xi^{+}$ invariant mass in MC

A first look at the invariant mass distributions of hyperon-antihyperon pairs in MC

Romain Schotter

Reconstruction efficiencies

From the $\eta_c(1S)$, J/ ψ and $\psi(2S)$ peaks, we can estimate the number of reconstructed charmonia

Romain Schotter

romain.schotter@cern.ch

9/14

Reconstruction efficiencies

From the $\eta_c(1S)$, J/ ψ and $\psi(2S)$ peaks, we can estimate the number of reconstructed charmonia

Romain Schotter

romain.schotter@cern.ch

$\Lambda\overline{\Lambda}$ invariant mass in real data

Let's run over real data and see what we get!

 \rightarrow invariant mass distribution of $\Lambda\overline{\Lambda}$ pairs in data (0.002 % of all 2023 thinned)

Note that this is only in 0.002% of 2023 thinned pp data

Over the full data sample, the uncertainties on the background varies between 3 900 and 6 800

(*): background estimated in a region of $[\mu \pm \sigma]$, with μ = mean of the inv. mass peak in MC, σ = width of the inv. mass peak in MC

Romain Schotter

romain.schotter@cern.ch

Is the measurement doable?

Based on what was shown, we can estimate the expected number of reconstructed $\eta_c(1S)$, J/ ψ , $\psi(2S)$ in the hyperon-antihyperon decay channel

Coupled to the overwhelming background in real data, such measurement becomes difficult (at least, with the current approach)

Romain Schotter

romain.schotter@cern.ch

.

ALICF

Conclusion

Such measurements turn out to be rather difficult in pp collisions at 13.6 TeV

 $\begin{cases} \eta_{\rm C}(1{\rm S}) \to \Lambda \overline{\Lambda} & ({\rm B.R.} \ 1.02 \times 10^{-3}) \\ J/\psi \to \Lambda \overline{\Lambda} & ({\rm B.R.} \ 1.89 \times 10^{-3}) \\ \psi(2{\rm S}) \to \Lambda \overline{\Lambda} & ({\rm B.R.} \ 3.81 \times 10^{-4}) \end{cases} \qquad \begin{cases} \eta_{\rm C}(1{\rm S}) \to \Xi^{-}\overline{\Xi}^{+} & ({\rm B.R.} \ 9.0 \times 10^{-4}) \\ J/\psi \to \Xi^{-}\overline{\Xi}^{+} & ({\rm B.R.} \ 9.7 \times 10^{-4}) \\ \psi(2{\rm S}) \to \Xi^{-}\overline{\Xi}^{+} & ({\rm B.R.} \ 2.87 \times 10^{-4}) \end{cases}$

 \rightarrow Reconstruction efficiencies are very small, the combinatorial background level is high the production cross sections are low

Open questions:

- Could we perform it in another system, such as ultra-peripheral collisions?
 - \rightarrow **pros:** offers a cleaner environment, reduced combinatorial background
 - \rightarrow *cons:* different physics case
- Luminosity in pp collisions in 2024 is 4-5 times bigger than in 2023
 - \rightarrow **pros:** much more statistics + usage of $\Xi\Xi$ offline trigger
 - \rightarrow <u>cons</u>: need to rely on to the $\Xi^{-}\Xi^{+}$ decay channel \rightarrow smaller efficiencies

Backup slides

Is the measurement doable?

Based on what was shown, we can estimate the expected number of reconstructed $\eta_c(1S)$, J/ ψ , $\psi(2S)$ in the hyperon-antihyperon decay channel

Coupled to the overwhelming background in real data, such measurement becomes difficult (at least, with the current approach)

Romain Schotter

.

ALICE

Reconstruction efficiencies

From the $\eta_c(1S)$, J/ ψ and $\psi(2S)$ peaks, we can estimate the number of reconstructed charmonia

Romain Schotter

romain.schotter@cern.ch