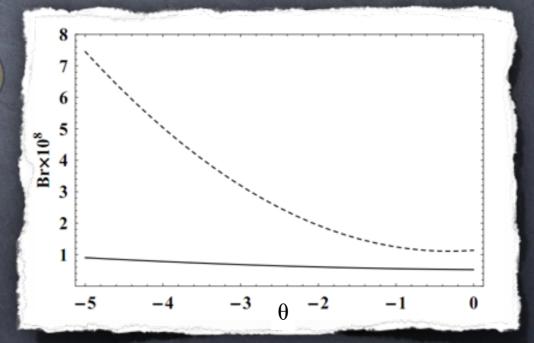

Study of charmless B decays with the LHCb detector -CHIPP SCHOOL 2012-

Jessica Prisciandaro 27/01/2012

Objectives

Measure the relative rates and CP asymmetries of charmless penguin loop processes in B mesons decays, searching for deviations from SM predictions. In particular:

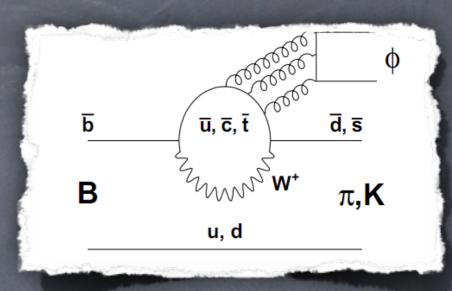
-
$$B^{\pm}$$
 -> $\Phi \pi^{\pm}$


$B^+ \to \phi \pi^+$ Not observed yet! Currently:

- Upper limit: BR<2.4x10⁻⁷ at 90% CL (BABAR, PRD 74 (2006) 011102)
- SM predictions: BR between 5x10⁻⁹ (B. Mawlong, R. Mohanta and A. K. Giri, arXiv:0804.1231v1) and 7x10⁻⁸ (Ying Li, Cai-Dian Lu, Wei Wang PRD 80(2009) 014024).

Large prediction range strongly dependent on the ω - Φ mixing.

$$egin{aligned} \left(egin{aligned} \omega \ \phi \end{aligned}
ight) &= egin{pmatrix} cos heta & sin heta \ -sin heta & cos heta \end{pmatrix} egin{pmatrix} n \overline{n} \ s \overline{s} \end{pmatrix} \end{aligned}$$


BR(B⁺->
$$\phi \pi$$
⁺) = 3.2×10⁻⁸ with θ = -(3.0±1.0)°

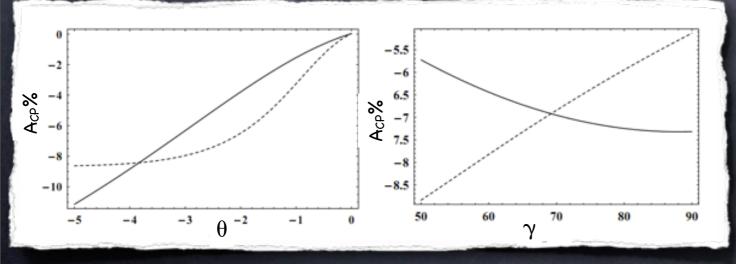
Dependence of the BR on the mixing angle θ . The dot-dashed and solid lines correspond to charged and neutral channel, respectively.

Why is this channel interesting?

channel sensitive to New Physics (Penguin decay with small Branching Ratio)

direct CP observable (also sensitive to NP)

$$A_{CP} = \frac{BR(B^{-} \to \phi \pi^{-}) - BR(B^{+} \to \phi \pi^{+})}{BR(B^{-} \to \phi \pi^{-}) + BR(B^{+} \to \phi \pi^{+})}$$


SM prediction:
$$A_{CP} = (-8.0^{+0.9+1.5}_{-1.0-0.1})\%$$

with:

$$\gamma = (58.6 \pm 10)^{\circ}$$

$$\theta = -(3.0 \pm 1.0)^{\circ}$$

[PRD 80 (2009) 014024]

Dependence of the direct CP asymmetries (in units of %) on the mixing angle θ (left panel) and the CKM phase angle γ (right panel), where dot-dashed lines and the solid lines correspond to charged channel and neutral channel respectively.

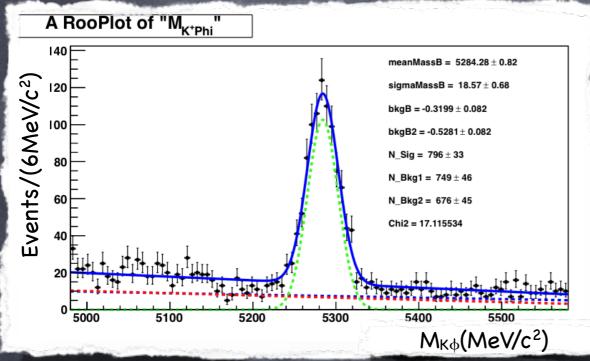
Goals:

Measure the BR and A_{CP} for B⁺-> ϕ K⁺

PDG values:
$$BR(B^+ \to \phi K^+) = (8.3 \pm 0.7) \times 10^{-6}$$

$$A_{CP}(B^+ \to \phi K^+) = (-0.01 \pm 0.06)\%$$

• Measure the ratio of the two Branching Ratios : $R = \frac{BR(B^+ o \phi \pi^+)}{BR(B^+ o \phi K^+)}$

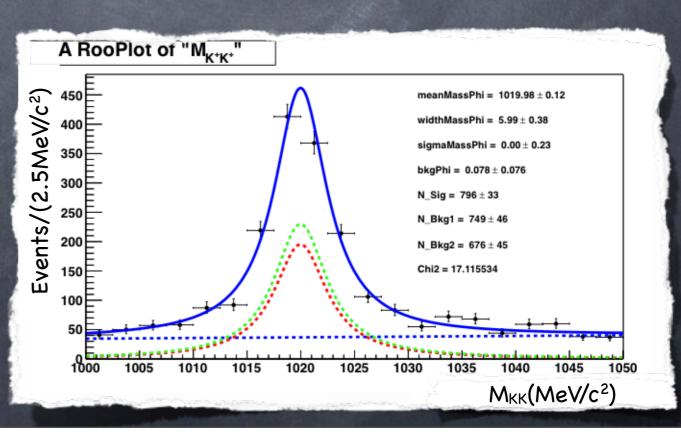

From B+-> $\phi\pi^+$ theoretical predictions: R=0.6-8.3x10⁻³

Assuming (naively) the same efficiencies for both mode, between 2000 and 20000 events are needed in the B+-> ϕ K+ channel to observe ~ 10 events B+-> $\phi\pi$ +

 \odot Depending on the size of the observed signal, measure A_{CP} for $B^+-> \varphi \pi^+$

First results - B+-> K+

Preliminary study of B+-> ϕ K+ using a specific selection for this channel



Two dimensional fit of B Mass and ϕ Mass

Data taken with Down polarity of the magnet: 796 signal events with 165 pb⁻¹ of data

Conclusion

- Number of expected events with the full 2011 data sample (1.05 fb⁻¹): 5.1- 5.2k events.
- From preliminary results $B^+->\phi\pi^+$ analysis seems to be feasible.
- B−> $\phi\pi^+$ and B−> ϕ K⁺ analysis will be performed in 2011–2012 with the 1 fb⁻¹ of data collected in 2011.