Why do we need segmented Pb target for charm data taking?

Paweł Staszel & Mateusz Bajda

06.11.2024

Motivation

Paweł results on experimental data (VD Status and plans - CERN, 23.09.2024)

Paweł results on experimental data (VD Status and plans - CERN, 23.09.2024)

R: The background increase & SNR decrease.

Paweł results on experimental data (VD Status and plans - CERN, 23.09.2024)

R: The background increase. **Q:** Will I observe the same effect in the simulation? Simulation with solid (continuous) 3 mm target

The whole Solid (continuous) target

 $\operatorname{RecoTrack}_1(M_K) + \operatorname{RecoTrack}_2(M_\pi) \to M_{D^0} \quad \text{ or } \quad \operatorname{RecoTrack}_1(M_\pi) + \operatorname{RecoTrack}_2(M_K) \to M_{D^0}$

 $\operatorname{RecoTrack}_1(M_K) + \operatorname{RecoTrack}_2(M_\pi) \to M_{D^0} \quad \text{ or } \quad \operatorname{RecoTrack}_1(M_\pi) + \operatorname{RecoTrack}_2(M_K) \to M_{D^0}$

 $\operatorname{RecoTrack}_1(M_K) + \operatorname{RecoTrack}_2(M_\pi) \to M_{D^0}$ or

or $\operatorname{RecoTrack}_1(M_{\pi}) + \operatorname{RecoTrack}_2(M_K) \to M_{D^0}$

Background (improperly assumed masses of daughter)

Background (improperly assumed masses of daughter) Signal (correct assumed masses of daughter)

 $\operatorname{RecoTrack}_1(M_K) + \operatorname{RecoTrack}_2(M_\pi) \to M_{D^0} \quad \text{or} \quad \operatorname{RecoTrack}_1(M_\pi) + \operatorname{RecoTrack}_2(M_K) \to M_{D^0}$

006 Counts 008 Counts func = gauss_gauss_exp $\sigma_{M} = 8.12 \text{ MeV}$ 700 M = 1867.06 MeV D^0 yield = 1044 600 D^0 yield_{BB} = 40 500 SNR = 23.80 400 SNR_{BR} = 1.68 300 Bckg = 881 200 $Bckg_{BR} = 542$ 100 0 1.2 2.2 1.4 1.6 1.8 2 2.4 M_{# K} [GeV/c²]

The whole Solid (continuous) target

$\overline{7}$

The most downstream segment (Solid (continuous) target)

The most upstream segment (Solid (continuous) target)

The most downstream segment (Solid (continuous) target)

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- $\blacktriangleright~\sim 70\%$ particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- $\blacktriangleright~\sim 70\%$ particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- ▶ \sim 70% particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- $\blacktriangleright~\sim 70\%$ particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- ▶ \sim 70% particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- ▶ \sim 70% particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- ▶ \sim 70% particles from secondary processes (decays, hadron interactions etc.) (SV).

Result: To increase SNR (signal-to-background ratio), we need to decrease or "remove" (somehow) secondary processes.

Answer:

- ▶ $\sim 30\%$ particles from the primary vertex (PV),
- ▶ \sim 70% particles from secondary processes (decays, hadron interactions etc.) (SV).

Result: To increase SNR (signal-to-background ratio), we need to decrease or "remove" (somehow) secondary processes. \rightarrow Idea: The segmented target.

Simulation with segmented target

Question: Why the distance between segments is 6 mm? Why not, e.g. 4 mm or 12 mm?

Answer: This distance is related to the characteristics of D^0 decays

Answer: This distance is related to the characteristics of D^0 decays (specifically the decay distance in LAB).
D^0 decay distance

D^0 decay distance

\mathbf{D}^0 decay distance

Distribution of Z coordinate of distance beetwen PV and SV for D⁰

\mathbf{D}^0 decay distance

Distribution of Z coordinate of distance beetwen PV and SV for D⁰

Comparison of targets

Comparison between solid and segmented target (Invariant Mass distribution)

Comparison between solid and segmented target (Invariant Mass distribution)

 ${\bf R}:$ Visually, we observe that the background around the ${\bf D}^0$ mass peak is reduced.

Comparison between solid and segmented target (Invariant Mass distribution)

Combinatorial invariant mass

R: Visually, we observe that the background around the D^0 mass peak is reduced.

Q: What is the SNR? What is the background level under the peak?

Comparison between solid and segmented target (in $\pm 3\sigma$ range around fitted mean)

Comparison between solid and segmented target (in $\pm 3\sigma$ range around fitted mean)

Decult.

