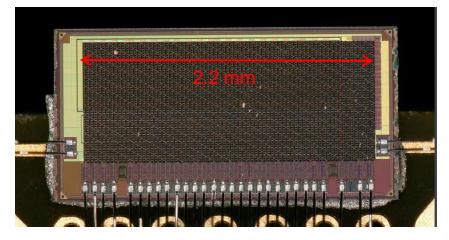


EP R&D pixel-detector beam tests 2024

EATM test-beam feedback meeting November 12th, 2024

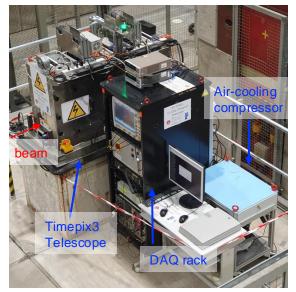
Younes Otarid (CERN) on behalf of the EP-DT-TP test-beam team

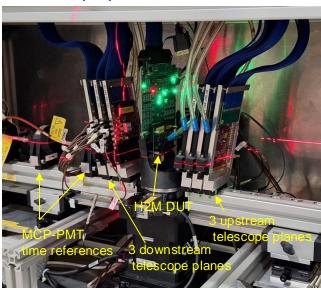

EP R&D 2024 pixel-detector beam tests

- Silicon pixel detector R&D for future high-energy collider precision experiments:
 Thin sensors (20-150 μm), Small pixels (>~ 10 x 10 μm²), precise timing (<1 ns)
- Focus on Higgs-factory vertex + tracking-detector requirements / generic R&D
- Additional beam times linked to EP R&D that take place within approved experiments (e.g. LHCb Velo, ALICE ITS3) are not covered here
- 2024 measurements focused on characterisation of H2M technology demonstrator:
 - 65 nm modified CMOS imaging process for monolithic sensors
 - Measurement of hit position and time
 - 64x16 Pixels, pitch: 35x35 μm²,
 - Various samples with thicknesses from 20-50 μm
 - Rotation scans to investigate charge-collection properties vs. depth

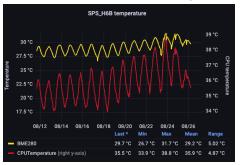
H2M sensor

DUT active-matrix size only 1.25 mm²

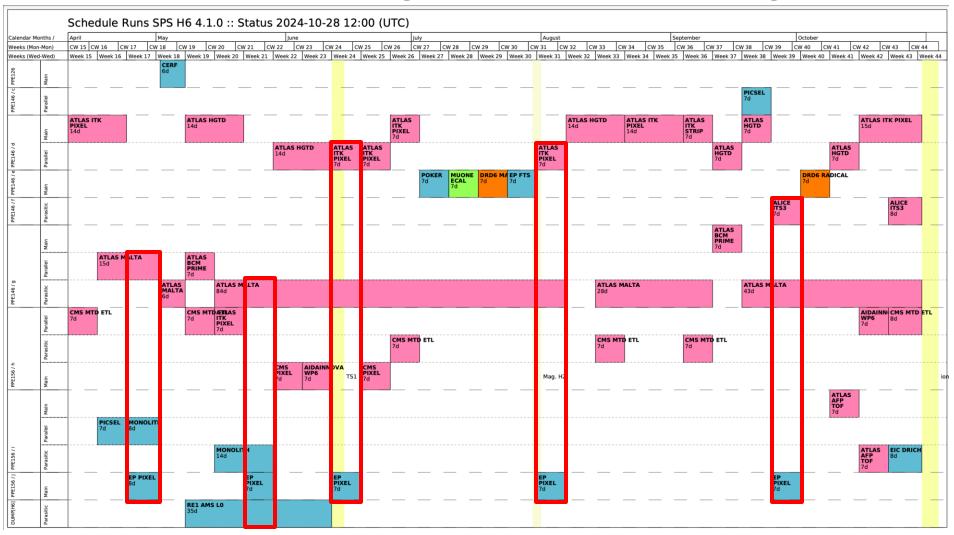

Need small beams and high rates


Beam telescope setup in H6B (PPE156)

- Timepix3 based 7-planes telescope:
 - Self-contained permanent setup at the end of H6B
 → no external services needed, except stable power and network
 - <~2 µm spatial resolution, 1 ns time resolution for tracks on DUT, MCP-PMT timing layer <~10 ps
 - Can take rates up to ~80M hits/s
 - Remote-controlled telescope positioning in horizontal/vertical direction
 can follow changes of beam position (not possible for the other setups)
 - Grafana monitoring of DAQ status and environmental conditions

