

PARIS-SA

Universiteit

Leiden

UNIVERSITY of

FAIR Universe 2024: **Higgs ML Uncertainty Challenge**

Yulei Zhang

University of Washington, Seattle

Team: Wahid Bhimji, Paolo Calafiura, Ragansu Chakkappai, Yuan-Tang Chou, Sascha Diefenbacher, Jordan Dudley, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham Khoda, Rémy Lyscar, Alexandre Michon, Benjamin Nachman, Benjamin Thorne, Peter Nugent, Po-Wen Chang, Mathis Reymond, Benjamin Sluijter, David Rousseau, Ihsan Ullah, Daniel Whiteson, Yulei Zhang

Nov 21st, 2024

ML Hackathon

FAIR Universe

https://fair-universe.lbl.gov/

Collaborators: U. Berkeley, U. Washington, Chalearn, IJCLab-Orsay, UC Irvine, UCSD, Universiteit Leiden Project Aims:

- An Open, Large-Compute-Scale AI Ecosystem for sharing datasets, training large models, and hosting challenges and benchmarks
- Progressive challenge series on measuring and minimizing the effects of systematic uncertainties in HEP (particle physics and cosmology)

Broad team Involvement in major AI and HEP challenges like <u>HiggsML</u>, <u>TrackML</u>, <u>LHC Olympics</u>, <u>Fast</u> <u>Calorimeter Simulation Challenge</u>, and wider (e.g <u>NeurIPS competition</u>, <u>MLPerf HPC</u>)

> Fair Universe HiggsML Uncertainty Challenge : NeurIPS competition 🥯

Measuring and minimizing the effects of systematic uncertainties in HEP

Bias and Uncertainty in Fundamental Sciences

- Machine learning models in HEP are typically trained using simulations, which include certain assumptions and systematic uncertainties (called "epistemic" uncertainties, labeled as "Z").
- However, when these models are applied to real-world data, the conditions (detector states) may differ, leading to an unknown Z value.
- Common Approach: First, train the model on standard simulation data (Z = 1). Then, estimate
 uncertainties by comparing results from simulations with different Z values. Shift Z slightly and examine
 how it affects the results or use a full profile likelihood to evaluate the impact.

FAIR Universe: HiggsML Uncertainty Challenge

- Focus on novel approaches to address model uncertainty, including decorrelation, adversarial training, and uncertainty-aware techniques.
 - Example techniques: "Pivot" by Louppe et al. (arXiv:1611.01046), Ghosh et al. (PhysRevD.104.056026), Inferno (arXiv:1806.04743), and others.
 - **Challenge:** Scaling methods to handle multiple values of systematic uncertainties (Z), which increases training complexity and cost.
- Key gaps: Current benchmarks rely on single systematic uncertainties and limited datasets (based on <u>HiggsML 2014</u>), which restrict scaling and broader adoption.
- New dataset for the challenge: Extension of the original HiggsML dataset.
 - Improvements: Larger dataset (from 800k to ~300M events), faster simulation, parameterized systematics (nuisance parameters).
 - Task: Provide a confidence interval on signal strength in a pseudo-experiment with a given signal.

Dataset Overview

- Simulated Dataset (280 million events): Representative of high-energy proton collision data from the ATLAS experiment at the Large Hadron Collider (LHC).
- Pythia 8.2 and Delphes 3.5.0 for simulation, and data organized in a tabular format with 28 features per event.
- Includes a **biasing script** introducing systematic uncertainties (Nuisance Parameters) for realistic challenges.

Process	Number Generated	LHC Events	Label
Higgs	52101127	1015	signal
Z Boson	221724480	1002395	background
Di-Boson	2105415	3783	background
$t\bar{t}$	12073068	44190	background

Public

- Train/Val: $100 \times LHC @ 10 \text{ fb}^{-1}$
- **Pseudo**: **60** × LHC @ 10 fb^{-1}

Private

• **Pseudo**: **60** × LHC @ 10 fb⁻¹

Systematics Parameterization: Nuisance Parameters

- New systematic parameterization method [white paper, github]
- 6 systematic uncertainties!
- Object-level uncertainties:
 - Tau Energy Scale (and correlated MET) [0.9, 1.1, $\sigma = 0.01$]
 - Jet Energy Scale (and correlated MET impact) [0.9, 1.1, $\sigma = 0.01$]
 - Additional randomized Soft MET $[0, 5, \sigma = 1.0]$
- Event category normalization:
 - Overall Background norm [0.99, 1.01, $\sigma = 0.001$]
 - *VV* background norm $[0, 2, \sigma = 0.25]$
 - $t\bar{t}$ background norm [0.8, 1.2, $\sigma = 0.02$]

We operate within the framework of 'known unknowns,' while addressing 'unknown unknowns' remains a more complex challenge beyond this scope.

