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Black holes, as seen from the outside, are described by an ordinary
quantum system.

=

It would be nice to solve the quantum system. This means, e.g.,
computing correlators like 1

Z tr
󰀃
e−βHO

󰀄
on the LHS.
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For certain special black holes, we have the explicit Hamiltonian
and the Hilbert space of the quantum system.
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For certain special black holes, we have the explicit Hamiltonian
and the Hilbert space of the quantum system.

So why haven't we solved these black holes yet?
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Review gauge/gravity duality for maximally supersymmetric Yang
Mills (SYM) theory in p + 1 dimensions, for p < 3.
[Itzhaki, Maldacena, Sonneschein, Yankielowicz '00]

SYMp+1 = =

5 / 71



For p = 3 this is the famous N = 4 SYM, but studying low
dimensional cousins p < 3 has some advantages (Monte Carlo,
matrix bootstrap, quantum simulation??)
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For p = 3 this is the famous N = 4 SYM, but studying low
dimensional cousins p < 3 has some advantages (Monte Carlo,
matrix bootstrap, quantum simulation??)

In slightly different regimes, terminology:
◮ p = 0: BFSS
◮ p = −1: IKKT
◮ p = 1: matrix string theory

6 / 71



◮ Review of non-conformal holography/black holes
◮ Matrix bootstrap for simple models
◮ Matrix bootstrap for BFSS, future directions
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Consider the effective field theory of Dp-branes, for p ≤ 3 ⇒
SU(N) SYM in p + 1 dimensions.

8 / 71



Consider the effective field theory of Dp-branes, for p ≤ 3 ⇒
SU(N) SYM in p + 1 dimensions.

g2YM ∝ gsℓ
p−3
s

The interaction is relevant for p < 3.
't Hooft coupling λ = g2YMN ⇒ λ̃ = g2YMN/βp−3.
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Consider the effective field theory of Dp-branes, for p ≤ 3 ⇒
SU(N) SYM in p + 1 dimensions.

g2YM ∝ gsℓ
p−3
s

The interaction is relevant for p < 3.
't Hooft coupling λ = g2YMN ⇒ λ̃ = g2YMN/βp−3.

Decoupling limit: E2(α′) → 0, Ep−3 g2YM = fixed

Note that for p < 3 this implies that gs → 0.
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Black brane solution

In the 't Hooft limit, with λ̃ ≫ 1, Type II supergravity.

I = 1

(2π)7(α′)4

󰁝
d10x√g

󰀗
e−2φ(R + 4(∇φ)2)− 1

2(p + 2)!
F2

p+2

󰀘
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Black brane solution

In the 't Hooft limit, with λ̃ ≫ 1, Type II supergravity.

I = 1

(2π)7(α′)4

󰁝
d10x√g

󰀗
e−2φ(R + 4(∇φ)2)− 1

2(p + 2)!
F2

p+2

󰀘

This has the famous black brane solution:

ds2 = f −1/2[h(r)dt2 + dx2p] + f 1/2
󰀅
h−1(r)dr2 + r2dΩ2

8−p
󰀆
,

e−2φ = g−2
s f (p−3)/2, A0···p = f −1,

f = 1 +
d0g2YMN

(α′)2(r/α′)7−p , dp = 27−2pπ
9−3p

2 Γ
󰀃
1
2(7− p)

󰀄
,

h = 1− r70/r7
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Black brane solution

In the 't Hooft limit, with λ̃ ≫ 1, Type II supergravity.

I = 1

(2π)7(α′)4

󰁝
d10x√g

󰀗
e−2φ(R + 4(∇φ)2)− 1

2(p + 2)!
F2

p+2

󰀘

This has the famous black brane solution:

ds2 = f −1/2[h(r)dt2 + dx2p] + f 1/2
󰀅
h−1(r)dr2 + r2dΩ2

8−p
󰀆
,

e−2φ = g−2
s f (p−3)/2, A0···p = f −1,

f = 1 +
d0g2YMN

(α′)2(r/α′)7−p , dp = 27−2pπ
9−3p

2 Γ
󰀃
1
2(7− p)

󰀄
,

h = 1− r70/r7

In the decoupling limit, delete 1.
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This solution is somewhat similar to the AdS black brane ×S8−p

ds2
α′ =

󰀕
z

RAdS

󰀖 3−p
5−p

󰀥
R2

AdS

󰀣
h(z) dτ2 + h−1(z)dz2 + dx2p

z2

󰀤
+ dΩ2

8−p

󰀦
,

h = 1− zd

zd
0

, d = 1 +
9− p
5− p , RAdS =

2

5− p ,

e−2φ = (dp(2π)
p−2N)2

󰀕
z

RAdS

󰀖 7−p
5−p (p−3)

,

A0···p =
√
α′dp(2π)

p−2N
󰀕

z
RAdS

󰀖−2 7−p
5−p

.
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R2

AdS

󰀣
h(z) dτ2 + h−1(z)dz2 + dx2p

z2

󰀤
+ dΩ2

8−p

󰀦
,

h = 1− zd

zd
0

, d = 1 +
9− p
5− p , RAdS =

2

5− p ,

e−2φ = (dp(2π)
p−2N)2

󰀕
z

RAdS

󰀖 7−p
5−p (p−3)

,

A0···p =
√
α′dp(2π)

p−2N
󰀕

z
RAdS

󰀖−2 7−p
5−p

.

