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Outline

• Overview of the Problem

• Review of Electron Cooling

• The Coulomb Analogy

• Electron Cooling of Muons – Simplified Examples

• Stability Problems in High Current Low Energy Electron Beams

• A Possible Solution to the Stability Problems

• Summary Comments
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The Problem
• Muons are Produced with High Emittance (~ 1 cm)

• Beams Ideally Would Have Low Emittance (<~ 1 micron)

• Desired Physics Output Needs < ~30 micron Emittance or 
Better

• Cooling is Needed!

• And Cooling must be Fast; Muon lifetime is 2.2 msec

Electron Cooling
•Electron Cooling Works Best at High Electron Currents

• Electron Cooling Works Best at Low Energy

• Yet High Current, Low Energy Electron Beams Are Often 
Unstable. So Not Considered. We’ll Look at Stability Later, but 
first we’ll see what we’d Like to Achieve.
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Specific Opportunities to Apply Cooling
• Presently 6D Ionization Cooling is Proposed to Take the Emittance 
from ~1 cm to ~300 microns

• A ‘Final’ Cooler Cools From ~300 microns to ~25 microns

• Ideally, a Further (Post-Final?) Cooling to ~0.3 microns Would be 
Very Beneficial

Potential Problems
• The Problem: Ionization Cooling Is Not Yet Fully Demonstrated and 
May Face Technical Hurdles, especially in the Final Ionization Cooler

• We Should Explore All Alternatives!



5

What Is Electron Cooling?

• Spitzer, 1956:  Warm Ions Come to Equilibrium 
with Cooler Electrons in a Plasma
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What Is Electron Cooling?
• Budker, 1966:  Electron Beam is Simply a Moving 
Electron Plasma.  Superimpose electron beam on 
ion beam to cool:
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Electron Cooling Formulas
• dE/dx = [wp

2z2e2/v2] ln(Lv/wpbmin) (Found in Textbooks)   (Eq. 1)

• Now ln(Lv/wpbmin) ~ 10; wp
2 = 4pne2/m = 4pnc2re; and ri = e2/mic

2

Leaves:

• dE/dx = [40pnc4rerimi/v
2]    (Eq. 2)

• With p = miv, dE/dx = vdp/dx = dp/dt = midv/dt we get to:

• dv/dt = –[40pnc4reri/v
2]

• We must integrate over the velocity distribution ge(ve):

• dv/dt = –40pnc4reri  [u ge(ve)/(v-ve)
2]dve

• u is a unit vector in the direction of the relative velocity, u = (v-ve)/|v-ve|.

• Electron density is given by n = I/pa2ebc leaving

• dv/dt = –[40Ic3reri/a
2eb]  [u ge(ve)/(v-ve)

2]dve (Eq. 3)
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The Coulomb Analogy
• Recall Eq. 3 from the Previous Slide:

• dv/dt = –[40Ic3reri/a
2eb]  [u ge(ve)/(v-ve)

2]dve (Eq. 3)

• Now also Recall the Expression for the Coulomb Force:

• dFCoulomb = [K2/(r - rp)2]r(rp)drp

• Cooling dependence on v same as Coulomb dependence on r

• For a Sphere of Uniform Density we Know:
• Coulomb Force Increases Linearly With Radius Inside of Sphere

• Coulomb Force Decreases as 1/r2 Outside of Sphere

• By Analogy (the Coulomb Analogy) We Get:

• dv/dt = –[40Ic3reri/a
2eb][u/v2] = –Kcool[u/v2] (v > vemax)     (Eq. 4)

• dv/dt = –Kinv (v < vemax) (Eq. 5)
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The Cooling Time and Cooler Length
• Recall the last two Expressions from the Previous Slide:

• dv/dt = –[40Ic3reri/a
2eb][u/v2] = –Kcool[u/v2] (v > vemax) (Eq. 4)

• dv/dt = –Kinv (v < vemax) (Eq. 5)

• At v = vemax the expressions must be equal, so we get Kin = Kcool/vemax
3 .

