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Black holes, as seen from the outside, are described by an ordinary
quantum system.

It would be nice to solve the quantum system. This means, e.g.,
computing correlators like %tr(e‘BHO) on the LHS.



For certain special black holes, we have the explicit Hamiltonian
and the Hilbert space of the quantum system.



For certain special black holes, we have the explicit Hamiltonian
and the Hilbert space of the quantum system.

So why haven't we solved these black holes yet?
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Review gauge/gravity duality for maximally supersymmetric Yang
Mills (SYM) theory in p+ 1 dimensions, for p < 3.

[ltzhaki, Maldacena, Sonneschein, Yankielowicz '00]




For p = 3 this is the famous NV = 4 SYM, but studying low
dimensional cousins p < 3 has some advantages (Monte Carlo,
matrix bootstrap, quantum simulation??)
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For p = 3 this is the famous NV = 4 SYM, but studying low
dimensional cousins p < 3 has some advantages (Monte Carlo,
matrix bootstrap, quantum simulation??)

In slightly different regimes, terminology:
» p=0: BFSS
» p=—1: IKKT

> p = 1: matrix string theory
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» Review of non-conformal holography/black holes
» Matrix bootstrap for simple models

» Matrix bootstrap for BFSS, future directions



Consider the effective field theory of Dp-branes, for p < 3 =
SU(N) SYM in p+ 1 dimensions.



Consider the effective field theory of Dp-branes, for p < 3 =
SU(N) SYM in p+ 1 dimensions.

g%(M X gsglsa_3

The interaction is relevant for p < 3.
't Hooft coupling A = g2 (N = \ = g3 N/BP73.



Consider the effective field theory of Dp-branes, for p < 3 =
SU(N) SYM in p+ 1 dimensions.
g%(M (&8 gsglsa_3
The interaction is relevant for p < 3.
't Hooft coupling A = g2 (N = \ = g3 N/BP73.

Decoupling limit: E*(o/) — 0, EP™3 g2, = fixed

Note that for p < 3 this implies that g, — 0.



Black brane solution

In the 't Hooft limit, with A > 1, Type Il supergravity.

= G | B[R ) — g
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Black brane solution

In the 't Hooft limit, with A > 1, Type Il supergravity.

= G | B[R ) — g

This has the famous black brane solution:
ds* = F12[h(nde + &E) + F72 [ (ndA + Ad3_,]
e 2 =g 2£(p=3)/2, Ag..p = £

dog%(MN
(@R ey
h=1-r/r

F=1+ dp = 2727 2T (L7 - p)),
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Black brane solution

In the 't Hooft limit, with A > 1, Type Il supergravity.

= G | B[R ) — g

This has the famous black brane solution:

ds* = 2 [a(NdE + d] + F/2 [ (ndP? + PdR3_ ],
e 2 =g 2£(p=3)/2, Ag..p = £

d0g2 N 7_9p 9=3p
=t ey =TT TR0 p),
h=1-r/r

In the decoupling limit, delete 1.
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This solution is somewhat similar to the AdS black brane x53_,

A2 _ (2 \H [y (M2 h @2 v dg)
o \ Raas AdS 2 +allg_,|,
P 9—p 2
h=1-2 d=1+2"P Rue=_—2—
Zg? + 5 _ p7 AdS 5 _ p7
I=P(p—3)
e = (apn 2 ()7
Raas

,2%
Ao...p:@dp(zw)ﬂ/\/( z > "

Rads
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This solution is somewhat similar to the AdS black brane x53_,

o Raas z
z 9—p 2
Zg? + 5 _ p7 AdS 5 _ p
I=P(p—3)
e = (dp2mP N ()
Rads

_9T7=p
z 5—p
Ag..p = V' dy(2m)P 2N < > :
Raas
Exercise: work out the change of coordinates and check that finite
T, z is consistent with the decoupling limit. Work out zj as a
function of temperature.

g%g 2 -1 2
g:< z > [RQAdS (h(z)dr +h (z)dz2+dxp) a2,

9
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r= oo r= oo
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Some features for p = 0:

s < z )3 [Rids (h(z)d7'2 +2h_1(z)d22> +dQ§] |

o Rads

9
h=1-——, d=1+-
+5,
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Some features for p = 0:

s < z )3 [Rids (h(z)d7'2 +2h_1(z)dzz> +dQ§] |

o Rads

9
h=1-2, d=1+-
T3

» Sphere shrinks near boundary z= 0. When z ~ 1 curvature
scale is of order ~ /.
» dilaton grows towards the horizon. SYM coupling is relevant.