Exercise: work out the change of coordinates and check that finite
τ, z is consistent with the decoupling limit. Work out z0 as a
function of temperature.
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r = 0

r = ∞ r = ∞
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Some features for p = 0:

ds2
α′ =

󰀕
z

RAdS

󰀖 3
5
󰀗
R2

AdS

󰀕
h(z) dτ2 + h−1(z)dz2

z2

󰀖
+ dΩ2

8

󰀘
,

h = 1− zd

zd
0

, d = 1 +
9

5
,

e2φ ∝ 1

N2

󰀕
z

RAdS

󰀖 21
5

.
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◮ Sphere shrinks near boundary z = 0. When z ∼ 1 curvature
scale is of order ∼ ℓs.
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Some features for p = 0:

ds2
α′ =

󰀕
z

RAdS

󰀖 3
5
󰀗
R2

AdS

󰀕
h(z) dτ2 + h−1(z)dz2

z2

󰀖
+ dΩ2

8

󰀘
,

h = 1− zd

zd
0

, d = 1 +
9

5
,

e2φ ∝ 1

N2

󰀕
z

RAdS

󰀖 21
5

.

◮ Sphere shrinks near boundary z = 0. When z ∼ 1 curvature
scale is of order ∼ ℓs.

◮ dilaton grows towards the horizon. SYM coupling is relevant.
◮ Exercise: compute the proper distance from the boundary to

the horizon. Use this to estimate the thermal 2-pt function of
a massive stringy mode e−mℓ and its β dependence.
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Extrapolation to strong coupling

◮ p = 0 view D0s as gravitons in 11d ⇒ boosted Schwarzschild
black hole (homogeneous in the 11th dimension) ⇒ BFSS
conjecture

◮ p = 2, view the D2 branes as M2 branes, AdS4 × S7 ABJM
◮ p = 1, S-duality relates D1 solution to F1s ⇒ matrix string

((R8)N/SN CFT)
◮ p = −1 ...?
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Relation to AdS

Fluctuations of the dilaton φ = φsol + χ

I ∝
󰁝

d10x√ge−2φsol(∇χ)2

=

󰁝
d8−pΩ dd−1󰂓x dz dτ √gAdS

󰀅
(∇AdSχ)

2 + m2
kχ

2
󰀆

Using mk = k(k + 7− p) ⇒ fields in AdSd+1:

〈Oφ(x)Oφ(0)〉 ∼
1

|x|2(∆−d−p−1)
, ∆ = RAdS(k + 2) + 2.

This applies to SUGRA modes.
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The GKP dictionary

Consider DBI action in the presence of a dilaton wave. Repeat
decoupling argument.
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The GKP dictionary

Consider DBI action in the presence of a dilaton wave. Repeat
decoupling argument. DBI action for Dp-branes:

IDBI ∼
󰁝

dp+1x e−φ(x,X)F2(x) + · · ·

Boundary operators schematically of the form
SSYM → SSYM +N

󰁛

j

1

k!

󰁝
dp+1x ∂I1 · · · ∂IkφTr

󰀓
F2
µνX(I1 · · ·XIk)

󰀔
.
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Consider DBI action in the presence of a dilaton wave. Repeat
decoupling argument. DBI action for Dp-branes:

IDBI ∼
󰁝

dp+1x e−φ(x,X)F2(x) + · · ·

Boundary operators schematically of the form
SSYM → SSYM +N

󰁛

j

1

k!

󰁝
dp+1x ∂I1 · · · ∂IkφTr

󰀓
F2
µνX(I1 · · ·XIk)

󰀔
.

This is a super-descendant of the 1/2 BPS operator:
Tr

󰀓
F2
µνX(I1 · · ·XIk)

󰀔
∼ QQQQ Tr X(I1 · · ·XIk+2)

We learn that the dimensions of the 1
2 BPS operator:

∆ = RAdS(k + 2) + 2 ⇒ ∆1
2BPS

= RAdSk
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Giant gravitons

As a fun aside [WIP w/ Gauri Batra], we can also reproduce the
relation

∆1
2BPS

= RAdSk

For values of k that are very large k ∼ N by considering a classical
solution where a giant graviton D(6− p) brane that couples to
magnetically-dual RR flux.
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Giant gravitons

⇝

τ

x

z
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BH thermodynamics

1. metastability: black hole can decay into D0 branes. Neglected
in the 't Hooft limit.
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BH thermodynamics

1. metastability: black hole can decay into D0 branes. Neglected
in the 't Hooft limit.

