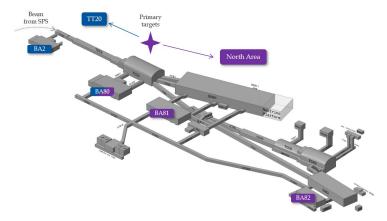
How does NA61/SHINE work?

Bartosz Maksiak and Aleksandr Dmitriev

November 22, 2024

Bartek and Sasha

NA61/SHINE facility

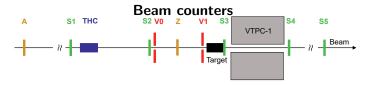

November 22, 2024 1 / 37

Content

Beams Time of Flight walls \square Beam detectors **Projectile Spectator Detectors** \square Targets and Trigger DRS4 Readout \square Vertex Detector Data Acquisition System Magnets and cryo Detector Control System Time Projection Chambers and List of experts GRCs ~13 m MTPC-L L-ToF Vertex magnet Vertex magnet F-ToF GRC VTPC-1 GAP TPC VTPC-2 MPSD Beam counters and BPDs FPSD **\$**5 Beam s4 Target S3 FTPC-1 FTPC-2/3 MTPC-R

Beam

The beam for us is delivered from SPS. We are on H2 beamline.


Beam delivery to NA61/SHINE was presented in details in Vamil's presentation

For all problems related to beam delivery upstream of S1 - call CCC

Bartek and Sasha

NA61/SHINE facility

Beam detectors

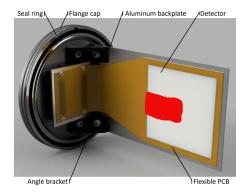
- Timing detectors (S1, S2) plastic/quartz start counters
- □ Veto detectors (V0, V1) plastic counters with a hole
- □ Interaction detectors (S3, S4, S5) plastic counters at special XYZ
- □ Secondary beam detectors (A, Z) plastic/quartz counters which are used to select fragments via ToF and amplitude(Z) measurements

 Hadron beam detectors (CEDAR, THC)
 CERN's old-fashioned and robust gaseous Cherenkov counters
 PSD energy deposit in central module(-s)

Beam position detectors

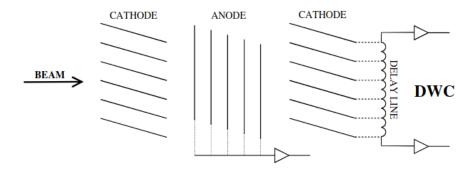
BPDs are used to measure trajectories of the incoming beam particles. We use two types of BPDs.

Silicon BPDs for ion beams



Delay Wire Chambers for hadron beams

Beam position detectors - SiBPDs


SiBPD is double layer (X and Y) detector positioned in vacuum and used for heavy ion beams. Each layer is a single-sided readout silicon strip detector with 1024 channels. But we are using only central 200 channels ($\approx 3.8 - 4$ cm).

Problems? Call BPD Expert.

Beam position detectors - DWCs

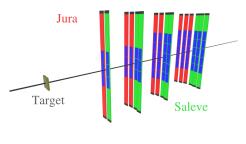
DWC is a MWPC-based detector with a delay line readout from cathode which we are using with hadron beams. The responsibility of installing and servicing them is by the side of SY-BI.

Problems? Call Detector Supervisor (who will call people from SY-BI).

Targets

Bartek and Sasha

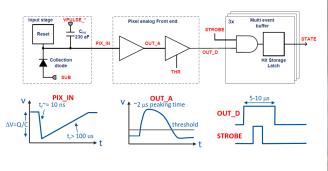
NA61/SHINE facility


Trigger

Trigger system is responsible for gathering signals from beam counters and determining whether the collision qualifies as a good event.

For the Trigger system, see • Jarek's presentation

Vertex Detector



- \Box Two(2) arms: Jura and Saleve
- \Box Eight(8) staves in each arm
- \Box Three(3) to five(5) ALPIDE sensors used in each stave
- □ About of 525k cells (pixels) in each ALPIDE sensor
- \Box Pixel size 29.24 μ m imes 26.88 μ m

Bartek and Sasha

NA61/SHINE facility

Vertex Detector

Readout by "Firefly" cables and MOSAIC boards
 Cooling system for stable temperature inside of box
 LV system to supply ALPIDE sensors

Problems? Call VD Expert.

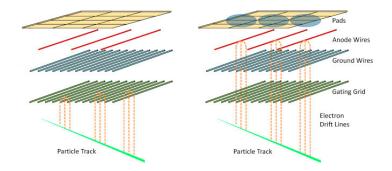
Bartek and Sasha

Magnet and cryo

- Bending power of the 2 vertex magnets: 9 Tm at 1.5 T magnetic field (setting for 150 GeV/n).
- Field is scaled with the beam momentum.
- One week before ramping up magnets, we need "CRYO_OK" (i.e. approval for usage) from TE-CRG

Problems? Call Detector Supervisor (who will call people from TE-CRG).

