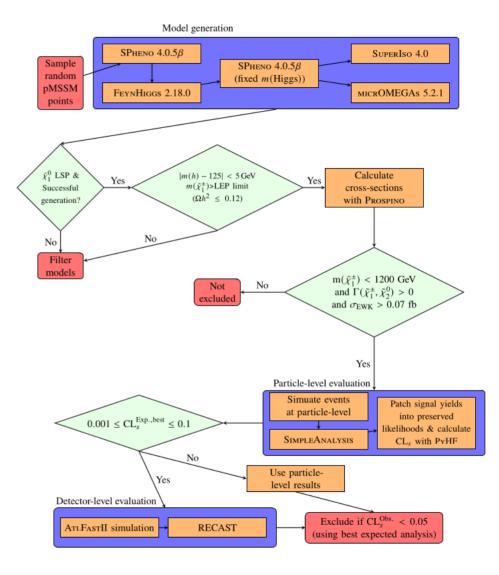
Progress on EWKino Study

Leo Constantin Theo Reymermier

ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM arXiv:2402.01392v2

The ATLAS Collaboration


- pMSSM : 19 free parameters considered
- Study of EWKino points as well as Bino DM : 2 sets
- 8 Analysis considered

pMSSM Parameter	Meaning
tan β	Ratio of the Higgs vacuum expectation values for the two doublets
M_A	Pseudoscalar (CP-odd) Higgs boson mass parameter
μ	Higgsino mass parameter
M_1, M_2, M_3	Bino, wino and gluino mass parameters
A_t, A_b, A_τ	Third generation trilinear couplings
$M_{\tilde{q}}, M_{\tilde{u}_R}, M_{\tilde{d}_R}, M_{\tilde{l}}, M_{\tilde{l}}$	$I_{\tilde{e}_R}$ First/second generation sfermion mass parameters
$M_{\tilde{Q}}, M_{\tilde{t}_R}, M_{\tilde{b}_R}, M_{\tilde{L}}, M_{\tilde{L}}$	

Analysis	Relevant simplified models targeted
FullHad [24]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-}$ via WW
1Lbb [15]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via <i>Wh</i>
2L0J [19]	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ via WW, slepton pairs
2L2J [25]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ
3L [23]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$
4L [22]	Higgsino GGM
Compressed [20]	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$
Disappearing-track [27]	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ and $\tilde{\chi}_1^\pm \tilde{\chi}_1^0$

Analysis ID	Analysis	SmodelS ?
SUSY-2018-41	FullHad	Υ
SUSY-2019-08	1Lbb	Y
SUSY-2018-32	2L0J	Υ
SUSY-2018-05	2L2J	Υ
SUSY-2019-09	3L	Y
SUSY-2018-02	4L	SUSY-2017-03
SUSY-2018-16	Compressed	Y
SUSY-2018-19	Disappearing Track	SUSY-2016-06

Scan name	EWKino	BinoDM
$ M_1 $ range	0 – 2 TeV	0 - 500 GeV
LSP type	Neutralino	Bino-like neutralino
Number of models generated:		
Sampled	20 000	437 500
Successful generation	16 667	370 017
Correct LSP type	15 321	286 267
Satisfy DM relic density constraint $\Omega h^2 \leq 0.12$	N/A	11 122
Satisfy LEP chargino mass constraint	13 969	10174
120 GeV < m(h) < 130 GeV	12 280	8 897
Satisfy non-DM external constraints	7 956	5752
Satisfy all external constraints	2 460	1 769

GOALS

- Use the same set of points , compute same precision cross sections : How does SmodelS perform on this set ? Compare Atlas and SmodelS results

- After this first run , combine Analysis and find out

Scan name	EWKino	BinoDM	
$ M_1 $ range	0 – 2 TeV	0 – 500 GeV	
LSP type	Neutralino	Bino-like neutraling	
Number of models generated:			
Sampled	20 000	+37 500	
Successful generation	16 667	370 017	
Correct LSP type	15 321	286 267	
Satisfy DM relic density constraint $\Omega h^2 \leq 0.12$	N/A	11 122	
Satisfy LEP chargino mass constraint	13 969	10174	
120 GeV < m(h) < 130 GeV	12 280	8 897	
Satisfy non-DM external constraints	7 956	5752	
Satisfy all external constraints	2 460	1 769	

We start here !

- There are actually 2 more constraints (from higgs physics) applied :

h to invisible (h_to_inv) Higgs CP odd constraint (mA)

- We take the subset of the 12 280 points which are not excluded by the constraints : 9736 points left

- Compute NLO cross sections with resummino : problem with memory !
- Also an issue with pythia LO precision : short term fix work in progress
- So far 13 TeV LO with pythia (200K events) : updated results today ?
- Resummino apparently fixed, to be continued ...