2. Relation to AdSd+1 black brane S ∝ N2(T/λ)d−1. For p = 0,
entropy S ∝ N2(T/λ)9/5

3. Higher derivative corrections

S = N2
󰀓

c0(T/λ)9/5 + c1(T/λ)18/5 + · · ·
󰀔
+ N0b0T−3/5

4. Thermal 1-pt functions
5. exercise: debug the following wrong argument. In the

decoupling limit E2α′ → 0, so we should be able to neglect all
α′ corrections to SUGRA.
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III

III

IV

tc
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End of the gravity review
⇒ Boundary methods for analyzing low dimensional SYM

Refs for bootstrap:
[Anderson & Kruczenski, 1612.08140],
[HL, 2002.08387], [Kazakov & Zheng, 2108.04830]
[Han, Harnoll, Kruthoff, 2004.10212]
[Fawzi, Fawzi, Scalet, 2311.18706] [Cho, Gabai, Sandor, Yin, 2410.04262]
[HL, 2302.04416] [HL & Zheng, 2410.14647]
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Numerically, heroic Monte Carlo simulations have been performed
[Kabat et al., Anagnostopoulos et al., Hanada et al., …, Berkowitz et al.,
Pateloudis et al.].

These simulations are non-trivial, both computationally and
conceptually.

◮ physics simplifies at large N but the computation gets harder
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Numerically, heroic Monte Carlo simulations have been performed
[Kabat et al., Anagnostopoulos et al., Hanada et al., …, Berkowitz et al.,
Pateloudis et al.].

These simulations are non-trivial, both computationally and
conceptually.

◮ physics simplifies at large N but the computation gets harder
◮ sign problem ☹
◮ metastability: some problems ill-defined at finite N
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Large N bootstrap

◮ works N = ∞; gives rigorous bounds
◮ no sign problem ☺

22 / 71



Large N bootstrap

◮ works N = ∞; gives rigorous bounds
◮ no sign problem ☺
◮ for multi-matrix models, exponentially many constraints ☹

22 / 71



Large N bootstrap

◮ works N = ∞; gives rigorous bounds
◮ no sign problem ☺
◮ for multi-matrix models, exponentially many constraints ☹

Number of correlators of fixed length grows ∼ DL.

〈Tr ABABBBA〉 , 〈Tr AAABBBB〉 , · · ·
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1-Matrix model

Probability distribution over N × N Hermitian matrix Mij:

p(M) =
1

Z e−N2 tr V(M), V(M) =
1

2
M2 +

g
4

M4
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1-Matrix model

Probability distribution over N × N Hermitian matrix Mij:

p(M) =
1

Z e−N2 tr V(M), V(M) =
1

2
M2 +

g
4

M4

Goal: compute moments
󰀍
tr Mk󰀎 as a function of g.

󰀍
tr M2

󰀎
= lim

N→∞

1

Z

󰁝
dM e−N2 tr V(M) tr M2
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Bootstrapping matrices

1. Guess the value of some simple correlator, e.g.
󰀍
tr M2

󰀎

2. Feed it through the loop eqns to generate more correlators
3. Demand that

󰀍
trO†O

󰀎
≥ 0.
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Loop (Schwinger-Dyson) equations

= +

◮ relates lower-pt correlators to higher-pt correlators
◮ uses large N factorization ('t Hooft)

〈tr Mk〉 =
k−1󰁛

ℓ=0

〈tr Mℓ〉〈tr Mk−ℓ−2〉+ g 〈tr Mk+2〉
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Positivity

Naive algorithm: starting with some guess for
󰀍
tr M2

󰀎
, generate

moments
󰀍
tr M4

󰀎
,
󰀍
tr M6

󰀎
,
󰀍
tr M8

󰀎
, · · · .
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Positivity

More systematically, we can consider a general polynomial in the
matrix M:

O =
󰁛

αkMk ⇒ trO†O ≥ 0.

This implies that α∗
i Mijαj ≥ 0 for all coefficients α, where we have

assembled all the correlators into a big matrix Mij =
󰀍
tr Mi+j󰀎:

M =

󰀳

󰁃
1 〈tr M〉

󰀍
tr M2

󰀎

〈tr M〉
󰀍
tr M2

󰀎 󰀍
tr M3

󰀎
󰀍
tr M2

󰀎 󰀍
tr M3

󰀎 󰀍
tr M4

󰀎

󰀴

󰁄 ≽ 0

Here Mij =
󰀍
tr Mi+j󰀎.
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Review of the matrix bootstrap
��
�
�
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As the size of M increases, rapid convergence to the exact
solution.

exact soln
M4×4 ≽ 0

M5×5 ≽ 0

M6×6 ≽ 0
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Metastability

To address the issue of metastability, consider g < 0. The
potential is unbounded from below:

M

V(M)

In the large N limit, tunneling is suppressed.
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Metastability
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For −g∗ < g < 0 the model still makes sense at N = ∞
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Metastability V = −1
2A

2 + 1
4gA4
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�
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Metastability V = −1
2A