15

Comparison between solid and segmented target (in $\pm 3\sigma$ range around fitted mean)

Decult.

Answer: Reverse to the situation in solid (continuous) target (!)

Answer: Reverse to the situation in solid (continuous) target (!)

- ▶ $>30\% \sim 70\%$ particles from the primary vertex (PV),
- ▶ $\sim 70\% \sim 30\%$ particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer: Reverse to the situation in solid (continuous) target (!)

- ▶ $>30\% \sim 70\%$ particles from the primary vertex (PV),
- ▶ $\sim 70\% \sim 30\%$ particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer: Reverse to the situation in solid (continuous) target (!)

- ▶ $>30\% \sim 70\%$ particles from the primary vertex (PV),
- ▶ $\sim 70\% \sim 30\%$ particles from secondary processes (decays, hadron interactions etc.) (SV).

Answer: Reverse to the situation in solid (continuous) target (!)

- ▶ $\sim 30\% \sim 70\%$ particles from the primary vertex (PV),
- ▶ $\sim 70\% \sim 30\%$ particles from secondary processes (decays, hadron interactions etc.) (SV).

Question: Why do we need segmented Pb target for charm data taking?

Question: Why do we need segmented Pb target for charm data taking?

Answer:

Using a segmented target:

▶ We can more effectively suppress background (especially the secondary interactions), isolating charm decay signals,

Question: Why do we need segmented Pb target for charm data taking?

Answer:

Using a segmented target:

- ▶ We can more effectively suppress background (especially the secondary interactions), isolating charm decay signals,
- This improves the signal-to-noise ratio (SNR), allowing clearer identification of rare charm decays,

That's all, thank you.

BACKUP SLIDES

Comparison between solid and segmented target in each segments

More segmented target

Question: Maybe more segmentd target it's better?

Combinatorial mass distribution

Comparison between the segmented targets (3 segments each 1 mm vs 6 segments each 0.5 mm)

Parent impact parameter distribution (all combination) for solid target segments

Parent impact parameter distribution (all combination) for different target

In my analysis, I accept particles (or particle pairs, depending on the cut) that pass through the following cuts:

- ▶ $p_T \in (0.35, 1.8) \text{ GeV}/c^2$,
- ▶ $d \in (0.055, 1)$ mm,
- ▶ $V_z \in (1, 5.5)$ mm,
- ▶ $D \in (0, 0.02) \text{ mm},$
- ▶ DCA $\in (0, 0.04)$ mm.

The definition of cuts

1. Single particle cuts:

The definition of cuts

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)

The definition of cuts

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - ▶ V_z , (distance in z direction between reconstructed primary and secondary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - ► d, (*particle impact parameter*, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - \triangleright V_z , (distance in z direction between reconstructed primary and secondary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - ► d, (*particle impact parameter*, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - \triangleright V_z , (distance in z direction between reconstructed primary and secondary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - ► d, (*particle impact parameter*, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - \triangleright V_z , (distance in z direction between reconstructed primary and secondary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - ▶ V_z , (distance in z direction between reconstructed primary and secondary vertex)
 - D, (parent impact parameter, i.e. closest distance between reconstructed parent and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - ► d, (*particle impact parameter*, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - \triangleright V_z , (distance in z direction between reconstructed primary and secondary vertex)
 - ▶ *D*, (*parent impact parameter*, i.e. closest distance between reconstructed parent and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - ► d, (*particle impact parameter*, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - \triangleright V_z , (distance in z direction between reconstructed primary and secondary vertex)
 - D, (parent impact parameter, i.e. closest distance between reconstructed parent and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - ► d, (*particle impact parameter*, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - \triangleright V_z , (distance in z direction between reconstructed primary and secondary vertex)
 - D, (parent impact parameter, i.e. closest distance between reconstructed parent and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - ► d, (*particle impact parameter*, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - \triangleright V_z , (distance in z direction between reconstructed primary and secondary vertex)
 - D, (parent impact parameter, i.e. closest distance between reconstructed parent and reconstructed primary vertex)

- 1. Single particle cuts:
 - ▶ p_T ,
 - d, (particle impact parameter, i.e. the closest distance between the reconstructed track and reconstructed primary vertex)
- 2. Two tracks cuts:
 - ▶ V_z , (distance in z direction between reconstructed primary and secondary vertex)
 - D, (parent impact parameter, i.e. closest distance between reconstructed parent and reconstructed primary vertex)
 - \blacktriangleright DCA (Distance of Closest Approach of two tracks).