

Update on Final Cooling Lattice

Ruihu Zhu (瑞虎 朱)

Institute of Modern Physics, Chinese Academy of Sciences University of Chinese Academy of Sciences

> Supervisor: Jiancheng Yang (建成 杨) Special thanks to Chris Rogers

> > 2024.11.28

zhuruihu@impcas.ac.cn

Reminder: Layout of final cooling cell

Reminder: Method of final cooling design

- Using differential evolution algorithm to minimize the target function: $\frac{\varepsilon_{T,final}}{\varepsilon_{T,initial}} + 0.75 \times \frac{N_{initial}}{N_{final}} + 0.25 \times \frac{\varepsilon_{L,final}}{\varepsilon_{L,initial}}$
- 14 parameters to adjust:
- ✓ Solenoid coils current and length
- ✓ Absorber length
- $\checkmark\,$ RF gradient, phase and number of RF cavities

Reminder: last design

	ε _T (mm)	ε _L (mm)	ε _{6D} (mm³)	Overall transmission
Start	0.1399	1.519	0.02972	
Stage 0	0.124	1.953	0.03022	99.6%
Stage 1	0.09702	4.207	0.0398	96.4%
Stage 2	0.0781	5.291	0.03274	86.9%
Stage 3	0.04755	10.73	0.02447	71.2%
Stage 4	0.03227	16.46	0.01743	62.5%
Stage 5	0.02239	24.77	0.01278	54.6%

- \checkmark Try to reduce Bz.
- ✓ Try to reduce RF gradient.

Stage	Stage length (m)	Peak on- axis Bz (T)	LH absorber length (m)	RF frequency (MHz)	Number of RF cells	Maximum RF gradient (MV/m)	RF phase (°)	RF cell length (m)
Stage 0	1.564	38.5	0.2028					
Stage 1	3.1978	-24.5	0.2486	107.2	4	12.01	22.95	0.25
Stage 2	3.8672	46.5	0.05543	82.1	2	7.84	33.44	0.25
Stage 3	4.5955	-41.6	0.04289	28.2	3	6.09	6.96	0.25
Stage 4	4.4233	47.4	0.03439	12.3	5	5.06	55.33	0.25
Stage 5	4.6552	-50	0.029	11.2	8	2.8	41.93	0.25

IMP

Parameters of final cooling lattice

	Stage	Peak	Absorber	\mathbf{RF}	Peak RF	RF	\mathbf{RF}
	length	on-axis	length	frequency	gradient	phase	length
	(cm)	B_z (T)	(cm)	(MHz)	(MV/m)	(°)	(cm)
Stage 0	203.5	40	18.3				
Stage 1	465.6	-29.3	25.5	131.8	6.64	14.53	1500
Stage 2	380.3	42	5.08	68.9	8.6	19.19	500
Stage 3	364	-37.8	2.31	29.5	5.24	30.29	750
Stage 4	541.1	38.9	2.3	10.7	3.21	38.66	1750
Stage 5	651.4	-40.8	2.55	7.25	2.14	46.96	3000

Table 1: Main hardware parameters of the final cooling channel

- ✓ Maximum on-axis Bz is around 40 T, which is smaller than the previous design 50 T.
- \checkmark The cooling channel consists of 5 stages with a length of ~26 m.
- ✓ RF frequency reduces from 131.8 MHz to 7.25 MHz. (probably need induction linacs for stage 4 and 5)
- ✓ RF gradient is approximately proportional to \sqrt{f} .

Final cooling performance

	ε_T	ε_L	Transmission	p_{z}	σ_{p_z}	σ_z
	(μm)	(mm)	118115111551011	$({\rm MeV/c})$	$({\rm MeV/c})$	(cm)
Start	140	1.52		95	3.4	3.2
Stage 0	124.8	1.92	99.5%	79.2	4.1	5.2
Stage 1	81.3	5.34	91.9%	46.8	2.6	10.1
Stage 2	55	6.98	79.2%	36.7	2.1	19.6
Stage 3	44	10.36	71.2%	30.8	1.28	33
Stage 4	31.3	18.65	64.8%	28.4	1.33	39.6
Stage 5	22.5	32.08	57.5%	29.3	1.75	57.8

Table 2: Cooling performance at the end of each stage

- ✓ Initial emittance is from the output of stage 10 of the updated 6D cooling <u>https://arxiv.org/abs/2409.02613</u>
- ✓ Reduce the transverse emittance to ~22.5 µm with longitudinal emittance of 32 mm. Overall transmission is 57.5%.
- ✓ Performance doesn't include the absorber windows.

