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Requirements for welding interference

Previous target: 8 £ 8 MPa ACoil stress from welding
New target: 0 + 8 MPa ACoil stress from welding

Welding requirements were modified, to assure no coupling of the SS vessel to the
magnet (Same requirements for AUP and CERN)
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Fixed point —requirements (RT)

The fixed point (and the magnet components in contact) must withstand the loads
appearing during handling/transport and during operation.

During transport:

MQXFB: 0.5 g. The estimated weight of the magnet is 11 tons, so the fixed
point shall be designed for a minimum load of 55 kN.

MQXFA:

AUP Requirement: 2 g, since it will be shipped to CERN by boat - the
fixed point shall be designed for a minimum load of 135 kN.

Proposed requirement for re-worked cold masses at CERN: 0.5 g,
same handling requirements as MQXFB magnets at CERN - the fixed
point shall be designed for a minimum load of 32 kN.




Fixed point —requirements (operation)

The fixed point (and the magnet components in contact) must withstand the loads
appearing during handling/transport and during operation.

During operation of the cryogenic system (EDMS 2675955)

the MQXFB magnet inside the cold mass shall not move when subject to 4 bar
differential pressure between the ends of each MQXFB magnet (induced by
cryogenic operation or by quench of other magnets) and shall withstand this load
without physical damage or performance degradation (4 bars to 96 kN).

the MQXFA magnet inside the cold mass shall not move when subject to 2.5 bar
differential pressure between the ends of each MQXFA magnet (induced by
cryogenic operation or by quench of other magnets) and shall withstand this load
without physical damage or performance degradation (2.5 bars to 62 kN).



https://edms.cern.ch/document/2675955

“New” data from the definition of
requirements in 2022

MQXFBP2 had identical magnet performance when assembled in
a temporary cold mass (tight contact) and in Q2 cold mass (new

welding procedure)

Pressure wave attempted to be measured in two cold masses:

MQXFBP3 was equipped with special sensors, that were not read
during test in spite of a reminder just before the cool down... hopefully
they will be read in the string (added a comment to MAB assessment,

and Marta was informed explicitly)

AUP CA02 (MQXFAO05&06), based on a test at 6 kA they extrapolate
0.32 bars, more tests are planned in the future link from Guram, slide



https://indico.cern.ch/event/1421594/contributions/5979262/attachments/2942353/5169881/LQXFA02%20Test%20Results%20and%20Plans%20for%20testing%20LQXFA03-CM14.pdf
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Determination of the shell developed length
required after MQXFBP2 cold test
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Geometrical tolerances: experience

1935 Tested in temporary cold mass
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https://indico.cern.ch/event/1102754/

Shell-Magnet Pairing

The shell paired developed length (including root gap and welding shrinkage) is
within the expected geometrical tolerances (std along the length 0.50 mm, max —
min along the length = 2 mm).

The goal is to be ‘as close’ as possible to the magnet (minimize ‘micky mouse’
effect) but without touching.
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Shell-Magnet Pairing

| W Shell: Average+-sigma  m Magnet: ave +- sigma |

Even in the case with ‘less margin’ we had always at least :
0.5 mm margin

Note that in case of welding repairs following PAUT inspection, one can
expect a local increase of the welding interference

Only one case with a marginal interference in one
longitudinal location (see EDMS 3180091)
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https://edms.cern.ch/document/3180091
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AUP ‘MQXFA’ procedure

302.4.02 Cold Mass Design Change

Cold Mass design change ' i

= S8 shell has minimal (as low as zero) interference
with the magnet
= The new requirement made it necessary changing
the way how the magnet is supported by the SS Fixed Wide Siding  Narrow Siding
shell to withstand shipping loads e s
= S8 friction was the primary support : ' - Wide Sideg
= Tack blocks are the new support :
= New design change has been reviewed and
accepted internally within AUP

2.2 g load equivalentto 152 kN force to withstand

»1= 4 Bolts are good up to 32 kN

= Two tack block welds are good to 78 kN (tack blocks
are touching the aluminum shell)

A priory we are OK with the
4 bolts at warms (0.5 g)

