Z+TT analysis

Mauro Verzetti
University of Zurich

A Two Higgs Doublets Model

- SM Higgs scalar sector enlarged with an additional SU(2)_L doublet:
 - A peculiar interplay of CP and custodial symmetries leads to the invariant scalar potential
 - $V = -m_1^2 \phi_1^{\dagger} \phi_1 m_2^2 \phi_2^{\dagger} \phi_2 + \lambda_S/2(\phi_1^{\dagger} \phi_1 + \phi_2^{\dagger} \phi_2) + \lambda_{AS}/2(\phi_1^{\dagger} \phi_2 \phi_2^{\dagger} \phi_1)$
 - with 4 free parameters:
 - m_h mass of the SM-like higgs boson h⁰
 - m_T mass of the degenerate triplet (H^{\pm}, H^0)
 - m_A mass of the pseudoscalar boson A^0
 - One of possible mass hierarchies: $m_A^2 < m_T^2 < m_h^2$
 - tanβ (Higgs doublets VEVs ratio)
 - which rescales the non-SM bosons interactions
- Unconventional processes arise, interesting for collider physics
 - $h^0 \rightarrow A^0 A^0, H^0 H^0, H^+ H^-$
 - $\bullet \quad H^{\pm} \to W^{\pm}A^0$
 - $H^0 \rightarrow ZA^0$, the sought one, possibly with $m_A \leq 100 \text{ GeV}$
- More about this on arXiv:0904.0705v2

Hadron Plus Strip

Two main features:

- Decay Mode Finding:
 - Builds all possible combinations within $(\pi,\pi\pi^0,\pi\pi\pi)$
 - Chooses among them the most isolated with compatible visible mass
- π^0 's are formed summing clusters in a strip along ϕ .

Charged

Event Topology

- EW part: a pair of same type, opposite sign leptons (e or μ)
- EW(?) part: opposite sign taus:
 - T_μ T_e: cleanest channel available,
 but low statistics
 - T_{had} T_{μ} : large statistics and good purity, the most interesting one
 - Thad Te: same statistics as the previous, but much lower purity
 - Thad Thad: probably hopeless due to problems in treating collinear taus and very large backgrounds.

Analysis strategy

The analysis shares the same final state of $ZZ \rightarrow 2|2T$ and therefore we plan to use that analysis as a benchmark

Main differences:

- If $m_A \sim m_Z$ the analysis turns out to be a ZZ cross section measurement with limits on ZA⁰ process
 - then we'll begin scanning the low-m_A range
- The mass hierarchy hints we may have a very boosted A⁰ which would turn into very collimated taus (up to the collinearity). Therefore we implemented a strategy that allows us to identify and select taus even in the collinear case
- In case the whole system is light we have to push our tau identification to lower pt (and
 of course no visible mass window required)

(Roughly) the analysis step by step:

- We select a pair of opposite sign loosely isolated leptons
- We require that the two leptons originated from the same vertex and we apply some quality requirements to it
- We identify one or two other leptons originating from the same vertex of the previous two
- If hadronic taus are needed we build them masking the third lepton (the one not forming the Z)
- We correct the isolation of the candidates taking into account the effects of possible collinearity

Backup

Characteristics of tau decay

- Tau is the heaviest (known) lepton
 - Mass: I.78 GeV
 - $c\tau = 87 \mu m$
- Electroweak decay, with neutrinos
- It decays into other leptons ($\sim 17\% \mu,e$)
- It mainly decays into hadrons (usually π 's)
- Jets from tau decays are collimated due to large boost.
- Tau jets can be identified due to low detector activity around decay products

Particle Flow

- Particle Flow (PF) is an algorithm that gives a complete description of the event
- Links all the signals from different subdetectors
- produces a list of particle candidate (e, μ , γ , hadron)
- Taus are built from PF objets

Collinear taus handling

Several tricks to treat collinear taus ($\Delta R \lesssim 0.5$) correctly

- Tau Building:
 - Problem: the hard lepton coming from one tau may spoil several steps of the hadronic tau building process.
 - Solution: to avoid any bias the lepton is removed from PF collection and the jets and taus are built again
- Measuring isolation:
 - Is the key tool to discriminate signal from background
 - Problem: if constituents coming from different taus are too close they may spoil each other isolation.
 - Solution:
 - hadronic tau need no correction since correctly treated in building
 - isolation of leptons are corrected for other signal particles within isolation cone