

Non Collider Collaboration

Muon collider ring: Sensitivity Study - Impact of β^* on momentum acceptance

Marion Vanwelde

26th November 2024

- Goals and requirements
- Reminder of the last meeting
- Sensitivity study for β^*
 - Update of the v06 interaction region
 - Procedure
 - Sensitivity study results for maximum field of 20T in IR quads
 - Sensitivity study results for the maximum field in IR quads adjusted with AB plots
- Influence of L*
- Next steps

Goals and requirements

<u>Goals</u>

Beam constraints

 $\mathbf{\hat{\mathbf{b}}} \boldsymbol{\delta} = \mathbf{0}, \mathbf{1}\%$

 $\epsilon_N = 25 \mu m$

$$\epsilon_L = \gamma \sigma_Z \sigma_\delta$$

Circumference ~10 km

Required performance:

- \rightarrow Transverse dynamic aperture: ~ 3-4 σ
- \rightarrow Momentum acceptance: ~2-3 σ

Other constraints

- Maximum field of 16 T for dipoles and 20 T for combined-function and quadrupole magnets (to be adapted later with current magnet constraints)
- Thickness of the radial shielding inside the magnets: 4 cm
- Aperture set to 5 times rms beam size + radial shielding.

Current performances

Sufficient dynamic aperture for onmomentum particles, but **requirements not yet met** for the **entire momentum range** (momentum acceptance ~ $1\sigma_{\delta}$ for DA ~2.5 σ).

→ Sensitivity study: Relax the $β^*$ to evaluate the impact of $β^*$ on the dynamic and momentum acceptance.

IR: 2cm of W shielding; No chicane

 $\underline{\text{CC:}}$ No Q' control in the CC

Performances:

DA~2.5 σ for $\delta = -10^{-3}$

 \rightarrow Most promising version

IR: 4cm of W shielding + chicane

<u>CC:</u> No Q' control in the CC and huge sensitivity to the phase advance

Performances:

Particles lost for $\delta = 7 * 10^{-4}$

IR: 4cm of shielding + chicane + nocombined function FF quads

<u>CC</u>: smaller β -functions; W and Q' control

CERN

50

40

30

20

10

-10

-20

-30

1400

<u>[</u>]

Δ

Performances:

Particles lost for $\delta = 7 * 10^{-4}$;

Much less mature than other versions.

Sensitivity study for β^*

<u>Goal</u>

→ Obtain a lattice with slightly reduced performance (or luminosity) working at least without imperfections

 \rightarrow Start **other relevant studies** (e.g. impact of imperfections and machine wobbling to mitigate the neutrino radiation issue).

\succ Increase in β^* by a factor of X :

- \rightarrow Decrease in luminosity by a factor of X.
- → Reduction of the maximum β (in the FF triplet) by more than the factor X.
- → Reduction of the FF quadrupoles apertures → Higher achievable gradients with smaller quadrupoles.
- → Increase of bunch length and decrease of momentum spread by factor X.
- → Reduction of the chromatic effects that must be compensated in the local chromatic correction section.
- \rightarrow Possible increase in momentum acceptance.

Sensitivity study – Improved CC

IR: 2cm of W shielding; No chicane

<u>CC</u>: No Q' control in the CC

Performances:

DA~2.5 σ / 4.5 σ for $\delta = -10^{-3}/+10^{-3}$

 \rightarrow Most promising version

First step: Implement recent changes in the IR in v.06: **4cm of radial W shielding** in the IR magnets and addition of a **chicane** in the IR for BIB mitigation.

→ Larger maximum beta functions in the FF quadrupoles with larger chromatic effects.

<u>2cm shielding</u>: $\beta_{y,max} \sim 540 km$, $\beta_{x,max} \sim 514 km$ <u>4cm shielding</u>: $\beta_{y,max} \sim 800 km$, $\beta_{x,max} \sim 550 km$

 \rightarrow Small changes in the optics caused by the weak focusing of the bends in the chicane.

→ Performances: DA ~ 2σ for $\delta = \pm 10^{-3}$ ($1\sigma_{\delta}$)

→Still **too large magnetic field in the CC** for 4cm shielding.

Sensitivity study – Procedure for each $oldsymbol{eta}^*$

Adaptation of the IR:

- Set the FF **quadrupole field to the maximum** (20T at magnet aperture) and reduce slightly the quad lengths.
- Slightly adjust the quad gradients to match the same conditions at the beginning of the CC for all β^{*}.

Matching of the CC:

- Similar CC for all β^* , same conditions on the phase advances in SD and SF sextupoles pairs.
- Optimisation of the CC to reduce the non-linearities in β vs. δ .

Matching of the arcs and entire ring:

• Tunes adapted in the matching section between the CC and the arcs \rightarrow Same tunes for all β^* .

Sensitivity study: IR lattice functions

Collaboration

<u>Adaptation of the IR</u>: Larger β^* gives smaller maximum β and aperture allowing higher gradients \rightarrow The reduction of the maximum β in the triplet is more than linear

Sensitivity study: IR lattice functions

Adaptation of the IR:

aboration

- The maxima of Montague functions decrease accordingly.
- Smaller chromatic effects for larger β^* .
- The outlier at β* = 3mm will also be visible in momentum acceptance results → Some improvements are needed for specific β*

12

CERN

Sensitivity study: CC lattice functions

International UON Collider Collaboration

Sensitivity study - Momentum acceptance

- Transverse DA computed over 100 turns to observe the trend.
- Sufficient momentum acceptance (~ $3\sigma_d$) with DA $\geq 4\sigma$, for $\beta^* = 3mm$
 - Reduction of the luminosity by a factor of 2.
 - Margins are still needed, particularly to reduce the magnetic field in the CC and the arcs.
- Some outliers for 3 and 5 mm \rightarrow Better optimisation required for each β^* .
- No further increase in momentum acceptance from 4 mm onwards
 - \rightarrow The sextupole strength decreases.
 - \rightarrow Increase in the transverse DA.