2 + 1
4gA4

ϕ(
λ)

-4 -2 0 2 4

-20

-10

0

10

20

30

ρ(λ)
d = 20
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λ
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d = 0 (stat mech) d = 1

solvable 1-matrix integral 1-matrix quantum mech
c = 1 matrix model

unsolvable multi-matrix integral D0-brane quantum mech
BFSS matrix theory
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Multi-matrix integrals

Main challenge: exponentially many correlators for a given length
L, e.g., for L = 7:

〈Tr ABABBBA〉 , 〈Tr BBBABAB〉 , · · ·

Also more loop equations and more positivity constraints:

M =

󰀳

󰁅󰁅󰁅󰁃

1 Tr A Tr B · · ·
Tr A Tr A2 Tr AB
Tr B Tr BA Tr B2

... . . .

󰀴

󰁆󰁆󰁆󰁄
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20].
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20]. One can consider, e.g.,

Z =

󰁝
dA dB e−N2 tr V(A,B)

V(X,Y) = −1

2
[A,B]2 + v(A) + v(B),

v(X) = 1

2
X2 +

1

4
X4
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20]. One can consider, e.g.,

Z =

󰁝
dA dB e−N2 tr V(A,B)

V(X,Y) = −1

2
[A,B]2 + v(A) + v(B),

v(X) = 1

2
X2 +

1

4
X4

Using non-linear relaxation, one can convert it to a standard
semi-definite programming problem [Kazakov & Zheng '22].

0.4217836 ≤
󰀍
tr A2

󰀎
≤ 0.4217847

0.3333413 ≤
󰀍
tr A4

󰀎
≤ 0.3333421

∼ 6 decimal digits on a laptop!
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d = 0 (stat mech) d = 1

solvable 1-matrix integral 1-matrix quantum mech
c = 1 matrix model

unsolvable multi-matrix integral D0-brane quantum mech
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1-matrix QM

N2 non-relativistic particles arranged in a matrix.

i[Xij,Pkl] = δilδjk.

Hamiltonian:
H = N

󰀕
1

2
Tr P2 +

m2

2
Tr X2 +

g
4

Tr X4

󰀖
.

U(N) gauge constraint:
Jik = i(XijPjk − PijXjk) + Nδik = 0

[for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, · · · ]
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1-matrix QM

N2 non-relativistic particles arranged in a matrix.

i[Xij,Pkl] = δilδjk.

Hamiltonian:
H = N

󰀕
1

2
Tr P2 +

m2

2
Tr X2 +

g
4

Tr X4

󰀖
.

U(N) gauge constraint:
Jik = i(XijPjk − PijXjk) + Nδik = 0

known as c = 1 or ĉ = 1 matrix model1.
[for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, · · · ]

1in the double scaling limit
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O′ = [O,H]. In energy eigenstates
〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O′ = [O,H]. In energy eigenstates
〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.

example: 0 = 〈[tr XP,H]〉 = − tr P2 + tr X2 + g tr X4

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ☺)
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O′ = [O,H]. In energy eigenstates
〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ☺)

〈E| trO†O |E〉 ≥ 0 ⇒ Mij = 〈E| trO†
i Oj |E〉 ≥ 0

3. Optional: ground state bootstrap positivity:
〈O†[H,O]〉gs = 〈O†HO〉gs − Egs〈O†O〉gs ≥ 0
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O′ = [O,H]. In energy eigenstates
〈E|O′ |E〉 = 〈E|O|E〉E − E 〈E|O|E〉 = 0.

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ☺)

〈E| trO†O |E〉 ≥ 0 ⇒ Mij = 〈E| trO†
i Oj |E〉 ≥ 0

3. Optional: ground state bootstrap positivity:
Nij = 〈O†

i [H,Oj]〉gs ≽ 0
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Finite energy bootstrap

〈tr
X
2 〉

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

E/E0
Dashed line is the exact solution for g = 1.

[WIP w/ Zechuan Zheng; see also Han, Hartnoll, Kruthoff '20]
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Ground state bootstrap

+ denotes the exact solution for g = 1
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Ground state bootstrap

+ denotes the exact solution for g = 1.
∼ 6 digit precision on a laptop.
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D0-brane quantum mechanics

9 bosonic matrices and 16 fermionic matrices. Transform as a
vector and spinor of SO(9).

H =
1

2
Tr

󰀕
P2

I −
1

2
[XI,XJ]

2 − ψαγ
I
αβ [XI,ψβ ]

󰀖
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D0-brane quantum mechanics

9 bosonic matrices and 16 fermionic matrices. Transform as a
vector and spinor of SO(9).

H =
1

2
Tr

󰀕
P2

I −
1

2
[XI,XJ]

2 − ψαγ
I
αβ [XI,ψβ ]

󰀖

N = 16 SUSY:

Qα = Tr PI γ
I
αβψβ − i

2
Tr

󰁫
XI,XJ

󰁬
γIJ
αβψβ ,

{Qα,Qβ} = 2δαβH + 2γI
αβ Tr XIC

Cij = generator of SU(N).
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Review of known finite N BFSS properties

Believed to have 1 normalizable energy eigenstate |Ω〉 with E = 0.

