Top p_T Differential Distribution

lan Watson

University of Sydney/Université de Genève

2012 CHIPP School

- ► Top quark is the newest (fundamental) member of the standard model (1995)
- ► Top also the heaviest (link to EWSB?)
 - Only quark to decay before hadronization
 - Chance to study a bare quark
- LHC is a top factory
 - Tevatron $\sigma \approx 7.5 \text{ pb}$
 - LHC $\sigma \approx 170 \text{ pb}$
- Differential distributions are an important probe of the top
 - Test of perturbative QCD
 - Hints/understanding of new physics can show up as deviations
- ▶ Here, top p_T distribution in semileptonic top pair decays

Reconstructing Top Quarks in ATLAS

- We use semi-leptonic tops w/standard ATLAS top id:
 - trigger on a high $p_T e$ or μ
 - require exactly one good (offline) lepton
 - ask for a large E_T^{miss} (neutrino)
 - ask for 4 or more jets
 - ask for a b-tagged jet
- Backgrounds
 - QCD fakes (estimate by data-driven methods)
 - ► W+jets
- Use likelihood to assign physics objects to top

100 150

200 250 300 350 400 m^{reco} [GeV]

 $L = BW(m(j_1j_2)|m_W, \Gamma_W) BW(m(l\nu)|m_W, \Gamma_W) BW(m(b_1l\nu)|m_t, \Gamma_t)$

$$BW(m(b_2j_1j_2)|m_t,\Gamma_t) \prod_{i \in objects} W(E_i|E_{i,reco})$$

- Cf'ing experiment to theory complex
- ▶ We **unfold** the p_T spectrum to account for detector effects
 - Construct w/MC response matrix, Aij, s.t. $x_i^{reco} = A_{ij}x_i^{gen}$
 - Then unfold data: $x_i^{truth} = A_{ii}^{-1}(x_i^{data} b_i^{est.})$
- Systematics need to be carefully propagated
- Appropriate binning needs to be selected
- ► Examples shown from Tevatron: (left) top p_T at DØ, (right) m_{tt} at CDF

Results

- No (public) results finalized
- (UP) leading jet p_T/M_T^W in μ channel w/5-jets @ .7fb⁻¹
 - Nb. no b-tagging

•
$$M_T^W = \sqrt{2p_T' p_T^\nu (1 - \cos \Delta \phi)}$$

► (RIGHT) DØ results for unfolded top p_T (2010)

Ian Watson, USyd/UniGe

Top p+ Differential Distribuion

BACKUP

Semileptonic Top Analysis Overview

- Basic Analysis strategy
 - Select events likely to have tops
 - Subtract background events
 - Unfold detector effects
 - ► Final result: p_t distribution comparable with theory
- Use the 2 fb⁻¹ selection now, aim for full 2011 dataset

Electron channel

- Trigger: EF_e20_medium, EF_e22_medium for Period K
- Primary vertex with >= 4 tracks
- One good electron ($p_T > 25 \text{ GeV}$)
- No good muons ($p_T > 20$ GeV)
- Electron matches the trigger
- $E_T^{miss} > 35 \text{ GeV}$
- $M_T^W > 25 \text{ GeV}$
- At least 4 jets ($p_T > 25$ GeV)

Muon channel

- Trigger: EF_mu18, EF_mu18_medium for periods J,K
- Primary vertex with >= 4 tracks
- One good muon
- No good electrons
- No trigger matching
- $E_T^{miss} > 20 \text{ GeV}$
- $\blacktriangleright \ M_T^W + E_T^{miss} > 60 \ {\rm GeV}$
- At least 4 jets