Capture & Cooling Update

DA and cooling optimisation

- Rectilinear cooling design is approaching a release version
 - Thanks to Ruihu!
 - Ruihu's design now frozen \rightarrow publication
 - http://arxiv.org/abs/2409.02613
- Major beam loss at entrance to the cooling system
 - Associated with aperture at 352 MHz
 - Investigate 176 MHz instead
 - Half frequency → double the aperture!
- Can we capture at 176 MHz?
 - Update to the front end...
 - Also of interest to look at few other front end optimisations
- Reminder: challenge is to improve muon production by x2

Muon/pion yield (from last time)

energy: 5000 [MeV] n_{protons}: 100000 end length: 2.0 [m] mu+

RF Capture

- Looking at full beam capture performance
 - 50 buncher cells
 - 100 rotator cells
- Two loss mechanisms:
 - Longitudinal loss
 - Not captured in the RF
 - Transverse loss hitting the RF cavity iris
 - Assume iris factor ~ 0.5
 - Successfully captured

Movie

- Seemed like last time, longitudinal capture performance was pretty flat with buncher length
 - Prefer instead to go for largest apertures \rightarrow transverse acceptance
 - Push for shorter buncher/phase rotator systems

Survival probability

Look at initial sample of muons What is the probability that those particles are transmitted and captured

- First cavity had iris r=264 mm
- Yellow 100 % captured; Blue 0 % captured

Survival probability

Look at sample of muons that make it to the end What is the probability that those particles are also captured

Calculate mu+ yield per [5 GeV] proton on target Introduce time delay in muons;

What happens if a muon arrives early or late

No buncher

- Try with just the rotator
 - Just 100 rotator cavities (25 metres)
 - Max gradient is 12 MV/m and 80 % packing factor
 - First cavity had iris r=264 mm
 - Lower frequency → better transverse acceptance

No buncher

 Capture probability for those that survive the RF cavity aperture

No buncher

Calculate mu+ yield per [5 GeV] proton on target Similar yield for short proton bunch Worse yield expected for long proton bunch

- How does this look for the cooling?
- Compare with Ruihu's lattice
 - Baseline on github
 - 2024-09-27_release version
 - Stage 1
 - Rogers analysis script (not ecalc9)
 - No decays

Cooling - Baseline

σ(x) 81.5 mm 150 - σ(p_x) 30.6 MeV/c 600 σ(y) 80.7 mm σ(t) 0.6 hs σ(p_y) 31.6 MeV/c σ(E) 158.4 MeV 100 - ε_x 17.2 mm 500 ε// 27.9 mm ε_v 19.1 mm ε_⊥ 15.6 mm 1 energy [MeV] 000 50 p_x [MeV/c] 0 Total 200 -50 -100 100 -150 0 -400 -200 ò 200 400 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 x [mm] t [ns] 600 600 500 500 | energy [MeV] 000 400 energy [MeV] 300 Total 200 Total 200 100 100 0 -400 -200 0 200 400 -400 -200 Ó 200 400 x [mm] y [mm]

z: 0.0 m; N: 426/994

MInternational UON Collider Collaboration

- Blue transmitted
- Orange lost
- Longitudinal and transverse losses

Cooling – 176 MHz alternative 2000 mm 350 mm 300 mm

- Choose magnet parameters to enable decent RF packing fraction
 - Magnetic field given by:
 - Bz = 2.25 sin(kz)
 - (No real coil geometry simulated)
- Lithium Hydride wedge
- No decays (still)

- Okay performance
 - Transverse emittance $20.6 \rightarrow 11.4 \text{ mm}$
 - Longitudinal emittance 141 → 85.3 mm
 - Transmission 65 %
- But length (cost) is huge

Loss

 $\begin{array}{l} \mathsf{B}_{y} \text{ 0.2 [T]; } \mathcal{L}_{wdg} \text{ 10 [mm]; } \theta_{wdg} \text{ 10 [deg];} \\ E_0 \text{ 15 [MV/m]} \\ z: \text{ 0.0 m; N: 439/931} \end{array}$

- Blue transmitted
- Orange stopped (no decays)
- Longitudinal acceptance is limiting!
 - Even for rather modest absorber

25 MV/m

- Okay performance
 - Transverse emittance 20.3 → 12.3 mm
 - Longitudinal emittance $154 \rightarrow 107 \text{ mm}$
 - Transmission 68 %
- But length (cost) is huge
 - Note mismatch

Parameter Scans – 0.2 T, 15 MV/

 $E_0 = 15 \text{ MV/m}; B_y = 0.2 \text{ T}$

- Performance @ 200 m
- Okay performance

N Collider

boration

Parameter Scans – 0.2 T, 25 MV/m

- Performance @ 200 m
- Better performance
- Higher longitudinal emittance → improved transmission

Parameter Scans – 0.4 T, 15 MV/

- Performance @ 200 m
- Better performance
- Higher longitudinal emittance → improved transmission

 $E_0 = 15 \text{ MV/m}; B_v = 0.4 \text{ T}$

V Collider

boration

 θ_{wdg} [deg]

40

Parameter Scans – 0.4 T, 25 MV/

- Performance @ 200 m
- Better performance
- Higher longitudinal emittance → improved transmission

25 MV/m

- Rapid Transverse emittance reduction
- Longitudinal emittance ~ so-so
- Over full 800 m length
 - Transmission 62 % (@ 800 m)
 - Trans Emittance 21.0 → 6.3 mm
 - Long emittance 133 → 57 mm

Comments

- Optimisation "by hand"
 - No aggressive search routines or AS
 - Probably room for O(10%-20%) improvement
- Front End
 - Higher solenoid field would improve physical acceptance
 - Realistic RF would degrade performance a bit
 - Finite selection of frequencies
 - Space for solenoids
 - Chicane and proton absorber would degrade performance a bit
- Cooling
 - Design front end to capture higher emittance
 - It captures higher emittance
 - But now struggle to fit the beam in the cooling lattice!
- Note comparison with Ruihu's lattice may be a bad one
 - Not clear what is transmission of 325 MHz Front End

