

Measurement of the bb cross section using $B \to \mu D^0 X$

Jennifer Sibille

Paul Scherrer Institut University of Kansas

- Heavy flavor quark production provides a good test of pQCD
- b quarks make up a background (or potential signal) for many other measurements
 - Higgs boson, top quark, new physics

- Measure bb cross section using $B \to \mu D^0 X,\, D^0 \to K \pi$
- . Cover large range in $p_{T}\!,\,|\eta|$
- Overlap with LHCb measurement (2.0 < | η | < 6.0)
 (doi: 10.1016/j.physletb.2010.10.010)
- Limited to data from 2010
 - Require low p_T single muon trigger quickly prescaled
- QCD Monte Carlo using Pythia6 (D6T tune)

Differential cross section:

$$\frac{d\sigma}{dp_T} = \frac{N(\mu D^0)}{L * \varepsilon * B * \Delta p_T}$$

$$\frac{d\sigma}{d\eta} = \frac{N(\mu D^0)}{L * \varepsilon * B * \Delta \eta}$$

N: # reconstructed μD^0 candidatesL: luminosityB: branching ratio ϵ : efficiency Δp_T , $\Delta \eta$: bin width

Luminosity RunA: 285 nb⁻¹ RunB: 24 pb⁻¹ MC: 1.23 pb⁻¹

Efficiency $\varepsilon = \varepsilon_{acc} * \varepsilon_{sel} * \varepsilon_{trig}$ $\varepsilon_{acc} * \varepsilon_{sel} = \varepsilon_{cut}$ ε_{trig} applied by weighting events

- Fit invariant mass distribution with a linear background plus Gaussian signal
 - . Get number of D0's from signal fit $\rightarrow N(\mu D^0)$ reconstructed
 - Do in bins of p_T and η
- Working on systematics now

SCHERRER INSTITUT