The MAIA Detector for a 10 TeV Muon Collider

Ben Rosser On behalf of the MAIA Detector Team

University of Chicago

November 12, 2024

Introduction

- $\bullet\,$ Can we build a detector for a $10\,TeV$ muon collider?
 - Colliding fundamental particles (like electrons) with much less synchrotron radiation (like protons) offers **compact, efficient way** to reach high energies.
 - Muons are unstable: many challenges, lots of accelerator and detector R&D needed!
 - Detailed studies done with a $\sqrt{s} = 1.5$ or 3 TeV detector design: based on CLIC, with addition of tungsten "shielding nozzles" to suppress large beam-induced background (**BIB**).
 - To maximize physics potential, important for muon collider to reach $\sqrt{s} = 10 \text{ TeV}$.
- MAIA (Muon Accelerator Integrated Apparatus) is one $10\,{\rm TeV}$ detector under study.
- This talk:
 - Overview of the MAIA detector design.
 - Tracker design and performance.
 - Calorimeter design and performance.
 - Conclusion and outlook.
- Note: plan to show latest results publicly at US CPAD workshop next week.

Studies with Beam Induced Background

- MAIA performance evaluated using updated FLUKA 10 TeV BIB:
 - Simulation performed by randomly sampling and combining FLUKA "sub-events" (1/10 of bunch crossing) to ensure statistical independence, and then overlaying during digitization.
 - $\bullet\,$ BIB kinematics very similar to $3\,{\rm TeV};$ but MDI, nozzle optimization extremely important.
 - See Kiley Kennedy's USMCC talk on MDI for more details (will also be presented at CPAD).

MAIA Detector Concept

- Evolution of $3 \,\mathrm{TeV}$ CLIC detector; still using tungsten shielding nozzles to mitigate BIB.
- Solenoid moved to sit inside calorimeters:
 - \bullet Field strength increased from 3.57 to 5 ${\rm T}.$
 - Smaller overall (265 vs $344 \,\mathrm{mm}$ in barrel).
 - Shields calorimeters from the effect of BIB.
- Silicon tracker partially reoptimized:
 - Vertex detector used double-sided vertex layers to select hits; requires extra material and power, mildly inefficient for displaced tracks.
 - Greatly improved ACTS-based track finding allowed removing all but innermost doublet.
- Calorimeter depth increased:
 - Silicon-tungsten EM calorimeter: $40 \rightarrow 50$.
 - Iron-scintillator hadronic calorimeter: $60 \rightarrow 75$.

MAIA Performance Studies

- Detector performance evaluated using **single particle** samples:
 - Muons for the tracker: flat in p_{T} .
 - Photons the ECal: flat in E.
 - Neutrons for the HCal: flat in E.
 - Uniformly distributed in $0 < \phi < 2\pi$, $8^{\circ} < \theta < 172^{\circ}$.
- BIB overlay applied; reconstruction performed using key4hep-based MuonColliderSoft framework.
- Reco uses Pandora particle flow:
 - Track-to-cluster association found to be suboptimal for muon collider.
 - Work needed before we can study other objects (electrons, taus).

Expected Radiation Damage

• Radiation at 10 TeV comparable to HL-LHC and previous 3 TeV muon collider studies; much lower than FCC-hh (10¹⁸ 1 MeV-n_{eq}/cm²) (2209.01318, 2105.09116)

Total ionizing dose

6 / 18

1 MeV neutron equivalent in Silicon [n cm⁻² y⁻¹]

MAIA Tracker Layout and Occupancy

			Vertex Detector	In	ner Tracker	Outer Tracker	
	Sensor Type		pixels	m	acropixels	microstrips	
	Layers, Barrel (Endcap)	4 (4)		3 (7)	3 (4)	
	Cell Size		$25 \mu { m m} imes 25 \mu { m m}$	50,	μ m $ imes$ 1mm	50 μ m $ imes$ 10mm	
	Sensor Thickne	SS	50 μ m		100 μ mm	100μ mm	
	Time Resolutio	n	30ps		60ps	60ps	
	Spatial Resolut	ion	5 μ m $ imes$ 5 μ m	$ 7\mu$	m $ imes$ 90 μ m	7μ m $ imes$ 90 μ m	
•	Very high hit densities i	n vortov		. Г			MAIA Detector Concept
	• Up to 1600 hits/cm ² in innermost (but				Muon Collide Simulation, wit	<i>r</i> th BIB (Lattice ∨0.4)	[-0.5, 15] ns
	collisions 1000x less	frequent	than LHC).	10 ³	√ s = 10 TeV		[-3σ _t , 5σ _t]
	 Compare to HL-LHC resolution but 1mm : 	LGADs: × 1mm g	same آي ranularity. ۾	barral	caps	Barrel	Barrel
٩	$[-3\sigma, 5\sigma]$ beam crossing	g timing BIR:	window A	10 ²	Ŭ O X		OT EI
				-			_
	• Window cut also elim	inates		10			
	z-dependence from n	ozzle in ł	parrel.	E			
	• Incoherent e^+e^- pair	rs may lea	ad to				The local days
	additional flux; not i	ncluded.		1			Tracking Detector Layer