» Exercise: compute the proper distance from the boundary to
the horizon. Use this to estimate the thermal 2-pt function of
a massive stringy mode e ™ and its 8 dependence.
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Extrapolation to strong coupling

» p =0 view DOs as gravitons in 11d = boosted Schwarzschild
black hole (homogeneous in the 11th dimension) = BFSS
conjecture

» p =2, view the D2 branes as M2 branes, AdS4 x S; ABJM
» p =1, S-duality relates D1 solution to F1s = matrix string

((R)N/Sn CFT)
» p=-—1..7

13/71



Relation to AdS

Fluctuations of the dilaton ¢ = ¢ + X
o / d'%x,/ge %= (Vx)?
- / 4" PQ AT IR dzdT \/Bags [(Vaasx)” + mix’]
Using my = k(k+ 7 — p) = fields in AdSq41:
1

(04 (x)0y(0)) ~ XEA—d—p1)’ A = Rags(k+2) + 2.

This applies to SUGRA modes.
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The GKP dictionary

Consider DBI action in the presence of a dilaton wave. Repeat
decoupling argument.
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The GKP dictionary

Consider DBI action in the presence of a dilaton wave. Repeat
decoupling argument. DBI action for Dp-branes:

Ipg; ~ /d”+lxe_¢(x’x) = (X) +

Boundary operators schematically of the form

Ssym — Ssym —I-NZ % /derlXa/1 . --8/k¢) Tl“(F2 X(l1 . X’k )
K
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The GKP dictionary

Consider DBI action in the presence of a dilaton wave. Repeat
decoupling argument. DBI action for Dp-branes:

Ipg) ~ /dp-i-lxe—(b(x,X) F? (X) +
Boundary operators schematically of the form
Ssvm = Ssym+ N Y % /ov’“xa,1 O Tr(F2 Xt Xt )
J
This is a super-descendant of the 1/2 BPS operator:
Tr(/:iux(’l ...X/k)) ~ QQQQ Tr X ... Xlk+2)

We learn that the dimensions of the % BPS operator:

A = RAdS(k"‘ 2) +2= AlBPS = RAdSk
2
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Giant gravitons

As a fun aside [WIP w/ Gauri Batra], we can also reproduce the
relation

A%BPS = Raask

For values of k that are very large k ~ N by considering a classical
solution where a giant graviton D(6 — p) brane that couples to
magnetically-dual RR flux.
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Giant gravitons
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BH thermodynamics

1. metastability: black hole can decay into DO branes. Neglected
in the 't Hooft limit.
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BH thermodynamics

1. metastability: black hole can decay into DO branes. Neglected
in the 't Hooft limit.

2. Relation to AdSy, 1 black brane S oc N2(T/\)9~1. For p =0,
entropy S oc N2(T/\)%/%

3. Higher derivative corrections
S= N (co(T//\)9/5 oo (T/N)®5 1 ) NPy T3/

4. Thermal 1-pt functions

5. exercise: debug the following wrong argument. In the
decoupling limit Ea/ — 0, so we should be able to neglect all
o/ corrections to SUGRA.
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End of the gravity review
= Boundary methods for analyzing low dimensional SYM

Refs for bootstrap:

[Anderson & Kruczenski, 1612.08140],

[HL, 2002.08387], [Kazakov & Zheng, 2108.04830]

[Han, Harnoll, Kruthoff, 2004.10212]

[Fawzi, Fawzi, Scalet, 2311.18706] [Cho, Gabai, Sandor, Yin, 2410.04262]
[HL, 2302.04416] [HL & Zheng, 2410.14647]
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Numerically, heroic Monte Carlo simulations have been performed
[Kabat et al., Anagnostopoulos et al., Hanada et al., .., Berkowitz et al.,

Pateloudis et al].

These simulations are non-trivial, both computationally and
conceptually.

» physics simplifies at large N but the computation gets harder
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Numerically, heroic Monte Carlo simulations have been performed
[Kabat et al., Anagnostopoulos et al., Hanada et al., .., Berkowitz et al.,

Pateloudis et al].

