

André Lessa

December 17th, 2024

In collaboration with C. Ramos, Y. Villamizar, L. Ramos and J. Gargalionis

• New resonance results in the Database (Y. Villamizar)

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Upper Limits

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Upper Limits

• Since then ATLAS has provided limits on cross-sections x BR(?)

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Efficinecy Maps
 - Analysis is implemented in MadAnalysis

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

• Acceptance has to be computed for each mass point/width

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

- Acceptance has to be computed for each mass point/width
- Limits for decay to muons are also available (~3x weaker)

- Adding constraints to Dark Matter pair production (C. Ramos)
 - So far we have only:

- Mediator is on-shell
- Spin "fixes" the production mode and initial states
- ISR is "fixed" by these restrictions

- Adding constraints to Dark Matter pair production (C. Ramos)
 - So far we have only:

- Mediator is on-shell
- Spin "fixes" the production mode and initial states
- ISR is "fixed" by these restrictions
- What about other production channels (t-channel)?

• Adding constraints to Dark Matter pair production (C. Ramos)

• We need to "resolve" the primary vertex → Lucas' talk tomorrow

• Building minimal UV models from protomodels (with J. Gargalionis)

Some simplifying assumptions:

• Building minimal UV models from protomodels (with J. Gargalionis)

<u>Some simplifying assumptions:</u>

1) Only BSM scalars and fermions (no new gauge bosons)

• Building minimal UV models from protomodels (with J. Gargalionis)

Data
$$\rightarrow$$
 Protomodel Algorithm \rightarrow BSM Input:
 $masses, BRs, \sigma \rightarrow$ UV Model Builder \mathcal{L}'_{BSM}

<u>Some simplifying assumptions:</u>

1) Only BSM scalars and fermions (no new gauge bosons)

2) Z₂ symmetry

n

• Building minimal UV models from protomodels (with J. Gargalionis)

Data
$$\rightarrow$$
 Protomodel Algorithm \rightarrow BSM Input: masses, BRs, $\sigma \rightarrow$ UV Model Builder \mathcal{L}'_{BSM}

Some simplifying assumptions:

- 1) Only BSM scalars and fermions (no new gauge bosons)
- 2) Z₂ symmetry
- 3) Gauge eigenstates ~ mass eigenstates

n

• Building minimal UV models from protomodels (with J. Gargalionis)

Data
$$\rightarrow$$
 Protomodel Algorithm \rightarrow BSM Input: masses, BRs, $\sigma \rightarrow$ UV Model Builder \mathcal{L}_{BSM}

Some simplifying assumptions:

1) Only BSM scalars and fermions (no new gauge bosons)

2) Z₂ symmetry

3) Gauge eigenstates ~ mass eigenstates

$$\mathcal{L}_{mass} = \dots + M_a^2 |\phi_a|^2 + M_b^2 |\phi_b|^2 + \lambda \langle h \rangle \phi_a \phi_b,$$

 $\lambda \neq 0 \rightarrow \text{ mixing after EWSB} \Rightarrow \lambda v \ll M_a$

n

- Building minimal UV models from protomodels (with J. Gargalionis)
 - From fields to SU(2)_L multiplets:

$$\Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \dots \end{pmatrix} \Rightarrow m_{\phi_i} - m_{\phi_j} < \Delta M, \forall i, j$$

- Building minimal UV models from protomodels (with J. Gargalionis)
 - From fields to SU(2)_L multiplets:

$$\Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \dots \end{pmatrix} \Rightarrow m_{\phi_i} - m_{\phi_j} < \Delta M, \forall i, j$$

$$I_{3} = 0$$

$$I_{3} = 1$$

$$I_{3} = -1$$

$$I_{3} = 0$$

$$I_{3} = -2$$

$$I_{3} = 0$$

• Building minimal UV models from protomodels (with J. Gargalionis)

• From multiplets to the lagrangian:

 $\mathcal{L} = \lambda_{ijk} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} + \lambda_{ijkl} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} \Phi_l^{\mathrm{SM}}$

- Building minimal UV models from protomodels (with J. Gargalionis)
 - From multiplets to the lagrangian:

$$\mathcal{L} = \lambda_{ijk} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} + \lambda_{ijkl} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} \Phi_l^{\mathrm{SM}}$$

Construct all singlet operators
 Determine number of independent couplings

- Building minimal UV models from protomodels (with J. Gargalionis)
 - From multiplets to the lagrangian:

$$\mathcal{L} = \lambda_{ijk} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} + \lambda_{ijkl} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} \Phi_l^{\mathrm{SM}}$$

1) Construct all singlet operators
2) Determine number of independent couplings
3)....

- Building minimal UV models from protomodels (with J. Gargalionis)
 - From multiplets to the lagrangian:

$$\mathcal{L} = \lambda_{ijk} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} + \lambda_{ijkl} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} \Phi_l^{\mathrm{SM}}$$

1) Construct all singlet operators
2) Determine number of independent couplings
3)....

• From the BSM lagrangian to the input protomodel model:

- Building minimal UV models from protomodels (with J. Gargalionis)
 - From multiplets to the lagrangian:

$$\mathcal{L} = \lambda_{ijk} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} + \lambda_{ijkl} \Phi_i \Phi_j \Phi_k^{\mathrm{SM}} \Phi_l^{\mathrm{SM}}$$

1) Construct all singlet operators
2) Determine number of independent couplings
3)....

• From the BSM lagrangian to the input protomodel model:

1) Fit input parameters to BRs
2)Fit input parameters to cross-sections
3)Check consistencies
4)Add higher-dimensional operators for production cross-sections?

• New resonance results in the Database (Y. Villamizar)

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Upper Limits

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Upper Limits

• Since then ATLAS has provided limits on cross-sections x BR(?)

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Efficinecy Maps

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Efficinecy Maps
 - Analysis is implemented in MadAnalysis

MadAnalysis5 - official

600

 $m_{\tilde{t}_1}$ [GeV]

650

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-06 (monojet): Efficinecy Maps
 - Analysis is implemented in MadAnalysis

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

• Acceptance has to be computed for each mass point/width

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

- Acceptance has to be computed for each mass point/width
- Limits for decay to muons are also available (~3x weaker)

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

• Large number of grid points (13K). How to trim it?

- New resonance results in the Database (Y. Villamizar)
 - ATLAS-EXOT-2018-08 (dilepton resonance): Upper Limit

- Large number of grid points (13K). How to trim it?
- Still need to add muon SMS!