• For v < vemax, v = v0exp(–Kint). Defining qemax = vemax/bc, and setting Constants:

• Tcool = [(1.044x107 C/cm2)qemax
3b4] / (I/a2)  (e-drop time, v < vemax)    (Eq. 6)

• We see we want small qemax, small b and large I/a2 for FAST COOLING. 

• The invariant is the emittance, e = pqr. We can set q by varying r!

• We’ll set starting v = vemax as the one sigma thermal velocity of the electrons.

• EXAMPLE: We’ll use 20 A/cm2 (commercially available now) and b = 0.02.

• Adiabatically expand electron beam radius 7X to reduce qemax leaving ~0.4 A/cm2

• For a 10X emittance reduction, cooler is ~5 m long and cool time ~0.84 msec.
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Adiabatic Expansion and Scaling Comments

• Recall Eq. 6,   Tcool = [(1.044x107 C/cm2)qemax
3b4] / (I/a2)

• We’ve set starting v = vemax as the one sigma thermal velocity of the electrons.

• Since Cooling Time is Proportional to qemax
3 we want qemax SMALL.

• To make qemax small, Adiabatic Beam Expansion is Proposed.

• Adiabatic Beam Expansion decreases qemax but also Increases a.

• Due to Scaling, Adiabatic Beam Expansion is a Linear Cooling Time Improvement.

• Also, Note that q = qN/b . Therefore, Cooling Really Scales as qeNmax
3b / (I/a2)

• Desire is for Low q, Low b and High I/a2

• However, Some Increase in b May be Desired

• Scattering off of Trapped Ions Leads to Electron Beam Emittance Growth

• Higher b May Assist in Stability



11

Scenarios
• Can Have Stages of Cooling, Focusing the Beams to Set q before each stage.

• Each Stage has ~5 m long cooling straight & 0.84 microsecond cool time

• The bigger the starting emittance, the more electron current we need

• Other Parameters Possible, this is just an Example; Optimization Needed

• For Beamlets, we’ll Operate in Parallel; See Next Slide

Initial en Final en
Beam 
Radius

Total 
Electron 
Current

Number of 
Beamlets

Electron 
Current per 

Beamlet
3 p mm 0.3p mm 3.36 cm 14.5 A 1 14.5 A

30 p mm 3 p mm 33.6 cm 1.45 kA 1 1.45 kA
300 p mm 30 p mm 3.36 m 145 kA 100 1.45 kA
3 p mm 300 p mm 33.6 m 14.5 MA 10,000 1.45 kA



12

Beamlet Formation
• To Form Beamlets, Use Window Frame Magnet Septa

• Then Steer into Individual Coolers

• Then Steer and Coalesce Into a Single Beam
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But What about Low Energy Electron Beam Instabilty?

• Low Energy Beam Instability was Studied in great detail in the “Solenoid Model”.
• Schematic of the Novosibirsk Solenoid Model is in the figure above.

• Many measurements were done that agreed with electron/ion plasma theory.
• Impressively Thorough Experimentation and Analysis. Ion Neutralization Region Begins at 
Electrostatic Mirror between 6 and 7 and ends prior to the Collector.

• Oscillations remained Stable below a Threshold Current but Grew Above that 
Threshold. Appeared to Indicate a Basic Instability of Low Energy Electron Beams.
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Low Energy Electron Beam Bursian Limit
• Several Studies Have Shown Instability in Low Energy Electron Beams

• A Formula by Bursian Describes the Instability Limit for non-Neutralized Beams:

• The Above Equation comes from Simple Space Charge Voltage Depression. Too Large, 
and electrons slow, further increasing the charge, resulting in instability.

• For b = 0.02, V0 = 102 V  and with R/a = 1.5, the Bursian Limit is 14.6 mA!