These simulations are non-trivial, both computationally and
conceptually.

» physics simplifies at large N but the computation gets harder

» sign problem ®
» metastability: some problems ill-defined at finite N
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Large N bootstrap

» works N = oo; gives rigorous bounds

» no sign problem ©
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Large N bootstrap

» works N = oo; gives rigorous bounds
» no sign problem ©

» for multi-matrix models, exponentially many constraints @
Number of correlators of fixed length grows ~ D*.

(Tr ABABBBA) , (Tr AAABBBB) , - - -
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1-Matrix model

Probability distribution over N x N Hermitian matrix M;:

1 e 1 g
M NtI‘V(M) - 2 =
p(M) = —e L VM) = oM M
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1-Matrix model

Probability distribution over N x N Hermitian matrix M;:

1 e 1 g
M NtI‘V(M) - 2 =
p(M) = —e L VM) = oM M

Goal: compute moments {tr M*) as a function of g.

(tr M?) ! /dl\/le‘NQ VM) g 2

= lim =
Nggoz
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Bootstrapping matrices

1. Guess the value of some simple correlator, e.g. (tr M?)
2. Feed it through the loop eqns to generate more correlators
3. Demand that <tr OT(’)> > 0.

24 /71



Loop (Schwinger-Dyson) equations

@ - - " <§

> relates lower-pt correlators to higher-pt correlators
» uses large N factorization ('t Hooft)

k—1
(tr MF) =) " (tr MO (tr MF172) + g (tr M)
=0
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Positivity

Naive algorithm: starting with some guess for <tr M2>, generate

moments <tr M4> , <tr M6> , <tr M8> R
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Positivity

More systematically, we can consider a general polynomial in the
matrix M:
0= a M= tr0t0>0.

This implies that o Mjja; > 0 for all coefficients o, where we have
assembled all the correlators into a big matrix M;; = (tr M"/):

1 (tr M)y (tr I\/I2>
M= (tr M) <tr /\/I2> <tr /\/I3> =0
<tr /\/I2> <tr /\/I3> <tr M4>

Here M;; = (tr M),

27/71



Review of the matrix bootstrap

— exact soln

— Ms5x5 =0

0 1 2 3 4 5 1.00 1.02 1.04 1.06 1.08 1.10

As the size of M increases, rapid convergence to the exact
solution.
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Metastability

To address the issue of metastability, consider g < 0. The
potential is unbounded from below:

V(M)

/ \

In the large N limit, tunneling is suppressed.
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Metastability

3.0

-
a
T

-0.08 -0.06 -0.04 -0.02 0.00
9

For —g, < g < 0 the model still makes sense at N = oo
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Metastability V = —%A2 + %gA4

16.0f

15.5¢

tr A2

15.0¢

14.5¢
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gA’'

1 52 1
At

Metastability V

~~o
-
~—

S

o
-
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d = 0 (stat mech)

d=1

solvable

1-matrix integral

1-matrix quantum mech
¢ = 1 matrix model

unsolvable

multi-matrix integral

DO0-brane quantum mech
BFSS matrix theory
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Multi-matrix integrals

Main challenge: exponentially many correlators for a given length
Lieg, for L=T:
(Tr ABABBBA) , (Tr BBBABAB) , - - -

Also more loop equations and more positivity constraints:

1 Tr A Tr B
TTA TrA®> TrAB
M= vB TrBA TrB

34/71



Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20].
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multi-matrix integrals [HL '20]. One can consider, e.g.,
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Despite these challenges, the bootstrap gives strong results for
multi-matrix integrals [HL '20]. One can consider, e.g.,

Z= /dA dBe Nt VIAB)
1
V(Xa Y) = _5[’47 8]2 + V(A) + V(B)7
1 1
— 7)(2 7x4
v(X) =X+

Using non-linear relaxation, one can convert it to a standard
semi-definite programming problem [Kazakov & Zheng '22].

