

CHIPP winter school 2012 2012.01.27

dijet angular distribution

Francesco Guescini

- QCD well described by Standard Model
 - QCD jets mostly produced in the forward regions
- search for new interactions
 - investigate the existence of contact interactions
 - no mass resonances
- requires expertise from different areas: Standard Model, exotics physics signatures, reconstruction of jets and jet missing E_T
- analysis based on calorimeter jets
 - extend it to track jets
 - measure track jet resolution (and improve b-tagging efficiency)
- New J. Physics 13 (2011) 053044

- QCD well described by Standard Model
 - QCD jets mostly produced in the forward regions
- search for new interactions
 - investigate the existence of contact interactions
 - no mass resonances
- requires expertise from different areas: Standard Model, exotics physics signatures, reconstruction of jets and jet missing E_T
- analysis based on calorimeter jets
 - extend it to track jets from my analysis
 - measure track jet resolution (and improve b-tagging efficiency)
- New J. Physics 13 (2011) 053044

- QCD well described by Standard Model
 - QCD jets mostly produced in the forward regions
- search for new interactions
 - investigate the existence of contact interactions
 - no mass resonances
- requires expertise from different areas: Standard Model, exotics physics signatures, reconstruction of jets and jet missing E_T
- analysis based on calorimeter jets
 - extend it to track jets from my analysis
 - measure track jet resolution (and improve b-tagging efficiency)
- New J. Physics 13 (2011) 053044

- based on the rapidity measurement of the leading jets: y_1, y_2
- y^* is the rapidity of the two jets in the parton-parton rest frame
- y_{boost} is the boost of the dijet system in the lab frame

- QCD events populate the extreme regions of the y₂ (y₁, y₂) space
- physics due to contact interactions would be isotropic, manifesting as an excess in the central region
- measure the ratio of events in the central region (|y*|<0.6, |y_{boost}|<1.1) over the events in the outer region (|y*|<1.7, |y_{boost}|<1.1)

- two angular distributions employed in the analysis: χ and F_{χ}
 - insensitive to normalizations, JES and PDFs