] = Planned to be used:
At cold we are probably tight, - Two tack block with four bolts 32 kN
load (2.5 bars) is 62 kN (62/32 = 6 welded tack blocks 234 kN
=1.9; 375/290* = 1.3) = Total 266 kN

= Sliding tack blocks have been extensively tested at

cryogenic conditions. Easy sliding have been observed s"d_' ng tack_ blacks .'f
without any sign of galling. positioned in the middle of the

*Rpo.2.ss (RT) = 290 MPa = During cool down SS shell shrinks more than the iron slot will not provide any
*Rpoz,ss (1.9 K) = 375 MPa supported segmented Al shells. Tack blocks will move additional support.
away from the Al shells and warm up the reverse Tack blocks are offset to
process will happen ensuring the tack blocks to move withstand shipping forces.

7&5’730k to their original location.
i Hﬁ-llj}I){C 5th AUP-CERN Technical Steering Meeting — January 18th, 2021

CA Series Production Readiness Review (6-September 8, 2023) - INDICO-
FNAL (Indico)
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https://indico.fnal.gov/event/60117/

Requires modification

AUP ‘M QXFA’ p rocedure and re-qualification of

our welding procedure

Cold Mass Production Achievements and
Challenges

Welding Shim Study

Starting with CM02 we are using the s U
welding shims 2 -
= 2 mm target value for the shims were used > 1 ¢
(proposed by the analysis presented at MT 28) to § 07
calculate the SS vessel circumference based on ¢ <
the measured magnet circumference values < o
= |t was important to machine and measure the <
shell correctly = = ~3 o
Magnet-Vessel Circ. Interf. [mm]
Welding Shim, t = 2 mm
1 14 %
3 e
ML T A |
=5 | e—————
é:x CD Target '
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14th HL-LHC Collaboration Meeting, Genoa (ltaly), 7-10 October 2024 l
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MQXFB approach

= Shell pairing with a gap in the top of the shell, such that after welding we are not
in full contact with the magnet OD

= Fixed point from the SS shell to the yoke to handle the expected load warm/cold

.
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https://indico.cern.ch/event/1142636/

MQXFB — Fixed point

Machine new central yoke piece in ARMCO (2 per magnet), to optimize the iron
geometry for the hosting of the pin:

Upper cooling channels removed (approved by CRG, we are removing 4 out
of 192 cooling channels)

Removal of the tack welding block grooves

The thickness of the lamination was increased from 45 mm to 91.4 mm

such that even if the longitudinal stiffness provided by the adjacent thin
laminations is neglected, the stand-alone yoke can hold the forces

Exception for existing prototype magnets (MQXFBP2&BP3), where the proposal
IS to re-machine the already assembled yoke

3D geometry for the old piece 3D geometry for the new piece

LHCMQXFBS0037

‘ Technical Review of MQXFB Cold Mass: https://indico.cern.ch/event/1142636/
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Jose Ferradas Troitino

Overall system behavior and material limits

Stress concentration on the upper and lower edge due to the bending of the pin.
Inhomogeneous contact with a stress concentration region going above the yield limit

Pin, welding strip and vessel
Material: Stainless-steel 316LN
Rpo2 (RT): 290 MPa
Rpo2 (1.9 K): 375 MPa

Iron yoke
Material: ARMCO (brittle at 1.9 K!)
Rp0.2 (RT): 230 MPa
R, (1.9 K): 970 MPa
K (1.9 K): 25-29 MPa-m©5

See [1] for a full characterization of the
material

Welds (see talk from Herve Prin)

[1] I. A. Santillana et al., "Mechanical Characterization of Low-Carbon Steels for High-Field Accelerator Magnets:
Application to Nb;Sn Low-B Quadrupole MQXF," in IEEE Transactions on Applied Superconductivity, vol. 32, no. 6, pp. 1-7,
Sept. 2022, Art no. 4100507, DOI: 10.1109/TASC.2022.3149853. D

e

( Tec]nical Review of MQXFB Cold Mass: https://indico.cern.ch/event/1142636/
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Jose Ferradas Troitino

