

Same-Sign Di-Leptons

Benjamin Stieger

CHIPP School, Engelberg January 27th 2012

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

CHIPP School, Jan 27th 2012

2

- Search for new physics in events with same-sign isolated di-leptons, jets and missing transverse momentum
- Extremely low SM backgrounds expected
 - Three broad categories:

Introduction

- 'Fake' leptons from hadronic activity
- Charge misidentification (only relevant for electrons)
- Direct SM same-sign production [™]
 (WZ, ttbarW, W[±]W[±], ...)
- Naturally larger production in many new physics scenarios including but not limited to SUSY
- Focus here on fake lepton
 background estimation

Non-Prompt Lepton Backgrounds

- Dominant background in most regions
 - Source is mainly heavy-flavor decays in ttbar and W+jets
- Don't want to rely on simulation for delicate modeling or production processes:
 - Use fully data-driven methods for estimation
- Method is based on a loose to tight extrapolation
 - Measure tight-loose ratio in signal suppressed control region
 - Apply to sidebands of signal region
- Covers backgrounds from non-isolated leptons

3

Fake Ratios Method

- Cut efficiencies *f* and *p* for fake and prompt leptons describe probability of loose leptons to pass tight cuts
- Matrix equation describing the admixture of events with fake/prompt and loose/tight leptons
- Can solve for unknown number of events with fake leptons as functions of measured tight/loose yields and f and p ratios:

$$N_{pf} = \frac{pf}{(p-f)^2} \left[-2fpN_{ll} + \left[f(1-p) + p(1-f) \right] N_{tl} - 2(1-p)(1-f)N_{tt} \right]$$

$$N_{ff} = \frac{f^2}{(p-f)^2} \left[p^2N_{ll} - p(1-p)N_{tl} + (1-p)^2N_{tt} \right]$$

Crucial assumption is that signal suppression cuts in control regions don't change the shape of the extrapolation variable(s)

CHIPP School, Jan 27th 2012

to assess systematic uncertainties

 $L_{int} = 4.7 \text{ fb}^{-1}$

Muons

Data

0.4

Mean ratio: 0.10 ± 0.02

 $L_{int.} = 4.7 \text{ fb}^{-1}$

CMS Work in Progress

Results

Particle Physics

- Observations are consistent with predictions within uncertainties
- Extend exclusion limits on common models
- Provide information for theorists to calculate their own limits with our results