Tracking Efficiency

- Efficiency quite high with BIB, at least in the barrel:
 - Only about 3.5% lower overall wrt without BIB.
 - Noticeably worse in forward region: future work to optimize!
 - Stays relatively high as function of $p_{\rm T}$.
- Track cleaning applied to reject BIB fakes:
 - $p_{\mathsf{T}} > 1 \,\mathrm{GeV}$
 - $N_{\rm hits} > 5$
 - $|d_0| < 0.1 \,\mathrm{mm}$
 - $\chi^2/\text{DOF} < 3.$
 - Needs reoptimization for heavy flavour!

Ben Rosser (Chicago)

November 12, 2024 8 / 18

Track p_{T} Resolution

- Track p_T resolution shown as function of different p_T ranges, with/without BIB.
- \bullet Momentum resolution ranges from a few percent to up to 5% for 1-5 ${\rm TeV}$ tracks.
- Resolution does not degrade in the presence of BIB.

Track d_0 Resolution

- d_0 resolution also stays stable in the presence of BIB.
- Consistently found to be below $10\,\mu{\rm m}$; roughly stable as function of $p_{\rm T}$ and θ .

Calorimetry

		ECA	۹L		HCAL	
Cell	Cell type		Silicon - Tungsten		Iron - Scintillato	or
Cell	Cell Size		5.1m	nm	30.0 mm $ imes$ 30.0 m	าm
Sens	or Thickness	0.5mm			3.0mm	
Abso	Absorber Thickness		2.2mm		20.0mm	
Number of layers		50			100	
 Current proposals comparable to existing calorimeter technology: ECal very similar to CMS high granularity calorimeter upgrade. HCal similar to ATLAS TileCal (10x smaller sensors). Impact of solenoid shielding: Approximately 4X₀ worth of material. Reduces incoming BIB flux by a factor of 10 compared to previous design. 			Simulated hit energy density [MeV/cm ²]			Muon Collider Simulation, with BIB (Lattice v0.4) $\sqrt{s} = 10 \text{ TeV}$ — MuColl v1 — MAIA Detector Concept 0 25 30 35 40

- HCal smalle
- Impact of
 - Appro
 - Reduce **10** co

40 Calorimeter layer

-45 50

Variable Cell Thresholds

• BIB in the ECAL:

- Lower layers dominated by **photons**.
- Layers further away mainly **neutrons**.
- Very low energy, soft, diffuse: hard to reconstruct.
- High cell thresholds needed for BIB:
 - Derive **cell-dependent** thresholds from BIB.
 - Higher thresholds to reject photons.
 - Strong handle at reducing fakes; at cost of worse resolution.

Photon Efficiency

- \bullet Photons reconstructed by Pandora cone-clustering of cells with timing b/w -0.5 to 10 ${\rm ns.}$
- Efficiency measured by $\Delta R < 0.1$ matching reco photons with $p_{\rm T} > 5 \,{\rm TeV}$ to truth.
- Very high (95%) above $100\,{\rm GeV}$, but drops down to 60% for a 10- $20\,{\rm GeV}$ photon.

Electromagnetic Calorimeter Response

- Measuring energy resolution requires characterizing calorimeter response function:
 - Determined by studying photons without BIB, using jets as proxy for photons instead of Pandora objects.
 - Binned in photon energy and θ .
 - Low-energy photons at edge of detector acceptance show largest discrepancy.
- **Correct** energy resolution using measured response to account for these effects.

Photon Energy Resolution

- Without BIB, energy resolution stays stable at around 6%: no impact from shielding!
- With BIB, Pandora issues cause high contamination below $50 \,\mathrm{GeV}$: drops as low as 60%.
- More detailed BIB mitigation (taking cell timing into account) could help mitigate this.

Hadronic Calorimeter Performance

• HCal performance still work in progress:

- In the past: showed very poor reconstruction efficiency for neutrons.
- This turned out to be due to a typo in a steering file: HCal deposits in the barrel were **not getting processed**.
- With that fixed: efficiency looks great, quite comparable to 3 TeV detector.
- Resolution studies with BIB still not finalized:
 - Similar calibration strategy as ECal: derive response function from simulation w/o BIB.
 - Hope to have these results very soon.
- Will update paper draft once they are ready.

