

Physics object reconstruction performance with MUSIC detector

Paolo Andreetto¹, Massimo Casarsa², Alessio Gianelle¹, Donatella Lucchesi^{1,4}, Carlo Giraldin², Leonardo Palombini^{1,4}, Lorenzo Sestini³, <u>Davide Zuliani^{1,4}</u>

- 1) INFN Padova
- 2) INFN Trieste
- 3) INFN Firenze
- 4) University of Padova

Overview

- Converging on performance on several physics objects
- Optimisation ongoing for some sub-detectors:
 - Tracker
 - ECAL
- Evaluation of performance on several physics objects:
 - Muons (tracks)
 - Photons / electrons
 - Jets
- Performance evaluation done using BIB (from last lattice version of ESPPU)
 + Incoherent Pairs (IPs)

Tracker

- 5 layers are kept in the VXD barrel
- To get faster seeding procedure with BIB+IPs, we removed first layer from seeding

 No important loss in reco efficiency
- After seeding and track reconstruction steps, roughly 900k tracks per event are present (BIB+IPs)
 - For seeding, we have tried some binnings in z, no evident advantage

Tracker

- Decided to apply a cut on trndf, as it impacts the most
 - E.g., for trndf>17, we keep just ~2k tracks per event on average (signal+BIB+IPs)
- This cut can be tuned to accommodate different requirements from different analyses
- Evaluation with BIB+IPs is ongoing

ECAL (photons/electrons)

- The final geometry accounts for 6 layers of CRILIN calorimeter
- Lots of work by Carlo and Leonardo to finalize:
 - Implementation of trigger at digitiser level

ECAL (photons/electrons)

- The final geometry accounts for 6 layers of CRILIN calorimeter
- Lots of work by Carlo and Leonardo to finalize:
 - Implementation of trigger at digitiser level

ECAL (photons/electrons)

- The final geometry accounts for 6 layers of CRILIN calorimeter
- Lots of work by Carlo and Leonardo to finalize:
 - Implementation of trigger at digitiser level
 - Configuration of trigger and evaluation performance

Different configurations under testing

Able to reach a resolution of the order of ~13%/sqrt(E)

Jets

- After optimisation of tracker and ECAL, we can move to jet
- We have already simulated samples of
 - \circ H \rightarrow bb @ 10 TeV using Whizard
 - bb dijet samples using Pythia8

Jets

- From some preliminary estimates, we get $\varepsilon_{reco} = 29\%$
 - In the 3 TeV case, we had $\varepsilon_{\text{reco}} = 39\%$
 - It seems that the difference is mainly due to difference in acceptance
- The plan is quite straightforward:
 - Reconstruct jets with BIB+IPs overlay
 - Apply cuts on track reconstruction and calo digitisation
 - Perform the same analysis as for the 3 TeV case

Conclusions

- Each sub-detector has been optimized (at least at first order)
 - From these preliminary studies, it seems that
 - We can manage both tracker and ECAL occupancy with BIB+IPs
 - We can reach similar performance to 3 TeV case
- We are now preparing the pipeline to produce all performance studies and plots