• But we want 1.45 kA to do the cooling! (100,000 X more than Bursian Limit.)

• Pierce showed that Quasi-neutralized Beams get about 5 times more.

• But Even with Pierce, We’re very far away from What we Want.

• So Electron Cooling Hasn’t Been Considered an Option for Muon Cooling.

• However, There is Some Evidence of Stable Low Energy Beams!
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Electron Beam Collectors Surpass Bursian Limit

•

• For b = 0.028, V0 = 200 V and with R/a = 1.5, the Bursian Limit is 37.5 mA.

• But we saw stable operation at 500 mA! Other collectors did even better.

• Note that no one looked for a max current. Collectors just met the design needs. 
Operations were not suffiently studied, and V0 = 200 V is only a recollection.
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Why Was Solenoid Model Experiment Unstable?
• In the Solenoid Model Experiment, a Drift Region Exists Before the Ion-Trap 
Region

• In the Solenoid Model Experiment, a Bursian Instability Will Exist in the Region 
Before the Ion-Trap Region. The Electron Gun Works to Sweep Ions Back to 
Cathode. This Leaves a Non-Neutralized Drift Region Prior to the Ion-Trap Region. 
In that Non-Neutralized Drift Region the Electron Beam is Susceptible to the 
Bursian Limit.

• However, A.V. Burov reports that the Threshold Current was even Lower than the 
Bursian Limit, and Instability of Space Charge Oscillations was Observed. A Two 
Stream Plasma Instability was Suspected.

• But the Beam Only Survives for t ~ 2.5 m/v, and with v/c ~ 0.041; t  ~ 0.2 ms. Not 
a lot of time for Instability. Also, a Feedback Mechanism is Required.

• Burov et al., Speculate Feedback comes from Collector Secondary Electrons and 
also there are Electrons Freed from Gas. (The Beam Itself May not be the Entity 
Responsible for a Two Stream Instability.)
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How Can Electron Collector Beams be Stable?

• Within the Electron Collector Drift, Ions are Trapped in All Three 
Dimensions

• Collector Fully Neutralizes Space Charge, Allowing Stable Operation

• Outside of the Neutralized Electron Collector Drift Region, There is No 
Other Drift Region. Beams Rapidly Get to Higher b.

• The Electric Fields will also Clear Secondary Electrons.
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Review

• (Left) Solenoid Model System has Non-Neutral Drift Region Prior to Ion-Trap Region.
• In the Drift Prior to the Ion-Trap Region, the Cathode/Anode Electric Field Extracts Ions Out.
• Hence, the Drift Region Prior to the Ion-Trap Region is Non-neutral and Bursian Unstable.
• Secondary and Gas Stripped Electrons may Make the Instability Worse.

• (Right) Collector has Internal Neutralized Drift Region
• Electric fields on Either Side work to Trap, Not Extract, Neutralizing Ions Inside the Drift Region.
• Hence, the Drift Region is Neutralized and Bursian Instability Does not Manifest.
• Secondary Electrons Are Also Swept Out by the Adjacent Electric Fields.



19

Theoretical Electron Cooling Program
1. Improve Electron Cooling Analysis and Design. 

1. A real distribution is not a simple uniform sphere in velocity space: a Gaussian 
has a significant distribution outside of the 1s boundary used in our simple 
example. This is a LOSS compared to the simple example.

2. Optimize starting velocity: We should start at v > 1s since the cooling force is 
stronger in the near-outside region than in the Interior of the Spherical 
Distribution. This GAIN regains much of what is lost in 1.1; possibly more.

3. Any electron beam space charge depression will increase the longitudinal 
velocity spread, which would be a LOSS compared to the simple example.

4. However, the longitudinal spread is smaller than the transverse, a GAIN.
5. Cathodes with 100 A/cm2 are possible. This is a 5X GAIN.
6. A guess is that 1.1 through 1.4 roughly Cancel each other, and Cooling will be 5X 

better than the earlier Simple Estimate via 1.5.
7. We Need a Numerical Integration rather than the Simple Model to obtain a 

More Accurate and Detailed Evaluation of the Cooling.