The bound state has power law tails ψ(r) ∼ 1/r 9. This implies
that at finite N, 〈Ω|Tr XL |Ω〉 ∼

󰁕
r 8dr |ψ|2 → ∞ if L ≤ 9.

All other states are believed to be scattering states E > 0.

Some limited information about the S-matrix is known. [Douglas,
Kabat, Pouliot, Shenker, Paban, Sethi, Stern, Becker, Becker,
Polchinski][Maldacena Herderschee]

[Polchinski '99] gave a lower bound on 〈Ω|Tr X4 |Ω〉.
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Bosonic constraints: round 1
Commutator constraints

:
󰀍
[H,Tr X2]

󰀎
= 0 ⇒

󰀍
Tr XIPI + PIXI

󰀎
= 0.
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Bosonic constraints: round 1
Commutator constraints

:
󰀍
[H,Tr X2]

󰀎
= 0 ⇒

󰀍
Tr XIPI + PIXI

󰀎
= 0.

Tr[X,P] = iN2 ⇒ 〈Tr XP〉 = iN2/2.

43 / 71



Bosonic constraints: round 1
Commutator constraints

:
󰀍
[H,Tr X2]

󰀎
= 0 ⇒

󰀍
Tr XIPI + PIXI

󰀎
= 0.

Tr[X,P] = iN2 ⇒ 〈Tr XP〉 = iN2/2.

Positivity:

M =

󰀕
Tr X2 Tr XP
Tr PX Tr P2

󰀖
≽ 0

⇒
󰁛

I

󰀍
Tr X2

󰀎 󰁇
Tr

󰀓
PIPI

󰀔󰁈
≥ 9

4
N4.
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Bosonic constraints: round 1
Commutator constraints

:
󰀍
[H,Tr X2]

󰀎
= 0 ⇒

󰀍
Tr XIPI + PIXI

󰀎
= 0.

Tr[X,P] = iN2 ⇒ 〈Tr XP〉 = iN2/2.

Positivity:

M =

󰀕
Tr X2 Tr XP
Tr PX Tr P2

󰀖
≽ 0

⇒
󰁛

I

󰀍
Tr X2

󰀎 󰁇
Tr

󰀓
PIPI

󰀔󰁈
≥ 9

4
N4.

Next: replace Tr P2 (kinetic energy) with potential energy.
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Bosonic constraints: round 2

󰀍
N Tr X4

󰀎1/2
󰀕
144

g2
󰀍
Tr X4

󰀎
+

2E
3

󰀖
≥ 9

4
g2N4

Comments:
◮ Setting E = 0 recovers Polchinski point. Assuming parametric

saturation of the bd implies that ``typical eigenvalue''
r ∼ λ1/3, which is the size of the gravity region.

◮ Scale at which the bd varies is E/N2 ∼ λ1/3, regime of validity
of gravity.

◮ No good bound on
󰀍
Tr X2

󰀎
.
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Fermionic constraints

Had two eqns:
−2 〈K〉+ 4 〈V〉+ 〈F〉 = 0, 〈K〉+ 〈V〉+ 〈F〉 = E

In addition to solving for V, can solve for F:
〈F〉 = 2

󰀃
1
3 〈E〉 − 〈V〉

󰀄

Fermionic term F = OIXI ∼ ψψX. The operator ψψ is bounded
because it is made of Majorana fermions ψ2 = 1.
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Fermionic constraints

Had two eqns:
−2 〈K〉+ 4 〈V〉+ 〈F〉 = 0, 〈K〉+ 〈V〉+ 〈F〉 = E

In addition to solving for V, can solve for F:
〈F〉 = 2

󰀃
1
3 〈E〉 − 〈V〉

󰀄

Fermionic term F = OIXI ∼ ψψX. The operator ψψ is bounded
because it is made of Majorana fermions ψ2 = 1.
Therefore, as F gets large, X cannot be too small ⇒ tr X2 has a
lower bound.
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Lower bounds on
󰀍
tr X4

󰀎

0 20 40 60 80
0.001

0.005

0.010

0.050

0.100
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Constraints on
󰀍
tr X2

󰀎

0.1 0.5 1 5 10 50 100

0.05

0.10

0.50

1

Large N extrapolation of Monte Carlo simulations [Pateloudis et al.]
are ∼ 1/2 from the lower bound.
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Now let's set up the bootstrap more systematically and explain the
numerics.
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◮ Dynamics:

〈Ω| {Qα,Oα} |Ω〉 = 0.

Oα is any single trace, SO(9) spinor.
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◮ Dynamics:

〈Ω| {Qα,Oα} |Ω〉 = 0.