0.4217836 < (tr A*) < 0.4217847
0.3333413 < (tr A*) < 0.3333421

~ 6 decimal digits on a laptop!
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d =0 (stat mech)

d=1

solvable

1-matrix integral

1-matrix quantum mech
¢ = 1 matrix model

unsolvable

multi-matrix integral

DO-brane quantum mech
BFSS matrix theory
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1-matrix QM

N? non-relativistic particles arranged in a matrix.

i[X;j, Pk/} = (5,‘/5]/(.
Hamiltonian: )
1
H= N<—HP2+1HX2+5ﬂX4> .
2 2 4
U(N) gauge constraint:
Jite = 1(XijPj — PiiXj) + Noy = 0

[for a review, see Klebanov hep-th/9108019] [Brezin, Itzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, --- ]
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1-matrix QM

N? non-relativistic particles arranged in a matrix.

i[X,'J', Pk/} = 5iI6jk‘

Hamiltonian: . )
H= N<§TrP2+m7TrX2+ gTrX4> .
U(N) gauge constraint:
Jie = 1(X;Py — PyXj) + Noge = 0

known as ¢ =1 or ¢ = 1 matrix model®.

[for a review, see Klebanov hep-th/9108019] [Brezin, ltzykson, Parisi, Zuber,
Douglas, Klebanov, Kutasov, Maldacena, Martinec, Takayangi, Toumbas,
Verlinde, --- ]

Lin the double scaling limit
36/71



Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ =[O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E[O|E) = 0.
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ = [O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E[O|E) = 0.

example: 0 = ([tr XP, H]) = —tr P* + tr X*> + gtr X*

2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ©)
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ =[O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E|O|E) = 0.
2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ©)
(EltrO'O|E) > 0= M; = (E|tr Ol O |E) > 0

3. Optional: ground state bootstrap positivity:
<OT[H, O]>gs = <OTHO>gs - EgS<OTO>gs >0
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Review of the quantum mechanical bootstrap

1. Replace loop eqns with O’ =[O, H]. In energy eigenstates
(E| O'|E) = (E|O|E) E— E(E|O|E) = 0.
2. Positivity of measure replaced w/ Hilbert space positivity
(fermions ©)
(EltrO'O|E) > 0= M; = (E|tr Ol O |E) > 0

3. Optional: ground state bootstrap positivity:
Nij = (O][H, O])gs = 0

37/71



Finite energy bootstrap

0.6~

0.0 : ‘ ‘ : : : :
09 10 11 12 13 14 15 16

E/E,

Dashed line is the exact solution for g = 1.
[WIP w/ Zechuan Zheng; see also Han, Hartnoll, Kruthoff '20]
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Ground state bootstrap

0332
0.45
0331
0.4
TrXx? /0.33
035
0329
03
1.15 125 135 145 0.328
1.301 1.303 1.305 1307

Ey

+ denotes the exact solution for g =1
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Ground state bootstrap

0.33143

0.33142
Trx?

0.33141

0.3314
1.3019 1.30191 1.30192

Ey

+ denotes the exact solution for g = 1.
~ 6 digit precision on a laptop.
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D0-brane quantum mechanics

9 bosonic matrices and 16 fermionic matrices. Transform as a
vector and spinor of SO(9).

H= %Tr (P? - % X1, X1 = vl [X, W])
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D0-brane quantum mechanics

9 bosonic matrices and 16 fermionic matrices. Transform as a
vector and spinor of SO(9).

1 1
H=Tr (P? —3 X1 X = Yo (X0, wﬁ])
N =16 SUSY:

i
Qu = Tr Prvhgthy — 5 Tr | X, X/ oo,
{Qom QB} = 25&5H+ 2’}’(115 TI‘XIC

Cjj = generator of SU(N).
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Review of known finite N BFSS properties

Believed to have 1 normalizable energy eigenstate |2) with E = 0.

The bound state has power law tails ¢(r) ~ 1/r?. This implies
that at finite N, (Q| Tr Xt |Q) ~ [ r¥dr||? — oo if L < 9.

All other states are believed to be scattering states E > 0.
Some limited information about the S-matrix is known. [Douglas,
Kabat, Pouliot, Shenker, Paban, Sethi, Stern, Becker, Becker,

Polchinski][Maldacena Herderschee]

[Polchinski '99] gave a lower bound on (] Tr X*|Q).
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Bosonic constraints: round 1

Commutator constraints

{[H,Tr X)) = 0= (Tt X'P + P'X;) = 0.
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Bosonic constraints: round 1

Commutator constraints

{[H,Tr X)) = 0= (Tt X'P + P'X;) = 0.
Tr[X, P| = iN* = (Tr XP) = iN*/2.