2. Determine the Cost Effectiveness (both Construction Cost and 
Operational Costs) to See Where Electron Cooling Makes Sense.
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Experimental Electron Cooling Program
1. Build a Test Bed System with a 15 cm Drift. Investigate to Find the  

Maximum Stable Current at Low Energy. (Design for 100 A.)

2. Extend the Test Bed System to a 1 m Drift. Investigate Stability Limit.

3. Add Toroidal Merging and Separation for a Cooler Prototype. 
Investigate Stability Limit.

4. Add Adiabatic Expansion. Investigate Stability Limit.

5. If Toroidal Inclusive System is only Stable at a Lower Current or at 
Smaller Lengths than Desired, Arrive at a Design using Many More Such 
Coolers (in series and in parallel) to achieve Electron Cooling for 
Muons. Evaluate Cost Effectiveness.

Note – Much of the Theoretical and Experimental Work is the Subject of a 
Pending SBIR Proposal to the US DOE. (Of course, any support would be 
appreciated.)



21

Ramifications of a Final Electron Cooler
• Electron Collectors Proven to Operate Well Beyond Bursian Limit

• We’ve Specified a 5 meter long Drift with 1.45 kA as one Example

• Collectors already Operate at 15 cm Drifts with Ampere Intensity

• If we Can Achieve the Needed Electron Beam Technology, Muon 
Beams with Less than 1 micron Emittances are Possible

• With a 100 X emittance reduction, 10 X less Muons Are Needed
• Same Physics Results would be Obtained; but 10 X Less Background
• 10 X Less of a Radiation Problem
• 10 X Less Beam Loading on the RF in the Ionization Cooling Channels
• A Less Intense Proton Driver is Needed

• Smaller Good Field Aperture Requirement for Accelerator Magnets

• The Advantages Would Likely Result in a Significantly Cheaper Collider 
(Maybe 3X?)
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Conclusion
• Electron Cooling of Muons May be Possible.

• Key to the Success of Electron Cooling for Muons is Demonstration of 
Stable, High Current, Low Energy, Electron Beams.

• Such Beams Have Been Proven to Exist in Electron Collectors, 
Although the Drift Lengths are Shorter, and Currents less, than What we 
Desire.

• If the Desired Electron Beam Technology Can be Demonstrated, a 
Muon Collider will be Significantly Cheaper to Build than Presently 
Envisioned.

• If the Desired Electron Beam Technology Can be Demonstrated, a 
Muon Collider May be Realizable Quicker than Presently Envisioned.

• We Should Begin Efforts to Demonstrate the Desired Electron Beam 
Technology.

• We Should Include Electron Cooling in a New Full System Design.
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For Discussion: Scenarios With a 100 A/cm2 Source
• Can Have Stages of Cooling, Focusing the Beams to Set q before each stage.

• Each Stage has ~1 m Long Cooling Straight & 0.17 Microsecond Cool Time.

• The Larger the Starting Emittance, the More Electron Current We Need.

• Other Parameters Possible, this is just Example 2; Optimization is Needed.

• For Beamlets, we’ll Operate in Parallel and Perhaps in Series.

• May want 100 A Beamlets; Leading to 16X More Coolers Where Needed.

Initial en Final en
Beam 
Radius

Total 
Electron 
Current

Number of 
Beamlets

Electron 
Current per 

Beamlet
3 p mm 0.3p mm 3.36 cm 14.5 A 1 14.5 A

30 p mm 3 p mm 33.6 cm 1.45 kA 1 1.45 kA
300 p mm 30 p mm 3.36 m 145 kA 100 1.45 kA
3 p mm 300 p mm 33.6 m 14.5 MA 10,000 1.45 kA