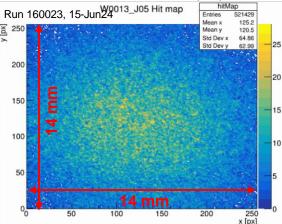

Telescope setup in H6B

Telescope planes with H2M DUT



Grafana monitoring

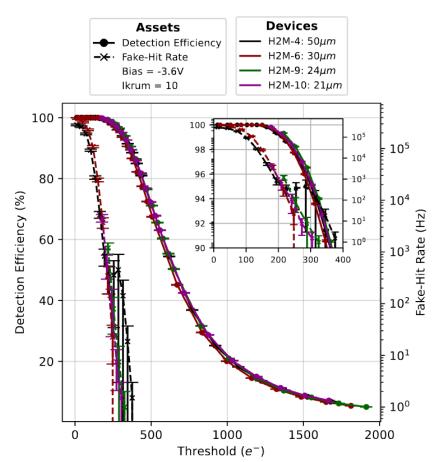
2024 H6 high-rate data-taking

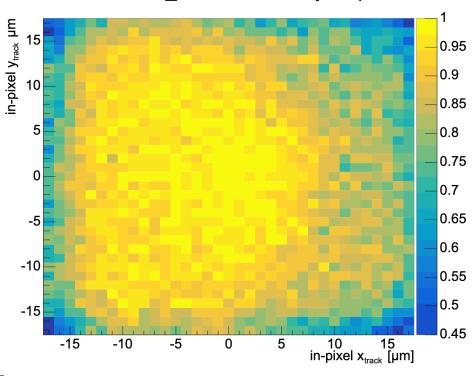


- 5 weeks of dedicated high-rate data taking in H6
- Beam time shared between EP PIXEL, MONOLITH, ATLAS MALTA, ALICE ITS3, ATLAS ITK Pixel

High-rate data-taking conditions

- Fast initial beam tuning at start of each high-rate week (using wire chambers and our telescope hit maps)
- Continuous **fine-tuning** of rates according to radiation monitors
- → Thank you to Laurence and colleagues for the excellent support!
- High momentum pions (~120 GeV)
- Almost parallel beams of small size (<1 cm x 1 cm), focus on our H6B telescope
- nominal beam position defined in the beginning, kept stable for the entire year
 - → efficient data taking for everyone
- Some re-tuning of beam position following changes of target steering (e.g. polarity changes)
- High rates:
 - Up to 4.5M / spill in scint. 532 @ 3 spills / 43.2 sec SC
 - Limited by integrated ionizing dose in radiation monitors PAXNA14612 (bridge btw. H6A and H6B), PAXNA12612 (above shielding), and in neutrino-platform area
 - → achievable rate depends on super-cycle composition
 + data-taking conditions in H8
 - → ~ 20-30% lower average rates in 2024 than in 2023
- Very good collaboration with upstream users in high-rate beam periods
 - Telescopes well aligned and rather stable DAQ in most setups
 - Efficient communication using H6 Mattermost channel (access etc.)


Beam observed in telescope plane


Grafana rate monitoring

H2M example results

H2M_0 Pixel efficiency map

Operation-parameter scans with high-statistic data sets

→ profit from high beam rates and efficient automated data-taking

Precision measurements of effects within the pixel cell

→ profit from high beam rates and highresolution telescope tracking

Outlook

EP Pixel plans and requirements for 2025 and beyond:

- EP R&D Phase II approved for 2024-2028
- Testing plans:
 - H2M → further thinning studies below 20 µm
 - Hybrid timing detectors with Timepix3/4 and TI-LGAD sensors
 - Integration of Telepix region-of-interest trigger plane
 - OCTOPUS project for Lepton-Collider Vertex Detector → 1st submission in 2026
- Similar as before: high momentum pions at high rates required
- Requested 4 weeks of high-rate testing for 2025
- Preparing also for LS3
 - → beam tests at DESY, requires integration in different telescope hardware

Wishlist:

- Automatic rate adjustment (collimator settings) based on observed radiation levels

 higher instantaneous rates during periods with fewer spills / longer supercycles
- Additional beam-profile monitors near H6B telescopes for easier beam tuning
- Possibility to run Cesar in monitoring mode on any non-Windows PC from remote (for us it currently only runs on Windows Terminal Server machines)