

Search for $H \rightarrow ZZ \rightarrow \ell^- \ell^+ \ell^- \ell^+ \ (\ell = e, \mu)$ at the ATLAS Detector

Eleonora Benhar Noccioli

CHIPP PhD Winter School 2012 27 January 2012, Engelberg

The Higgs Boson

- The Standard Model predicts the existence of a particle called Higgs Boson needed to explain many observed particle properties and processes (mass problem and divergences)
- Direct searches have already been performed at the LEP e⁺e⁻ collider (CERN), and at the Tevatron pp collider (Fermilab), but no final conclusions could be drawn
- The discovery or the final exclusion of the Higgs boson is a major goal of the Large Hadron Collider programme

$H \rightarrow ZZ \rightarrow \ell^- \ell^+ \ell^- \ell^+$

• The search for the SM Higgs in the decay channel $H \rightarrow ZZ \rightarrow 4I$ provides good sensitivity in a wide mass range

- Mass can be fully reconstructed, events would cluster in a (narrow) peak
- Pure channel: Signal/Background ~ 1

Higgs Searches Status

- We observe an excess of events around $M_H \sim 126 \text{ GeV}$
- The global significance is 2.3 σ with contributions from the $H \rightarrow \gamma \gamma, H \rightarrow ZZ^* \rightarrow 4\ell, H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ analysis

Crucial Experimental Aspects

- High lepton reconstruction and identification efficiency down to lowest p_{T}
 - It is crucial to understand low p_{T} electrons, strongly affected by material effects
- Good lepton energy/momentum resolution
- Good control of reducible backgrounds (Z+bb, Z+jets, tt) in low-mass region

My Contribution

- We performed truth vs reco studies using J/ ψ to validate the new brem refitting alghoritm
- We are using the "Tag and Probe" method with J/ψ to calculate our electron identification efficiency
- We are performing H→4e background studies to reduce the systematics on fake electrons

Backup

Procedure

- I have studied the following parameters: d_0/σ , ϕ , q/p, θ , $z \sin\theta$
- For each of them, I have built

 (X_{reco}-X_{truth})/X_{truth} and taken a look at
 its behaviour as a function of η^{truth}
 and p_T^{truth}
- Fitting each bin in η^{truth} and p_T^{truth} we extract σ and mean value of the distributions
- Studies done for all the isEm menus, here I will show only loose++ results.

d_0/σ overall distribution

d_0/σ resolutions vs p_T truth

10

J/ψ Tag and Probe

- J/ ψ Tag and Probe is extremely challenging:
 - high background contamination
 - contribution from both prompt and non-prompt J/ψ
- Invariant Mass fit performed to separate signal from background
- In previous studies, cut on J/ψ pseudo proper time introduced to reduce non prompt contribution

J/\UNITS Invariant Mass

- J/ψ signal and $\psi(2s) = Crystal ball$
- Background = 3rd order Chebychev

J/ψ Pseudo-Proper Time (1)

 $\tau = L_{xy} \cdot m^{J/\psi} / c \cdot p_T^{J/\psi}$

J/ψ Pseudo-Proper Time (2)

- Applying a cut on the pseudo-proper time helps to reject the non-prompt contribution, but it is not the best thing to do because it biases the efficiency and does not provide a pure sample
- We would like to perform a bi-dimensional fit on both the invariant mass and the pseudo-proper time, in order to extract the fraction of signal/background and the fraction of prompt/non prompt J/ ψ
- This procedure was already follow for the muons, and that is our starting point
- Performing this fit for all the possible η and E_T bins is difficult, and work is still ongoing