How does the NA61 Trigger work?

Jarosław Szewiński

National Centre for Nuclear Researech

November 8, 2024

- type of events and start data acquisition
- One of the core subsystems
- Without working trigger no data can be taken

Trigger and beam counters location

Reads signals from beam counters

- Reads signals from beam counters
- Reads external signals from SPS

- Reads signals from beam counters
- Reads external signals from SPS
- Controls data acquisition in all detectors

- Reads signals from beam counters
- Reads external signals from SPS
- Controls data acquisition in all detectors
- Initiated by trigger, DAQ reads data from detectors

Trigger system internal structure

Trigger system internal structure

DRS Provides the amplitude information on trigger signals

Trigger system internal structure

- DRS Provides the amplitude information on trigger signals
- Multi-hit TDC provides time distribution within time window around the trigger

Trigger FPGA logic

O

Trigger FPGA logic - T1 condition

Trigger FPGA logic - T2 condition

NATIONAL CENTRE FOR NUCLEAR RESEARCH

s...

Trigger FPGA logic - T1 and T2 condition

www.ncbj.gov.pl

How does the NA61 Trigger work?

A61/SHINE	TDAQ co	ntrol	Main Co Main Co	introls 🖓 Triç	gger Monitor	🔓 TDAG	onfig 🔑 Trigger Ti	unning 🛛 Sup	aervisord	🛑 PteroDA	iQNI ∲RCUI	Map O	nineQA	Bookkeeping		
TO				т1				T2			T3			τ4		
Signal	Active	Veto		Signal	Active	Veto	Signal	Active	Veto		Signal	Active	Veto	Signa	Active	Veto
S1				S1			S1				S1			S1		
S1-2				S1-2			S1-2				S1-2			S1-2		
S1-3				S1-3			S1-3				51-3			S1-3		
S1-4				S1-4			S1-4				S1-4			S1-4		
S2				S2			S2				S2			S2		
VO				V0		0	V0				V0			VO		
\$3				\$3			S3				\$3			\$3		
S3p				S3p			S3p				S3p			S3p		
S4				S4			S4				S4			S4		
V1				V1			V1				V1			V1		
PSD				PSD			PSD				PSD			PSD		
CED-6				CED-6			CED-6				CED-6			CED-6		
CED-7				CED-7			CED-7				CED-7			CED-7		
CED-8	0	0		CED-8	0	0	CED-8	0	0		CED-8			CED-8		0
THCa				THCa	0		THCa				THCa			THCa		0
WC2Anode	0	0		DWC2Anode	0	0	DWC2And	ode 🗆			DWC2Anode			DWC2An	ode 🗆	0

Prescalers

Trigger	Value					
T1	100 🗘					
T2	1 \$					
Т3	1000 🗘					
T4	0					

Trigger Busy Logic

 L0 and L1 are generated only when there is run going (during the spill and when DAQ is enabled)

Trigger Busy Logic

- L0 and L1 are generated only when there is run going (during the spill and when DAQ is enabled)
- L0 and L1 are generated only when none of the detectors are busy

Trigger Busy Logic

- L0 and L1 are generated only when there is run going (during the spill and when DAQ is enabled)
- L0 and L1 are generated only when none of the detectors are busy
- T1 to T4 counts and T2/T1 ratio before gating tells what is physical ratio between events

- L0 and L1 are generated only when there is run going (during the spill and when DAQ is enabled)
- L0 and L1 are generated only when none of the detectors are busy
- T1 to T4 counts and T2/T1 ratio before gating tells what is physical ratio between events
- T1 to T4 counts after the gating tells how many events has been actually accepted and saved by DAQ

 When particle in S1 is detected, L0 is generated to freeze the DRS buffers

- When particle in S1 is detected, L0 is generated to freeze the DRS buffers
- If event meets the trigger conditions (T1 or T2 or T3 or T4), L1 is generated to start the DAQ readout

- When particle in S1 is detected, L0 is generated to freeze the DRS buffers
- If event meets the trigger conditions (T1 or T2 or T3 or T4), L1 is generated to start the DAQ readout
- Detectors readout is started, BUSY signal is kept until all data is transferred, and detector returns to the ready state

- When particle in S1 is detected, L0 is generated to freeze the DRS buffers
- If event meets the trigger conditions (T1 or T2 or T3 or T4), L1 is generated to start the DAQ readout
- Detectors readout is started, BUSY signal is kept until all data is transferred, and detector returns to the ready state
- Busy signal is cleared

Detector handshake - invalid event

 When particle in S1 is detected, L0 is generated to freeze the DRS buffers

- When particle in S1 is detected, L0 is generated to freeze the DRS buffers
- If event does not meet the trigger conditions (none of T1 to T4), CLEAR is generated to reset the detector

- When particle in S1 is detected, L0 is generated to freeze the DRS buffers
- If event does not meet the trigger conditions (none of T1 to T4), CLEAR is generated to reset the detector
- Detectors reset is started, BUSY signal is kept until detector is ready

- When particle in S1 is detected, L0 is generated to freeze the DRS buffers
- If event does not meet the trigger conditions (none of T1 to T4), CLEAR is generated to reset the detector
- Detectors reset is started, BUSY signal is kept until detector is ready
- Busy signal is cleared

• Current trigger works very well, but there is a lot of cables

Current trigger works very well, but there is a lot of cables

 We would like to propose to implement the same concept but made as a one device - 19" box

www.ncbj.gov.pl

 Custom new analog CDF discriminators designed (our main problem now)

- Custom new analog CDF discriminators designed (our main problem now)
- DRS read by 8-channel ADC instead of single channel ADC (8x faster readout!)

- Custom new analog CDF discriminators designed (our main problem now)
- DRS read by 8-channel ADC instead of single channel ADC (8x faster readout!)
- Obsolete CAEN MHTDC replaced by new PicoTDC

- Custom new analog CDF discriminators designed (our main problem now)
- DRS read by 8-channel ADC instead of single channel ADC (8x faster readout!)
- Obsolete CAEN MHTDC replaced by new PicoTDC
- No need for VME form factor any more

- Custom new analog CDF discriminators designed (our main problem now)
- DRS read by 8-channel ADC instead of single channel ADC (8x faster readout!)
- Obsolete CAEN MHTDC replaced by new PicoTDC
- No need for VME form factor any more
- Everything integrated in one FPGA

- Custom new analog CDF discriminators designed (our main problem now)
- DRS read by 8-channel ADC instead of single channel ADC (8x faster readout!)
- Obsolete CAEN MHTDC replaced by new PicoTDC
- No need for VME form factor any more
- Everything integrated in one FPGA
- FPGA will have ARM processor capable to run DAQ node on the board

- Custom new analog CDF discriminators designed (our main problem now)
- DRS read by 8-channel ADC instead of single channel ADC (8x faster readout!)
- Obsolete CAEN MHTDC replaced by new PicoTDC
- No need for VME form factor any more
- Everything integrated in one FPGA
- FPGA will have ARM processor capable to run DAQ node on the board
- Direct data transfer by fiber optic Ethernet (1G or 10G) directly to the Server Room

Thank You

www.ncbj.gov.pl