Oα is any single trace, SO(9) spinor.
example:
Oα ∝ γIJ

αβ trψβXIPJ ⇒ −2i
󰀍
tr
󰀅
XI,XJ󰀆XIPJ󰀎 =

󰀍
trψαψαXIXI󰀎 .
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◮ Dynamics:

〈Ω| {Qα,Oα} |Ω〉 = 0.

Oα is any single trace, SO(9) spinor.

◮ Hierarchy:
〈tr W〉 where W a word made of X,ψ,P.
level: ℓ(X) = 1, ℓ(ψ) = 3

2 , ℓ(P) = 2.

49 / 71



◮ Dynamics:

〈Ω| {Qα,Oα} |Ω〉 = 0.

Oα is any single trace, SO(9) spinor.

◮ Hierarchy:
〈tr W〉 where W a word made of X,ψ,P.
level: ℓ(X) = 1, ℓ(ψ) = 3

2 , ℓ(P) = 2.
⇒ ℓ({Q,O}) = ℓ(O) + 1

2 .
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2 , ℓ(P) = 2.
⇒ ℓ({Q,O}) = ℓ(O) + 1

2 .

◮ Kinematics:
⊲ SO(9) invariance, SU(N) invariance 〈tr(OC)〉 = 0.
⊲ cyclicity of the trace + (anti)-commutation relations
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◮ Dynamics:

〈Ω| {Qα,Oα} |Ω〉 = 0.

Oα is any single trace, SO(9) spinor.

◮ Hierarchy:
〈tr W〉 where W a word made of X,ψ,P.
level: ℓ(X) = 1, ℓ(ψ) = 3

2 , ℓ(P) = 2.
⇒ ℓ({Q,O}) = ℓ(O) + 1

2 .

◮ Kinematics:
⊲ SO(9) invariance, SU(N) invariance 〈tr(OC)〉 = 0.
⊲ cyclicity of the trace + (anti)-commutation relations
⊲ example:

󰁇
tr XI1XI2XI3PI4XI5XI6

󰁈
=

󰁇
tr XI2XI3PI4XI5XI6XI1

󰁈

+ i
󰁇

tr XI2XI3
󰁈󰁇

tr XI5XI6
󰁈
δI1I4
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SO(9) group theory

Only SO(9)-invariant operators have non-zero vevs.

However, positivity requires that we consider non-singlet operators
in intermediate steps.
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SO(9) group theory

Only SO(9)-invariant operators have non-zero vevs.

However, positivity requires that we consider non-singlet operators
in intermediate steps.

Trivial example:
󰀍
tr
󰀃
XJXJ󰀄󰀎 ≥ 0. Derived by observing that it is

the sum of squares of XJ (a non-invariant operator).
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Kinematic constraints
Less trivial example:

Mαβγη =
󰁇

tr
󰀓
ψαψβψδψη

󰀔󰁈
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Kinematic constraints
Less trivial example:

Mαβγη =
󰁇

tr
󰀓
ψαψβψδψη

󰀔󰁈

Viewed as a matrix in the {α,β} and {γ, η} indices, positivity
requires M ≽ 0.
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Kinematic constraints
Less trivial example:

Mαβγη =
󰁇

tr
󰀓
ψαψβψδψη

󰀔󰁈

Using the "addition of SO(9) angular momentum" rules:

(16)4 = (16 × 16)2 = (1 + 9 + 36 + 84 + 128)2

= 5(1) + non-singlets

Thus group theory determines this 164 = 65536 to just 5
unknowns.

Mαβγη = δαβδη󰂃a1 + γI
αβγ

I
η󰂃a9 + γIJ

αβγ
IJ
η󰂃a36 + γIJK

αβ γIJK
η󰂃 a84

+ γIJKL
αβ γIJKL

η󰂃 a128

Cyclicity and the fermion anti-commutation relations cuts this
further to just 2 unknowns.
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Expand s-channel block in terms of t-channel blocks:

β

α

Rs
η

󰂃

=
󰁛

Rt

FRs,Rt

󰀗
16 16
16 16

󰀘
β η

Rt

α 󰂃

⇒ 6j symbol. At higher levels, need higher-pt crossing kernels.

52 / 71



Kinematics determined Mαβγη in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mαβ,γη. By
decomposing ψαψβ into irreps, one can easily diagonalize M.
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Kinematics determined Mαβγη in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mαβ,γη. By
decomposing ψαψβ into irreps, one can easily diagonalize M.