Example of one NP: Tau Energy Scale Impact

- Histogram between nominal (TES = 1) and shifted (TES = 0.9)
- TES = 0.9 is an exaggeration, in practice it is sampled with g(1,0.01) and with boundary [0.9, 1.1]

Evaluation Metrics

- Pseudo-experiments
 - dataset representative of what would be measured from $10 \text{fb}^{-1} \sim 800$ billion LHC *pp* collisions for a given value of μ and of the Nuisance Parameters

Evaluation Metrics

- Interval width (ω) averaged over N test sets u
- **Coverage (***c***)**: fraction of time μ is contained *c*
- Combined using a **coverage function** *f*(*c*):

$$\begin{aligned} c &< 0.6827 - 2\sigma_{68} : f(c) = 1 + \left| \frac{c - (0.6827 - 2\sigma_{68})}{\sigma_{68}} \right|^4 \\ c &> 0.6827 + 2\sigma_{68} : f(c) = 1 + \left| \frac{c - (0.6827 + 2\sigma_{68})}{\sigma_{68}} \right|^3 \\ \sigma_{68} &= \sqrt{\frac{(1 - 0.6827)0.6827}{N_{\text{test}}}} \end{aligned}$$

- N dependance for equivalent ideal coverage
- Penalizes undercoverage more
- Final score (s) designed to avoid large values or gaming: $-\ln((\omega + \epsilon)f(c))$ ($\epsilon = 10^{-2}$)
- More details in <u>White paper</u>

$$w = \frac{1}{N} \sum_{i=0}^{N} |\mu_{84,i} - \mu_{16,i}|$$
$$e = \frac{1}{N_{test}} \sum_{i=1}^{N} 1 \text{ if } \mu_{\text{true},i} \in [\mu_{16,i} - \mu_{84,i}]$$

10

Enter the HiggsML Uncertainty Challenge!

- **Competition page**: <u>https://www.codabench.org/competitions/2977/</u>
- Current Phase ends: March 14, 2025 @ 0:00 GMT+0
- Documentations: <u>https://fair-universe.lbl.gov/docs/</u>

- Total pool of 4000 USDImage: Second Place: \$2000Image: Second Place: \$1500Image: Second Place: \$500
- White paper: this serves as a full breakdown of the competition in detail [Arxiv:2410.02867]
- Please apply to the competition with your institute's email address.

Competition Flow

• More details in **Tutorial Slides**

• Login https://www.codabench.org/competitions/2977/#/participate-tab

Search Competitions				• 🕈 Benchmarks 🝷	Resources	🖵 Queue Management	Login Sign-up
	FAIR UNIV	ERSE - HIG NTY CHAL	GS LENGE			NTS	
	P A pool of 4000	USD					
	ORGANIZED BY: FAIR CURRENT PHASE ENDS CURRENT SERVER TIM Docker image: docker.io/nersc/fair_uni	Universe : March 14, 2025 At E: November 21, 2024 verse:1298f0a8 ⊯	1:00 AM GMT+ 4 At 4:57 PM	-1 GMT+1			
	Sep 2024 Oct 2024 Nov	2024 Dec 2024 Jan 2	025 Feb 2025	Mar 2025			
Get Started	Phases	My Submissions	Results	Forum		?	

- Example model: <u>https://github.com/FAIR-Universe/HEP-Challenge/tree/master/simple_one_syst_model</u>
- Required script: model.py

AvencastF renaming				
Name				
•				
README.md				
boosted_decision_tree.py				
model.py Required				
statistical_analysis.py				

- Required script: model.py
 - __init__(self): -> None
 - fit(self): -> None (To train model)
 - predict(self, test_set): -> dict (predict $\hat{\mu}$ with uncertainties)

```
def predict(self, test_set):
```

.....