Future Work

- Presented an initial look at the MAIA detector design and performance studies.
- Many areas for future work:
 - **Muon system**: far enough away to not be impacted by BIB, but can a next-gen HCal replace this altogether?
 - Forward region: clear issues, especially tracker layout needs reoptimizing.
 - Nozzle geometry: aim to increase η coverage without affecting BIB rejection.
 - Magnet feasibility: how practical is the proposed 5 T field?
 - **Trigger system**: aiming for triggerless readout, more detailed studies needed.
 - **Particle flow**: better algorithms needed for additional objects!

MAIA: A new detector concept for a 10 TeV muon collider

Charles Bell,¹ Daniele Calzolari,² Christian Carli,² Karri Folan Di Petrillo,³ Micah Hillman,¹ Tova R. Holmes,¹ Sergo Jindariani,⁴ Kiley E. Kennedy,⁵ Ka Hei Martin Kwok,⁴ Anton Lechner,² Lawrence Lee,¹ Thomas Madlener,⁶ Federico Meloni,⁶ Isobel Ojalvo,⁵ Priscilla Pani,⁶ Rose Powers,⁵ Benjamin Rosser,³ Leo Rozanov,³ Kyriacos Skoufaris,² Elise Sledge,⁷ Alexander Tuna,¹ and Junjia Zhang⁵

¹University of Tennessee, Knoxville, TN, USA ²European Organization for Nuclear Research (CERN), Switzerland ³University of Chicago, IL, USA ⁴Fermi National Accelerator Laboratory, IL, USA ⁵Princeton University, NJ, USA ⁶Deutsches Elektronen-Synchrotron DESY, Germany ⁷California Institute of Technology, CA, USA (Dated: November 10, 2024)

Conclusion and Paper Status

- Thanks to Alex Cerri and Kevin Black for providing comments on the paper draft!
- We'll consider and implement editorial suggestions. Some responses to questions:
- Why is tracking efficiency preferentially lost at high $p_{\rm T}$ after cleaning?
 - Higher momentum muons are more likely to radiate; cleaning is also quite strict.
- Are other sources of BIB (e.g. neutrino interactions) relevant?
 - Decay electrons interacting are by far the dominant component of the BIB.
- \bullet Is there a reason to limit ourselves to $\mathit{O}(10\,\mathrm{ps})$ resolution? Would $\mathit{O}(1\,\mathrm{ps})$ help?
 - Wanted to be conservative in establishing baseline performance; definitely want to study effect of improved resolution in the future.
- $\bullet\,$ Why a $5\,T\,$ magnetic field specifically?
 - Based on a scan considering incoherent pairs effects (omitted in these studies).
- 80% tracking efficiency seems quite low- is it a good idea to quote that number?
 - Cumulative efficiency including (suboptimal) endcaps; we can avoid quoting this number.

Tungsten Shielding Nozzles

- Current nozzle geometry:
 - Restricts forward region to $|\eta| < 2.44$ (10°).
 - Dark green at bottom of figure is cavity for muon beam pipe.

The Case for 10 TeV

- $\sqrt{s} = 10 \,\mathrm{TeV} \ \mu^+\mu^-$ approximately comparable to $100 \,\mathrm{TeV} \ pp$ collider:
 - Can nail down shape of the Higgs potential, achieve strong Higgs precision (2206.08326).
 - + 5σ discovery potential for some minimal WIMP dark matter models at correct thermal target.
- Muon colliders become VBF colliders: notion of "electroweak PDF" emerges.
 - s-channel interactions (dashed lines) fall with \sqrt{s} ; electroweak interactions become dominant.

Existing 3 TeV Detector Design

• Existing detector concept based on CLIC with addition of shielding nozzles to reduce BIB.

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- 22 X₀ + 1 λ₁.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

IMCC: Muon Collider Detector (CERN)

tracking system

- Vertex Detector: double-sensor lavers (4 barrel cylinders and 4+4 endcap disks): 25x25 um² pixel Si sensors. Inner Tracker: 3 barrel lavers and 7+7 endcap disks: • 50 µm x 1 mm macronixel Si sensors. Outer Tracker: 3 barrel lavers and 4+4 endcap disks: 50 µm x 10 mm microstrip Si sensors. shielding nozzles
 - Tungsten cones + borated polyethylene cladding.

IMCC Physics and Detector Meeting

BIB Overlay and Subevent Mixing

- See Nazar's talk for details on BIB overlay and simulation.
- For 10 TeV studies, we're now using new pipeline with FLUKA subevent mixing:
 - Simulating the BIB contributions in FLUKA is computationally expensive.
 - Overlays statistically independent; reduced effects due to lack of BIB statistics.

Expected Tracker Occupancies

IMCC Physics and Detector Meeting