Positivity:

Tr X2 Tr XP
M_<TrPX Tr P2 >i0

N XI: (Tr X2 <Tr(P’P,)> %/\/4.
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Bosonic constraints: round 1

Commutator constraints

{[H,Tr X)) = 0= (Tt X'P + P'X;) = 0.
Tr[X, P| = iN* = (Tr XP) = iN*/2.

Positivity:

Tr X2 Tr XP
M_<TrPX Tr P2 >i0

~ XI: (1) (Tx (P'P1) ) > %/\/4.

Next: replace Tr P? (kinetic energy) with potential energy.
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Bosonic constraints: round 2

(NTr X'/ (1;# (Tr X*) + %E> > 22w

Comments:

» Setting E = 0 recovers Polchinski point. Assuming parametric
saturation of the bd implies that * “typical eigenvalue"
r~ A/3, which is the size of the gravity region.

» Scale at which the bd varies is £/N? ~ \/3, regime of validity
of gravity.

» No good bound on <TrX2>.
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Fermionic constraints

Had two eqns:
—2(K)+4V)+(F =0, (K+V+(F=E
In addition to solving for V, can solve for F:
(A =2(3(E)— (V)

Fermionic term F= O'X' ~ 1y X. The operator 1) is bounded
because it is made of Majorana fermions ¢? = 1.

45 /71



Fermionic constraints

Had two eqns:
—2(K)+4V)+(F =0, (K+V+(F=E
In addition to solving for V, can solve for F:
(A =2(3(E)— (V)

Fermionic term F= O'X' ~ 1y X. The operator 1) is bounded
because it is made of Majorana fermions ¢? = 1.

Therefore, as F gets large, X cannot be too small = tr X* has a
lower bound.
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Lower bounds on <tr)&>

0.100 i
o201 combined
>§ ______ bosonic
= 0.010! < )
q J — — fermionic
L 0.005/ S |
) e -—-=- £<&
/ ......
0.001L . ‘ |
: : ” 60 80
£ = E/(NA'3)
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Constraints on <tr X2>

1
0.50¢ %
Y % e 00, et ’\ — lower bd
(;< Smssessessssssedgennn e e m .
= : [Berkowitz et al]
2 0.10}
=< 0.05 [Pateloudis et al]
0.1 05 1 5 10 50 100

& =E/(N°AY?)

Large N extrapolation of Monte Carlo simulations [Pateloudis et al.]
are ~ 1/2 from the lower bound.
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Now let's set up the bootstrap more systematically and explain the
numerics.
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» Dynamics:
(2 {Qa; Oa} [2) = 0.

O, is any single trace, SO(9) spinor.
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» Dynamics:
(QU{Qa, Oa}[2) = 0.
O, is any single trace, SO(9) spinor.

example:
Oa x yis tr X' P! = —2i (tr[ X, X | X'P!) = (trparpua X'X') .
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» Dynamics:
(QU{Qa, Oa}[2) = 0.
O, is any single trace, SO(9) spinor.

» Hierarchy:

(tr W) where W a word made of X, v, P.
level: ((X) = 1,((z)) = %,Z(P) —9
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» Dynamics:
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= ({Q.0}) = £(0) + .
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» Dynamics:
(2 {Qa; Oa} [2) = 0.

O, is any single trace, SO(9) spinor.

> Hierarchy:

(tr W) where W a word made of X v, P.
level: ((X)=1,0(¢) =3,((P) =2.
— £({Q.0)) = (0} + 1.

» Kinematics:

> SO(9) invariance, SU(N) invariance (tr(OC)) = 0.
> cyclicity of the trace + (anti)-commutation relations

49 /71



» Dynamics:
(2 {Qa; Oa} [2) = 0.

O, is any single trace, SO(9) spinor.

> Hierarchy:

(tr W) where W a word made of X v, P.
level: ((X)=1,0(¢) =3,((P) =2.
= ({Q.0}) = £(0) + .

» Kinematics:

> SO(9) invariance, SU(N) invariance (tr(OC)) = 0.
> cyclicity of the trace + (anti)-commutation relations
> example:

(o X X2 X PRXE X ) = (X2 X5 P X X0 X )

+i (o XX ) (i X X ) g
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SO(9) group theory

Only SO(9)-invariant operators have non-zero vevs.