Predicts the values for the test set.

Args:

```
* test_set (dict): A dictionary containing the data and weights
```

Returns:

```
dict: A dictionary with the following keys:
```

- 'mu_hat': The predicted value of mu.
- 'delta_mu_hat': The uncertainty in the predicted value of mu.
- 'p16': The lower bound of the 16th percentile of mu.
- 'p84': The upper bound of the 84th percentile of mu.

```
test_data = test_set["data"]
test_weights = test_set["weights"]
```

```
print("[*] -> test weights sum = ", test_weights.sum())
```

```
predictions = self.model.predict(test_data)
```

```
result = self.stat_analysis.compute_mu(
    predictions,
    test_weights,
```

)

```
print("Test Results: ", result)
```

```
return result
```

• Prepare for submission: zip the model

My_awesome_model/

- model.py
- necessary_scripts.py

16

My_awesome_model.zip

• Submit your model

Summary

- We've built a **flexible platform** for hosting challenges and benchmarks, extending Codabench, and powered by **HPC at NERSC**.
- Launching a series of challenges focused on uncertainty-aware methods for High-Energy Physics (HEP).
- A NeurIPS competition running from September 2024 to March 2025
- Enter the HiggsML Uncertainty Challenge now: <u>https://www.codabench.org/competitions/2977/</u>
- We welcome feedback on the challenge to keep it engaging and beneficial for advanced methods.
- Get involved and stay updated:
 - Help and feedback: Join the **#higgsml-uncertainty-challenge** channel on the Fair Universe Slack workspace.
 - Ongoing updates: Subscribe to the Fair-Universe-Announcements Google Group.
 - Questions or collaborations: Contact fair-universe@lbl.gov.

NERSC-AI Ecosystem

- **Deploy** optimized hardware and software (working with vendors)
 - Improve performance, e.g through benchmarking (<u>MLPerf HPC</u>)
- **Apply** cutting edge AI for science: e.g., "NESAP" program with postdocs
- Empower through e.g., over 20 DL@Scale tutorials, 1000s of total participants: (SC23)
- Many AI for science highlights not covered here.

OmniLearn

H1 Collaboration (Mikuni et. al.):

jet physics analyses by enhancing accuracy, precision, and speed across multiple tasks using **a unified machine learning model**.

Large-compute-scale AI Ecosystem for hosting challenges and benchmarks

NERSC: Mission HPC for the Dept. of Energy Office of Science

- Large compute systems
 - Perlmutter: ~7k A100 GPUs, Also high-capacity / fast filesystems, 1 Tbit/s WAN and flexible services
 - SPIN: Rancher/K8s platform for user-defined services
- Broad science user base
 - > 10,000 users
 - > 1,000 projects
 - Across all DoE Science e.g. HEP; NP; Climate;
 Fusion Chemistry; Materials; Genomics; etc ...

Condabench/FAIR Universe Platform

Based on https://www.codabench.org/

- Codabench open-source platform for AI benchmarks and challenges
 - Originally (CodaLab) Microsoft/Stanford now a Paris-Saclay/LISN led community
 - > 500 challenges since 2013
 - Allows code submission as well as results e.g., for evaluation timing or reproducibility
 - Also, data-centric AI "inverted competitions"
 - Organizers can define scoring functions
 - Queues for evaluation can run on diverse compute resources
 - Platform itself can be deployed on **different compute resources**

"Fair Universe" brings Codabench to HPC at NERSC!

FAIR Universe Platform: Codabench/NERSC Integration

- Benchmark submissions pulled to workers running on Perlmutter:
 - Use <u>podman(-hpc)</u> container runtime: secure and scalable
 - Enable parallelism/scale for
 - Intensive methods use multiple A100 GPUs for training or evaluation
 - Many participants through running many parallel workers
 - Many evaluations e.g for Uncertainty Quantification
- Workers submitted as needed by microservice on SPIN service platform
 - NERSC's "<u>SF API</u>" for job submission
 - Monitor/filter submissions
- Also deploy instances of Codabench platform itself within SPIN
 - Customization and future OIDC integration with NERSC authorization

