
SModelS Fest 24 Workshop - Dec 18th, 2024

(IFUSP - University of São Paulo)

Reconstructing PV information
in SModelS: a minimal proof of

concept
by Lucas Magno D. Ramos



2

Some motivation...

Under the current paradigm,
the PV in SModelS is a

placeholder:



3

Some motivation...

Under the current paradigm,
the PV in SModelS is a

placeholder:

Could be an s-channel
or a t-channel



4

Some motivation...
This could give very useful information concerning
dependence of final state distributions on model
parameters such as the masses of mediators for

dominant channels!

ie., some models might generate this:
But not this!



What do we already have?

5

All info parsed from the SLHA input file:

SM and BSM particles in the model;
Decays and Branching ratios;
SM quantum numbers;
(Some) cross sections (usually p p > BSM or BSM BSM);
Other quantum numbers/properties via blocks.



What can we do with it?

6

Quite a lot, actually!
The decay lists can be used to reconstruct basic
vertices from the model
Information on the charges can be used to
construct other vertices that won’t show up in
decays (eg. gqq~)
The cross sections determine the relevant final
states to be built in 2-to-N processes
Reconstructed vertices can be combined into full
diagrams



Basic vertex reconstruction

7

Basic association between Feynman diagram
and SModelS graph representations:

This is exactly the decay P1 > (P2,P3)
due to the vertex P1 P2 P3



Basic vertex reconstruction

8

Basic association between Feynman diagram
and SModelS graph representations:

While the decay has a well-defined direction (parent->daughters),
the vertex can appear with any orientation!



Basic vertex reconstruction

9

Decay-vertex representation: build all vertices
with external states from a single decay

Charge
conjugate

Charge
conjugate



Scattering diagrams generation

10

List all decays

Produce all
decay-vertices

Generate all
vertices



Scattering diagrams generation

11

List all decays

Produce all
decay-vertices

Generate all
vertices

Combine vertices
to form diagrams



Scattering diagrams generation

12

List all decays

Produce all
decay-vertices

Generate all
vertices

Combine vertices
to form diagrams

Match triangles!



Scattering diagrams generation

13

2-to-1: Match initial state, and we’re done!



Scattering diagrams generation

14

2-to-1: Match initial state, and we’re done!



Scattering diagrams generation

15

2-to-2: Match initial state, and then find matching mediators



Scattering diagrams generation

16

2-to-2: Match initial state, and then find matching mediators

s-channel



Scattering diagrams generation

17

2-to-2: Match initial state, and then find matching mediators



Scattering diagrams generation

18

2-to-2: Match initial state, and then find matching mediators

t-channel



To do List

19

Generalize to N-body decay lists
Add SM vertices explicitly

Add BSM vertices implied by charges
Include 2-to-3 and 2-to-4 production



Thank you for the attention!

20



Backups

21



Some test models

22

TN1N1_tchannel.slha
Contains ~d_L (squark), n1 (neutralino);
Decay: ~d_L -> n1, d
Cross section: p p > n1 n1

Contains x_c, x_d (s/df DM), y1 (Z’)
Decays: y1 -> (u,u~),(d,d~),(x_d,x_d~)
Cross section: p p > y1

Contains same as previous
Decays: Adds xc->(xd,xd),(g,g) 
Cross sections: p p > y1, p p > xc

TRV1_1800_300_300
.slha

TRVS1_1800_300_300
.slha



Some code snippets

23

Step 1: Load Model



Some code snippets

24

Steps 2&3: Generate decay vertices + all vertices



Some code snippets

25

Steps 4: Generate “initial” states



Some code snippets

26

Step 5: Match “initial” states and vertices to form
diagrams

(eg. s-channel builder)

Outputs many diagrams in
a complicated format, but

we can print them in a
familiar form

with the print_diagram
function



Some code snippets

27

Step 6: Match final states with input cross sections

Outputs