The upshot is that by leveraging the symmetries of the model, the
D0-brane bootstrap is practical. ☺
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level total variables free variables
4 11 3
5 38 4
6 140 11
7 569 18
8 2528 59
9 12077 149

# of single trace SO(9) singlets, before and after modding out by
the EOM/kinematic constraints.
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Cross + is the Monte Carlo result∗ of [Berkowitz et al.'16].
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The lower bound on
󰀍
tr X2X2

󰀎
was derived (up to some factors) in

[Polchinski '99]. It can also be improved to finite energy [HL '23].
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method 〈tr X2〉
Monte Carlo

[Pateloudis et al.'22]
≈ 0.37± 0.05

primitive bootstrap
[HL '23]

≥ 0.1875

bootstrap
level 6 ≥ 0.294

bootstrap
level 7 ≥ 0.331

bootstrap
level 8+ ≥ 0.3401

bootstrap
level 9 ≥ 0.3451
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method 〈tr X2〉
Monte Carlo

[Pateloudis et al.'22]
≈ 0.37± 0.05

primitive bootstrap
[HL '23]

≥ 0.1875

bootstrap
level 6 ≥ 0.294

bootstrap
level 7 ≥ 0.331

bootstrap
level 8+ ≥ 0.3401

bootstrap
level 9 ≥ 0.3451

∼ 90% of the MC value with just level 7:
19 variable SDP, ∼ 170 EoMs, matrices of size ≲ 20× 20.
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Metastability in Monte Carlo

Monte Carlo results [Pateloudis et al. '22]
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Toy supermembrane problem

In a simpler toy problem, we see a similar-looking peninsula at low
levels, but an island at higher levels.
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Finite temperature generalization

[Araki Sewell '77] Somewhat surprising reformulation of KMS
condition:

󰁇
O†O

󰁈
log

󰀍
O†O

󰀎

〈OO†〉 ≤ β
󰁇
O†[H,O]

󰁈

KMS ⇐⇒ inequality holds for all operators O.

Can deal with the log using non-linear relaxation. [Fawzi, Fawzi,
Scalet '24] [Cho,Gabai,Sandor,Yin '24]
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Finite temperature ungauged 1-matrix QM

Back to the 1-matrix model [Cho,Gabai,Sandor,Yin '24]

H = N
󰀕
1

2
Tr P2 +

m2

2
Tr X2 +

g
4

Tr X4

󰀖
.

Choose not to impose the gauge constraint, e.g., sum over all
SU(N) charge sectors.
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Finite temperature ungauged 1-matrix QM

1 2 3 4 5
T

0.1

0.2

0.3

0.4

0.5

0.6

β(E(β)-E0)/N
2

g = 2

0.2 0.4 0.6 0.8 1.0
T

-0.001

0.001

0.002

0.003

(E-EL.T.)/N
2

g=2

Level 10 results, δE/E ∼ 10−3. [Cho,Gabai,Sandor,Yin '24]
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Finite temperature ungauged 1-matrix QM

Now we consider an unbounded potential [Cho,Gabai,Sandor,Yin '24]:

V(X) =
X
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Finite temperature ungauged 1-matrix QM

Now we consider an unbounded potential [Cho,Gabai,Sandor,Yin '24]:

V(X) =
X

0.10 0.15 0.20 0.25 0.30
T0.46

0.48

0.50

0.52

0.54

E/N2

g = -0.06

0.10 0.15 0.20 0.25 0.30
T0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E-EL.T.)/N
2

g=-0.06
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Finite temperature bootstrap

Ungauged 2-matrix quantum mechanics [Cho,Gabai,Sandor,Yin '24]:
H =

1

2
tr
󰀃
P2

X + P2
Y + (X2 + Y2)− 2g[X,Y]2

󰀄
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Finite temperature bootstrap

Ungauged 2-matrix quantum mechanics [Cho,Gabai,Sandor,Yin '24]:
H =

1

2
tr
󰀃
P2

X + P2
Y + (X2 + Y2)− 2g[X,Y]2

󰀄

0.2 0.4 0.6 0.8 1.0 1.2 1.4
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3.0

E/N2
g = 0.1

0.2 0.4 0.6 0.8 1.0 1.2 1.4
T
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3

4

E/N2
g = 0.4
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Finite temperature bootstrap

Ungauged 2-matrix quantum mechanics [Cho,Gabai,Sandor,Yin '24]:
H =

1

2
tr
󰀃
P2

X + P2
Y + (X2 + Y2)− 2g[X,Y]2

󰀄

0.2 0.4 0.6 0.8 1.0 1.2 1.4
T

0.5

1.0

1.5

2.0

2.5

3.0

E/N2
g = 0.1

0.2 0.4 0.6 0.8 1.0 1.2 1.4
T

1

2

3

4

E/N2
g = 0.4

In the future, BFSS at finite temp?!
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Future directions

◮ Islands?
◮ Constraints on the bound state?
◮ Finite energy/temperature BFSS
◮ Large N lattice systems, especially those with sign problems?

[Anderson & Kruczenski, Kazakov & Zheng, …]
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Future directions

◮ Islands?
◮ Constraints on the bound state?
◮ Finite energy/temperature BFSS
◮ Large N lattice systems, especially those with sign problems?

[Anderson & Kruczenski, Kazakov & Zheng, …]
◮ BMN model, other matrix models?
◮ p = −1, IKKT???

Thanks!
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D0-brane quantum mechanics

't Hooft limit: N → ∞ holding fixed λβ3 = g2Nβ3.
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D0-brane quantum mechanics

't Hooft limit: N → ∞ holding fixed λβ3 = g2Nβ3.