However, positivity requires that we consider non-singlet operators
in intermediate steps.
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SO(9) group theory

Only SO(9)-invariant operators have non-zero vevs.

However, positivity requires that we consider non-singlet operators
in intermediate steps.

Trivial example: <tr(XJXJ)> > 0. Derived by observing that it is
the sum of squares of X? (a non-invariant operator).
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Kinematic constraints

Less trivial example:

Magyy = (e (v ) )
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Kinematic constraints
Less trivial example:

Mgy = (tr(voyPpty7) )

Viewed as a matrix in the {«, 8} and {v,n} indices, positivity
requires M > 0.
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Kinematic constraints

Less trivial example:
Magny = (tr (v 00y ) )
Using the "addition of SO(9) angular momentum" rules:

(16)* = (16 x 16)? = (1 + 9 + 36 + 84 + 128)°
= 5(1) + non-singlets

Thus group theory determines this 16* = 65536 to just 5
unknowns.

I . UK IJK
MO‘B’Y’Y = 60‘5577531 + YaBVned9 + YaBYned36 + YaB Tne 984
UKL, IJKL
T %8 Ve 128
Cyclicity and the fermion anti-commutation relations cuts this
further to just 2 unknowns.
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Expand s-channel block in terms of t-channel blocks:

B n

/8 Rs K o ZF 16 16
I I T T Re
a € ‘

o €

= 6j symbol. At higher levels, need higher-pt crossing kernels.
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Kinematics determined M., in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mg ,. By
decomposing 1,15 into irreps, one can easily diagonalize M.
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Kinematics determined M., in terms of 2 unknowns. We still
need to impose positivity of a large matrix Mg ,. By
decomposing 1,15 into irreps, one can easily diagonalize M.

The upshot is that by leveraging the symmetries of the model, the
DO-brane bootstrap is practical. ©
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level | total variables | free variables
4 11 3
5 38 4
6 140 11
7 569 18
8 2528 59
9 12077 149

# of single trace SO(9) singlets, before and after modding out by
the EOM /kinematic constraints.
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0.8

(tr00)

1.1
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Level 4
0.8
Level 5
0.6 Level 6
N
M Level 7
~
0.4 Level 8%
Level 9
0.2
Monte Carlo
0.
0. 0.2 0.4 0.6 0.8 1.

(tr X?)

Cross + is the Monte Carlo result® of [Berkowitz et al.'16].
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0.25
0.2 Level 4
Level 5
& 015
CE< Level 6
E Level 7
s 01
Level 8*
0.05 (0.36570.142) Level 9
0.346,0.129)
0. (0.335,0.122)
0. 0.1 0.2 0.3 0.4 0.5

{tr X%

The lower bound on (tr X*X?) was derived (up to some factors) in
[Polchinski '99]. It can also be improved to finite energy [HL '23].
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method (tr X?)
Mont§ Carlo ~ 0.37+0.05
[Pateloudis et al.'22]
primitive bootstrap > 0.1875
[HL 23]
bootstrap > 0.294
level 6
bootstrap > 0.331
level 7
bootstrap
> 0.
level 8T =031t
bootstrap > 0.3451

level 9
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method (tr X?)
Mont§ Carlo ~ 0.37+0.05
[Pateloudis et al.'22]
primitive bootstrap > 0.1875
[HL '23]
bootstrap > 0.294
level 6
bootstrap > 0.331
level 7
bootstrap
> 0.
level 87" = 0301
bootstrap > 0.3451
level 9

~ 90% of the MC value with just level 7:
19 variable SDP, ~ 170 EoMs, matrices of size < 20 x 20.
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Metastability in Monte Carlo

0.5

observable
o
S
/

o
w

o
N

0.1

——

0.0

00 01 02 03 04 05 06 07 08
W

- Myers = E/N?> - R%/10

Monte Carlo results [Pateloudis et al. '22]

59 /71



Toy supermembrane problem
1.