Yoke, cryogenic temperature BP2&BP3 cases

For the existing magnets, the yoke will be re-machined after magnet assembly

Central lamination will be 45 mm instead of 91.4 mm (stand alone yoke cannot hold the full
load, longitudinal stiffness provided by the yoke laminations needed)

Flattening of surfaces needed to avoid stress concentration singularities. Nevertheless, S1
= 700 MPa ( 3 times the expected S1 for the series magnets); SEQV = 1200 MPa (20 %

higher than the limit in traction; assessment of the limit of the iron in compression on-going)
As a back up, the depth of the pin can be increased to limit the bending of the pin

Series magnets configuration MQXFBP2 & BP3 configuration

200 MPa S1
(4 bars)

5 bars load

First principal stress (S1) Due o 1h f bue to the | bending of
_ ue to the presence o ue to the larger bending o
Peak ~ 250 MPa (4 bars) the cooling hole channel,  the pin, 700 MPa S1 (4 bars)
e 360 MPa S1 (4 bars)

*Thermal contraction the pin assumed to be as iron instead of stainless steel, to assure contact of the pin to the yoke after cool down
* ANSYS color maps for 120 kN (5 bars), with a linear elastic model; results for assessment of the maximum stress scaled to 4 bars (96 kN)




Jose Ferradas Troitino, Giorgio Vallone

Yoke, cryogenic temperature BP2&BP3 cases

Assuming that the stress along the crack length is equal to
the peak stress, 700 MPa traction stress is not acceptable
(see table in slide 13). FAD accounting for the actual stress
200 MPa S1 profile along the most likely crack propagation path shows
(4 bars) that the design has sufficient margin

The VM stress, mainly compressive, is very locally above R,
(traction tests)

FAD - MQXFBP2/MQXFBP3 simplified model

1.2

R6 Failure Curve
Failure Path

Due to the presence of
the cooling hole channel,
360 MPa S1 (4 bars)

Due to the larger bending of
the pin 700 MPa S1 (4 bars)

o
o

o
o

o
N

Stress Intensity Ratio Kj/Kj.

o
[N

Due to the larger bending of the pin 0 0.2 0.4 0.6 0.8 1
1200 MPa SEQV (4 bars) Stress Ratio o/0y
[1] 1. A. Santillana, G. Vallone et al., "Mechanical Characterization of Low-Carbon Steels for High-Field Accelerator Magnets: Application to

Nb,;Sn Low-B Quadrupole MQXF," in IEEE Transactions on Applied Superconductivity, vol. 32, no. 6, pp. 1-7, Sept. 2022, Art no. 4100507, DOI:
10.1109/TASC.2022.3149853. D




Implementing “MQXFBP” approach in MQXFA
magnets

ISOMETRIC VIEW
SCALE 0.500
oo o L S b .MQXFA-2 YOKE PLATE TYPE-1 LHCMQXFAS0044
| A B b D S [ [ O O I | R I A N S | S Y O S IS L 7MQXFA'2 YOKE PLATE TYPE'Z LHCMQXFASOO45
- MQXFA-2 YOKE PLATE TYPE-3 LHCMQXFAS0046
V- "MQXFA-2 YOKE PLATE TYPE-4 LHCMQXFAS0047

29
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https://edms.cern.ch/ui/file/2264
829/AA/Ihcmgxfas0048-vAA.pdf



https://edms.cern.ch/ui/file/2264829/AA/lhcmqxfas0048-vAA.pdf

Penelope Matilde Quassolo

Comparing MOXFB/MQXFBP/MQXFA cases at cold

Width of the central lamination, mm 91.4 45 63
Max. load warm, kN 55 (0.5q) 55 (0.5q) 32 (0.59)
Max. load at cold, KN 96 (4 bar) 96 (4 bar) 62 (2.5 bar)
Peak S1 stress, MPa 366 866 379
MQXFB Series magnets MQXFBP2 & BP3 configuration MQXFA configuration
configuration
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MQXFB results at cold
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MQXFBP results at cold

Eqv stress
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MQXFA results at cold
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One cold mass, two fixed points...