In the strongly coupled regime λβ3 ≫ 1, dual to a metastable
black hole in Type IIA [Klebanov & Tsetlyin '96, Itzhaki, Maldacena,
Sonneschein, Yankielowicz '20]:

ds2
α′ = −f(r)r2c dt2 + dr2

f(r)r2c
+

󰀕
r
rc

󰀖−3/2

dΩ2
8
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D0-brane quantum mechanics

't Hooft limit: N → ∞ holding fixed λβ3 = g2Nβ3.

In the strongly coupled regime λβ3 ≫ 1, dual to a metastable
black hole in Type IIA [Klebanov & Tsetlyin '96, Itzhaki, Maldacena,
Sonneschein, Yankielowicz '20]:

ds2
α′ = −f(r)r2c dt2 + dr2

f(r)r2c
+

󰀕
r
rc

󰀖−3/2

dΩ2
8

S8 shrinks with r. At r ∼ λ1/3 ⇒ string scale curvature.
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Suppose that one day we have high precision measurements of 1-pt
functions like 〈tr Xn〉. What can we learn?

The semiclassical BH geometry and its stringy corrections
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Suppose that one day we have high precision measurements of 1-pt
functions like 〈tr Xn〉. What can we learn?

The semiclassical BH geometry and its stringy corrections

In principle, this includes properties that are currently inaccessible
by worldsheet methods.

[See Hanada et al., Berkowitz et al., Pateloudis, et al.for similar discussions
involving the BH thermodynamics. In principle using the Fawzi, Fawzi, &
Scalet one can bootstrap the thermodynamics. ]
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In principle, a theory of quantum gravity should predict the
higher-derivative corrections to Einstein gravity, e.g.,

L ∼ R + #α′3R4 + #α′3R3F2 + · · · .

For charged black holes (with Ramond-Ramond gauge fields), the
leading correction is unknown.

A precision measurement of certain correlators will give us
information about these corrections. Similar program in the CFT
bootstrap; e.g., [Binder, Chester, Pufu, Wang '19]
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A clear target is the only SO(9) singlet field in this background χ.

χ has scaling dimension ∆ = 28/5 [Sekino & Yoneya '00, Biggs &
Maldacena '23]. The leading α′3 correction breaks the scaling
symmetry and gives rise to a non-trivial 1-pt function:

Seff ⊃ (α′)3

GN

󰁝 √ge−2φχ
󰀓

#1R4 + #2e2φR3F2 + · · ·+
󰀔

〈Oχ〉 ∝ T∆+δ = T28/5
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On the matrix side, the operator Oχ is a known level 8 operator
[Van Raamsdonk and Taylor '98] :

Oχ ∼ Tr PIPIPJPJ + Tr[XI,XJ][XJ,XK]PKPI + · · ·+ fermions

χ is also expected to contribute to a generic SO(9) singlet due to
operator mixing, e.g.,󰀍

tr X2
󰀎
∼ #1 + #HT14/5 + #H′T23/5 + #χT28/5 + · · ·
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Summary

1. solvable matrix models can also be solved by bootstrap

71 / 71



Summary

1. solvable matrix models can also be solved by bootstrap
2. for "unsolvable" models like BFSS, bootstrap yields non-trivial

bounds. Old results from the matrix side [Polchinski '99] can be
reformulated and improved as a bootstrap result.

71 / 71



Summary

1. solvable matrix models can also be solved by bootstrap
2. for "unsolvable" models like BFSS, bootstrap yields non-trivial

bounds. Old results from the matrix side [Polchinski '99] can be
reformulated and improved as a bootstrap result.

3. In principle, we could learn about stringy black holes using the
bootstrap. We are in the process of putting this into practice.
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Future directions I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4GN) + corrections.
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Future directions I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4GN) + corrections.

Recent progress [Fawzi, Fawzi & Scalet '23] in inputting the KMS
condition into the bootstrap (in the Hamiltonian approach). Uses
a non-linear relaxation of the relative entropy.

Can be applied to large N matrix quantum mechanics [Cho, Sandor,
& Yin, WIP]
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Future directions II.

d = 0 d = 1 d ≥ 2

1-matrix integral 1-matrix model
c = 1 matrix model

multi-matrix
integral

D0-brane
BFSS
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Future directions II.

d = 0 d = 1 d ≥ 2

1-matrix integral 1-matrix model
c = 1 matrix model 't Hooft model, …

multi-matrix
integral

D0-brane
BFSS

large N Yang Mills
large N QCD

Already some interesting progress…
[Anderson & Kruczenski '16] [Kazakov & Zheng '22] [Kazakov & Zheng, '24]

Many other strongly-coupled lattice systems seem possible...
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Finite energy bootstrap

〈tr
X
2 〉

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

E/E0
Dashed line is the exact solution for g = 1.

[WIP w/ Zechuan Zheng; see also Han, Hartnoll, Kruthoff '20]

(note: we are considering high energies E ∼ N2 even though for
the 1-matrix model there are only N eigenvalues).
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