0.85}

0.7}

Ky 0.55}

0.4}

0.568

0.25} 0.5605

0.553
0.742 0.7575 0.773

0.1 : : : :
0.6 0.8 1. 12 1.4 1.6 18

(x*)
In a simpler toy problem, we see a similar-looking peninsula at low
levels, but an island at higher levels.
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Finite temperature generalization

[Araki Sewell '77] Somewhat surprising reformulation of KMS
condition:

T(’)>
T (©010) _
<(9 (9> log (00T = ﬁ<(’) [H,(’)]>
KMS <= inequality holds for all operators O.

Can deal with the log using non-linear relaxation. [Fawzi, Fawzi,
Scalet '24] [Cho,Gabai,Sandor,Yin '24]
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Finite temperature ungauged 1-matrix QM

Back to the 1-matrix model [Cho,Gabai,Sandor,Yin '24]
1 2
H= N<§HP2+%TYX2+§TYX4> .

Choose not to impose the gauge constraint, e.g., sum over all
SU(N) charge sectors.
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Finite temperature ungauged 1-matrix QM

BER)-EoyN?

L
1

L
2

L
3

L
4

5

o7

-0.001

(E-ELTIN?
0.003

0.002 -

0.001 -

9-2

0.2

Level 10 results, (5E/EN 1073, [Cho,Gabai,Sandor,Yin '24]

08
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Finite temperature ungauged 1-matrix QM

Now we consider an unbounded potential [Cho,Gabai,Sandor,Yin '24]:

VX)) =

\X
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Finite temperature ungauged 1-matrix QM

Now we consider an unbounded potential [Cho,Gabai,Sandor,Yin '24]:

g--0.06 9--0.06
EIN? (E-ELT)IN?

0.030 F
0.025
0.020 F
0.015F
0.010 -

0.005 |-

Il
LT 0.000
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Finite temperature bootstrap

Ungauged 2-matrix quantum mechanics [Cho,Gabai,Sandor,Yin '24]:
1
H= tr(Px + Py + (X* + Y?) — 2g[X, Y?)
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Finite temperature bootstrap

Ungauged 2-matrix quantum mechanics [Cho,Gabai,Sandor,Yin '24]:
1
H: 5 tr(P§<+ P2y+ (X2 + Y2) — 2g[X, WQ)

g=0.1 g=04
E/IN? EIN?

4
3.0
2.5 3
2.0
1.5 2
1.0 1
05

T il 1 1 1 1 1 1 1 T
02 04 06 08 10 12 14 02 04 06 08 10 12 14
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Finite temperature bootstrap

Ungauged 2-matrix quantum mechanics [Cho,Gabai,Sandor,Yin '24]:
1
H: 5 tr(P§<+ P2y+ (X2 + Y2) — 2g[X, WQ)

g=0.1 g=04
E/IN? EIN?
4
3.0
2.5 3
2.0
1.5 2
1.0 1
05
T il 1 1 1 1 1 1 1
02 04 06 08 10 12 14 02 04 06 08 10 12 14

In the future, BFSS at finite temp?!
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Future directions

Islands?

v

Constraints on the bound state?

v

v

Finite energy/temperature BFSS

v

Large N lattice systems, especially those with sign problems?
[Anderson & Kruczenski, Kazakov & Zheng, ..]
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Future directions

Islands?

v

Constraints on the bound state?

v

v

Finite energy/temperature BFSS

v

Large N lattice systems, especially those with sign problems?
[Anderson & Kruczenski, Kazakov & Zheng, ..]

BMN model, other matrix models?
p=—1, IKKT???

v

v

66 /71



Future directions

Islands?

v

Constraints on the bound state?

v

v

Finite energy/temperature BFSS

v

Large N lattice systems, especially those with sign problems?
[Anderson & Kruczenski, Kazakov & Zheng, ..]

BMN model, other matrix models?
p=—1, IKKT???

Thanks!

v

v
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed A3 = g Np3.
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed A3 = g Np3.

In the strongly coupled regime A33 > 1, dual to a metastable
black hole in Type IlA [Klebanov & Tsetlyin '96, ltzhaki, Maldacena,
Sonneschein, Yankielowicz '20]:

—3/2
A" _ popaey 47 +(i> 02

o fr)r2 re
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D0-brane quantum mechanics

't Hooft limit: N — oo holding fixed A3 = g Np3.