A drawback with respect to MQXFB is that we will have two fixed Norminally, asurming magnetic lengths are
points, the stainless steel will try to move the two magnets towards similarly centered in mechanical lengths
the middle, everything should move with the SS dI/L so should be ok,
but we can have some ‘additional’ force in the pin... (4.792 m * 3
mm/m = 14.4 mm; measured shrinkage 17 mm (i.e., dl/l = 3.55 mm/m)

. Nevertheless, AUP is having two fixed points, one per magnet, so it | o |
.. 4.563 4563
should not be critical : :

] e g

9.466
- »

Page 11 of 45

> - » -
5. Installation des lattes envers des soudures longitudinales
(Op X.5 du MIP [1])

Les blocs sont installés selon le plan LHCMQXFBS0002 [20].

Au niveau des shells aluminium e =,
sans gap, installer les blocs

e g | Magnetic center separation, m

Inom

CMOL (AO4/A03)  4.7895 4.7721
CMO2 (AOS/A06)  4.7930 4.776
B == | CMO3 (A11/A10)  4.7933

mouvement maximal vers le =
centre de I'aimant

/&S Renseigner I'opération . — » C M 04 (A14b/AO8 b) 4 . 7 928

X.5.1.1 de la fiche de suivi

= HOLD POINT X.5.1.2 CM05 (A15/A07b) 47895

CONTACTER I'EQUIPE QUALITE LMF QA POUR CONTROLER
H LES OPERATIONS SUIVANT LA PROCEDURE LHC-LMQXFB-FP-
HL 0016 [9]

5.1.1 | Serrer au couple la vis BTR
M8+*30, INOX & un couple de
0.5 N.m environ. —

— g
A Centre de
S'assurer que le bloc I'aimant

coulisse.
Au niveau des shells aluminium

avec gap, installer les blocs
d’alignement centraux (plan

¥ ’f." —
LHCMQXFBS0030 [10]). .




Can the 3D iron saturation effect explain the
difference in magnetic centers?

12000

Not really...

= There is an iron saturation
effect in the magnetic length
(magnetic length at Inom + 12

mm), but it is symmetric (only H —m65Tev
0.2 mm shift on the axial 2 ——204
magnetic center)
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Conclusions

Longitudinal welding using AUP approach (shims) requires significant
development on the welding process (different welding gap/shrinkage...)

However, one might argue that the bolts in the central yoke are enough to keep the loads at
warm, and that we will also have some help form friction: we could take AUP blocks but
CERN welding (without shims)

No apparent showstopper on applying ‘MQXFB’ procedure, situation will
be close to MQXFB series configuration. However, there will be two fixed
points in one cold mass, and the pin will not be in the mechanical center of
the magnet.

As an alternative, we could have only one fixed point in between the two
magnets, joining mechanically the yokes of both magnets (see slides from
Herve)




Additional slides
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MQXFBP results at warm

Eqv stress
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MQXFA results at warm

Eqv stress
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Implementing “MQXFBP” approach in MQXFA
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Other yokes...
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Other yokes...
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Other yokes...
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MQXFA approach

[ Applied forces: Welding Shim Study
Transportation: 135 kN T 00 =2 L bad. = | t=0mm
Quench/Cryogenic operation: s < |-o t=05mm
61.8 kN (2.5 bar pressure wave) T -25 | t=1mm
Allowable pole stress increase: 2 o[ t=15mm
-3.2 MPa on the average 3 =30 i |- t=2mm
-9.6 MPa at any location 2 s £
i N
- g o
Space ™ Cold Mass S Cotd Mass £ =100 N
& >
\  Shell  Shell £ -125 %
u
Weld i -15.0 1
i £ 175 spki
2.5 o ol 0.5 mm
mm -6 -4 -2 0
Magnet Magnet Magnet-Vessel Circ. Interf. [mm]

*  Without shims the 0.5 mm change in the interference generates ~7 MPa coil
stress (~40 MPa SS shell stress)

* With 2 mm shim the same stress change requires ~ 4 mm interference change
= This drastically changes the requirement on tolerances
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https://indico.cern.ch/event/1293138/contributions/5474499/attachments/2723922/4733264/CM%20and%20CryoAssembly%20Status%20-%20Hi-Lumi%20oct,%202023.pdf
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