Sensitivity study – Sextupole strengths

Sextupole strengths in the CC decrease for larger β^* (chromatic effects decrease):

- Smaller magnetic field in sextupole magnets, smaller feed-down;
- Lattice probably less sensitive to errors.

Collaboration

Difference in tunes for particles with $\delta = \pm 10^{-3}$

Collaboration

15

Collaboration

Collaboration

0.003

0.002

0.004

0

0.2

0.4

0.6

0.8

Collaboration

0.1

-0.001

0.001

δ

0

-0.002

Collaboration

Collaboration

Still quite large differences in tunes for off-momentum particles

 $\beta^* = 3.5mm$ Q_x - Q_{v} $\delta = -10^{-3}$ 0.9 $\delta = 10^{-3}$ Negative δ 0.8 0.8 Positive δ 0.7 0.6 0.6 $Q_{x,y}$ 0.5 0.4 0.4 0.3 0.2 0.2 0.1 -0.0010.001 0.003 -0.003-0.0020.002 0 0.2 0.4 0.6 0.8 0 20 δ

Collaboration

Collaboration

Collaboration

Sensitivity study for updated magnetic field

Updated magnetic field for IR quads

• <u>Goal:</u> Adapt the design such that the magnetic field at the magnet aperture is in the allowed area of the "A-B plots" for HTS quadrupoles provided by the magnet team.

Updated magnetic field for IR quads

IR quads for the sensitivity study :

MInternational UON Collider

Collaboration

First quadrupole (divided into 3 pieces – IQF1) and second quadrupole (IQD1) of the FF triplet always in the forbidden zone \rightarrow Less realistic field for $\beta^* = 1.5mm$ because of the larger β in the FF triplet (larger apertures).

Sensitivity study for updated IR quads

Collaboration

- The same procedure was used with the maximum **magnetic field of IR quadrupoles** adjusted to be in the **allowed area**.
- *Note:* the magnetic field is still **too strong in the CC and in the arcs** with **4 cm W** shielding (A-B plots not yet available for the combined function magnets).

Sensitivity study for updated IR quads

• Similar conclusions than before: Sufficient momentum acceptance $(\sim 3\sigma_d)$ with DA $\geq 4\sigma$, for $\beta^* = 3mm$ (even though the magnetic field is still too high in the CC and in the arcs).

nternational JON Collider ollaboration

> No significant changes between the DA computed for 100 turns and the DA computed for 1000 turns.

Sensitivity study for updated IR quads

• Similar conclusions than before: Sufficient momentum acceptance $(\sim 3\sigma_d)$ with DA $\geq 4\sigma$, for $\beta^* = 3mm$ (even though the magnetic field is still too high in the CC and in the arcs).

ternationa JON Collider ollaboration

- No significant changes between the DA computed for 100 turns and the DA computed for 1000 turns.
- *General trend:* as expected, slightly reduced momentum acceptance compared to the study with 20T maximum field for very small β^* .

- Performances for the different β^{*} strongly depend on small optimizations and phase advances in the machine:
 - β_x must reach a minimum before the last two IR quads
 - Influence on the second-order dispersion
- The **tune spread** with energy offset remains **significant**, covering a large area of the tune diagram:
 - Possible **particle loss** when crossing resonance (perhaps not observed here due to the **discretization** used for momentum acceptance computations).
- Tune spread seems to be dominated by third-order chromaticity → Best practices for setting elements at the correct phases to control this chromaticity?

Influence of L*

Collaboration

CERN

Adaptation of the IR: Set the L* to 4m instead of 6m (20T for maximum field; $\beta^* = 1.5mm$)

- Reduction of the maximum beta (increase of ~15-20% of the maximum β -functions compare to the lattice with 2cm shielding in the IR).
- No significant momentum acceptance improvement by reducing L* (L* small compared to triplet length); small reduction of sextupole strengths in the CC.

Next steps

In parallel

Improvements of the lattice for $\beta^* = 1.5mm$

- Modify the CC to achieve true –I transformation between both sextupoles of a pair.
- Enough elements at the correct phase to correct higher-order chromaticities; multi-point matching
- Explore the lattice with MAD-NG to see the limitating RDT

Study other effects on (a working) lattice

 $(\beta^* > 1.5mm)$

- Implement the capability to have a combined function dipole-sextupole magnet in Xsuite; Evaluate the effects of thick sextupoles and compensate for the abberations.
- Preliminary (alignment and field) error studies
- Starfish plots to monitor geometric aberrations

To keep in mind

- High (unrealistic) magnetic field values in CC and arcs→ Try to limit the magnetic field for the lattice with 4 cm W shielding.
- Input needed from the magnet team regarding the element interconnection length (impact on neutrino radiation).
- No clear knobs to control the working point (transverse tunes) in the current lattice.

Thank you for your attention

The lattice presented is still a work in progress and subject to change in the future