In the strongly coupled regime A33 > 1, dual to a metastable
black hole in Type IlA [Klebanov & Tsetlyin '96, ltzhaki, Maldacena,

Sonneschein, Yankielowicz '20]:

—3/2
A" _ popaey 47 +(i> 02

o fr)r2 re

Sg shrinks with r. At r~ \'/3 = string scale curvature.
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Suppose that one day we have high precision measurements of 1-pt
functions like (tr X"). What can we learn?

The semiclassical BH geometry and its stringy corrections
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Suppose that one day we have high precision measurements of 1-pt
functions like (tr X"). What can we learn?

The semiclassical BH geometry and its stringy corrections

In principle, this includes properties that are currently inaccessible
by worldsheet methods.

[See Hanada et al., Berkowitz et al., Pateloudis, et al.for similar discussions
involving the BH thermodynamics. In principle using the Fawzi, Fawzi, &

Scalet one can bootstrap the thermodynamics. ]
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In principle, a theory of quantum gravity should predict the
higher-derivative corrections to Einstein gravity, e.g.,

L~ R+ #aPR + #aPRPFP + .- .

For charged black holes (with Ramond-Ramond gauge fields), the
leading correction is unknown.

A precision measurement of certain correlators will give us
information about these corrections. Similar program in the CFT
bootstrap; e.g., [Binder, Chester, Pufu, Wang '19]
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A clear target is the only SO(9) singlet field in this background .

X has scaling dimension A = 28/5 [Sekino & Yoneya '00, Biggs &
Maldacena '23]. The leading a/® correction breaks the scaling
symmetry and gives rise to a non-trivial 1-pt function:

(O/>3 26 2 5
Seff 2 G /\/Ee X(#1R4+#2€ RF +'--+)

<OX> x TA+5 —_ T28/5
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On the matrix side, the operator O, is a known level 8 operator
[Van Raamsdonk and Taylor '98] :
O, ~ Tr P'P'P P! 4 T [X), X)) (X, Xk] PKP' + - - - + fermions

X is also expected to contribute to a generic SO(9) singlet due to

operator mixing, e.g.,
<tI'X2> N#1+#HT14/5+#H/T23/5+#XT28/5+"'
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Summary

1. solvable matrix models can also be solved by bootstrap
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Summary

1. solvable matrix models can also be solved by bootstrap

2. for "unsolvable" models like BFSS, bootstrap yields non-trivial
bounds. Old results from the matrix side [Polchinski '99] can be
reformulated and improved as a bootstrap result.
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Summary

1. solvable matrix models can also be solved by bootstrap

2. for "unsolvable" models like BFSS, bootstrap yields non-trivial
bounds. Old results from the matrix side [Polchinski '99] can be
reformulated and improved as a bootstrap result.

3. In principle, we could learn about stringy black holes using the
bootstrap. We are in the process of putting this into practice.

71/71



Future directions |I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4Gp) + corrections.
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Future directions |I.

Bootstrapping the thermal entropy, e.g.,

S = A/(4Gp) + corrections.

Recent progress [Fawzi, Fawzi & Scalet '23] in inputting the KMS
condition into the bootstrap (in the Hamiltonian approach). Uses
a non-linear relaxation of the relative entropy.

Can be applied to large N matrix quantum mechanics [Cho, Sandor,
& Yin, WIP]
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Future directions Il.

d=0 d=1 d>?2

1-matrix model
¢ = 1 matrix model

1-matrix integral

multi-matrix DO-brane
integral BFSS
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Future directions Il.

d=20 d=1 d>?2

1-matrix model
¢ = 1 matrix model

1-matrix integral 't Hooft model, ..

multi-matrix DO0-brane large N Yang Mills
integral BFSS large N QCD

Already some interesting progress...
[Anderson & Kruczenski '16] [Kazakov & Zheng '22] [Kazakov & Zheng, '24]

Many other strongly-coupled lattice systems seem possible...
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Finite energy bootstrap

0.6~

0.5}

0.4}

0.3¢

{tr X?)

0.2}

0.1¢

0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
09 10 11 12 13 14 15 16

E/Eo
Dashed line is the exact solution for g = 1.
[WIP w/ Zechuan Zheng; see also Han, Hartnoll, Kruthoff '20]

(note: we are considering high energies E ~ N? even though for

the 1-matrix model there are only N eigenvalues).
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