Particle distribution in phase space

Red dots: distribution at the start of the cooling channel Black dots: distribution at the end of the cooling channel

On-axis Bz and transverse beta

at the

Transverse beta reduces from 2.05 cm \checkmark (stage 1) to 0.65 cm (stage 5).

Cooling including the absorber windows

> Window material: silicon nitride (Si₃N₄), window radius: 2 cm

Window thickness (µm)	ε _τ (μm)	ε _L (mm)	Transmission
0	22.5	32.08	57.5%
10	22.5	32	56.1%
20	22.8	32.1	55.6%
30	22.7	31.98	52.9%
40	22.8	31.4	51.6%
50	22.4	31.5	49.0%

 $\checkmark\,$ If we want transmission loss smaller than 2%, window thickness should be smaller than 20 $\mu m.$

Cooling including the absorber windows

> Window material: beryllium (Be), window radius: 2 cm

Window thickness (µm)	ε _τ (μm)	ε _L (mm)	Transmission
0	22.5	32.08	57.5%
10	22.3	32.0	57.3%
20	22.6	31.8	57.4%
30	22.2	31.9	56.2%
40	22.4	31.5	55.9%
50	22.1	31.5	54.6%

 $\checkmark\,$ If we want transmission loss smaller than 2%, window thickness should be smaller than 40 $\mu m.$

Pressure in liquid hydrogen absorber

IM

Cooling performance vs. vapor density

Cooling stage 5

Vapor density (kg/m^3)	ε _τ (μm)	ε _L (mm)	Transmission
70.8 (LH2)	22.5	32.08	57.5%
20*1.32=26.4	22.4	32.53	56.3%
15*1.32=19.8	22.2	33.4	57.4%
10*1.32=13.2	22.3	29.2	56.8%
5*1.32=6.6	24	30.5	52.4%

- ✓ Density of 1bar saturated vapor hydrogen: 1.32 kg/m³
- ✓ Each vapor density needs a new cooling lattice.

- ✓ For vapor density of 26.4, 19.8 and 13.2 kg/m³, cooling performance is almost the same with the liquid hydrogen.
- ✓ For vapor density of 6.6 kg/m³, cooling performance (especially transmission) is much worse.
- ✓ What is the reason for the beam loss of low-density vapor?

Reason of beam loss

 \checkmark For final cooling, beam loss concentrates in pz around 0 (muons are stopped in the absorber).

 \checkmark For vapor density of 6.6 kg/m^3, much more muons are stopped in the absorber.

Hardware parameters for different vapor density

Vapor density (kg/m^3)	Peak on-axis Bz (T)	Absorber length (cm)	RF frequency (MHz)	Number of RF cells	Maximum RF gradient (MV/m)	RF phase (°)	RF cell length (m)
70.8 (LH2)	40.8	2.55	7.25	12	2.14	46.96	0.25
20*1.32=26.4	43.4	5.4	6.05	11	2.31	35.58	0.25
15*1.32=19.8	38.8	9.1	5.5	14	1.87	46.88	0.25
10*1.32=13.2	40.2	6	8.08	12	1.26	31.32	0.25
5*1.32=6.6	44.2	14.1	8.6	13	1.58	25.53	0.25

✓ Although the case where vapor density is 6.6 kg/m³ has the highest Bz, its cooling performance is still the worst.

Conclusion

- Updated final cooling lattice reduces the transverse emittance to 22.5 μm with longitudinal emittance of 32 mm. The transmission is 57.5% (without windows) .
- The maximum of on-axis longitudinal magnetic field is around 40 T.
- For the selection of window thickness (liquid hydrogen absorber, <2% transmission loss):
- ✓ Silicon nitride (Si₃N₄): <20 μ m
- ✓Beryllium (Be): <40 µm
- It seems vapor hydrogen absorber can be used in final cooling, but its density should be higher than 10*1.32=13.2 kg/m^3 (for cooling stage 5).