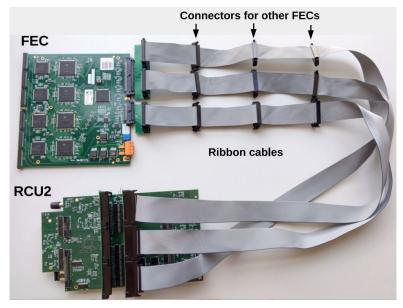
Bartek and Sasha


NA61/SHINE facility

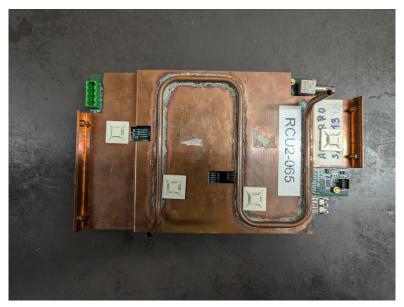
Time Projection Chambers and GRCs

Time Projection Chambers

- \Box Momentum resolution: $\sigma(p)/p^2 = 10^{-4} \; (\text{GeV/c})^{-1}$
- \Box Particle identification via dE/dx: $\frac{\sigma(dE/dx)}{dE/dx}=3-4\%$ (p-p ... Pb-Pb)

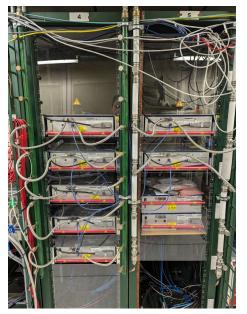

TPC - readout electronics

- □ Analog output of TPC chamber goes through adapter board to frontend. One adapter board reads one padrow.
- □ Four adapters are connected to one frontend. Since now data transfer is only digital.
- $\hfill\square$ Four to six frontends are connected to one RCU.
- □ RCUs are connected through fibers to switches in TPC huts. They are steered by tpc-centipede.
- \Box Data from switches in TPC huts go to tpc-XX machines in DAQ


TPC readout electronics - adapters and frontends

TPC readout electronics - frontends and RCU

TPC readout electronics - RCU


TPC readout

- Data from switches in TPC huts go to one of three slots of a CRORC card
- One CRORC is installed in PCI-Express x16 slot of every TPC readout machine
- One CRORC has three QSFP connectors (i.e. three RCUs can be connected to one CRORC)
- There are 11 TPC readout machines

TPC Low Voltage

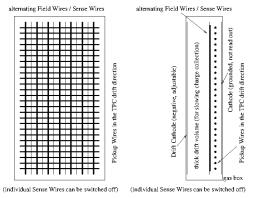
- Readout electronics require Low Voltage power supplies in order to run
- □ The electronics of each sector consumes up to 100 A
- □ VTPCs 6 sectors, MTPCs -25 sectors, GTPC and FTPCs -1 sector

TPC electronics cooling

- TPC readout electronics produced large amount of heat that should be dissipated through metal plates cooled with water cooling.
- There are two water cooling setpoints used: 20.5°C and 15.5°C. 20.5°C when TPC electronics is not used for at least several hours. 15.5°C during operation.
- Photo shows control panel of TPC electronics cooling.

Gas in TPCs

TPC gas system and not only


For the TPC/GRC/He gas and TPC HV systems, see • Bobby's presentation

Introduction to the NA61/SHINE TPC Gas System

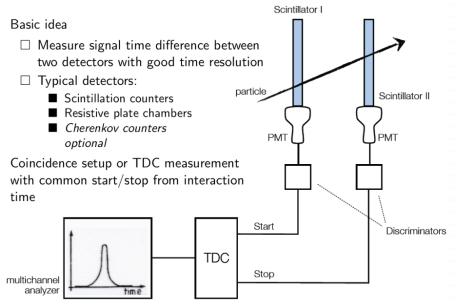
November 13, 2024 Run Seminar Speaker: Bobby Lyon (University of Hawaii at Manoa)

GRCs

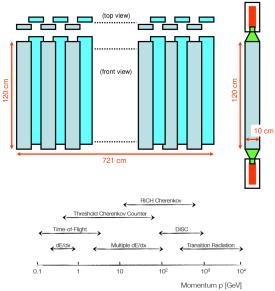
Geometry Reference Chamber - NA61/SHINE naming
 MWPC with cartesian readout (X,Y) - detector naming

Sense and Pick-up wires are readout by the same readout as all TPCs
 Sense wires can be turn off to mitigate fake hits with high multiplicity events

Bartek and Sasha


NA61/SHINE facility

TPC problems


- Problems related to gas conditions Gas Expert
- Problems related to electronics temperatures Technical Coordinator (who calls EN-CV)
- Problems related to readout electronics (missing pixels/sectors on Event Browser) - TPC Readout Expert
- Problems related to GRC GRC Experts

Very detailed presentation made by Painer

Time of Flight walls

Time of Flight walls Time of Flight walls - ToF-F (32 counters)

Bartek and Sasha

NA61/SHINE facility

Time of Flight walls

Time of Flight walls - ToF-LR (MRPC)

MRPC-R

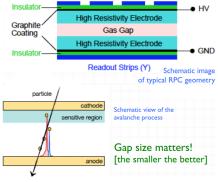
MRPC-L

(•) beam

- MRPCs with gas module (12+6 detectors)
- modification of HV and gas systems
- LV system
- Front-end electronics (~2000 ch)
- DRS4 or picoTDC readout

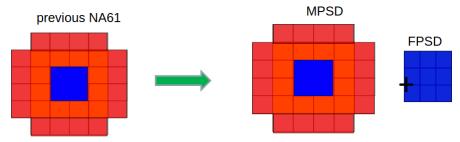
- MRPCs with gas module (12+6 detectors)
- Closed-loop gas system for two modules
- HV & LV systems
- Front-end electronics (1728 ch)
- DRS4 readout (54 boards)

Time of Flight walls

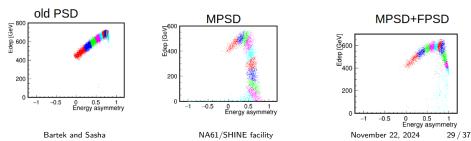

Time of Flight walls - ToF-LR (MRPC)

- $\hfill\square$ Use parallel plate chamber with high field
- Electrons of ionization clusters start to produce an avalanche immediately
- Induced signal = sum of all simultaneously produced avalanches
- □ But: Electron avalanche develops according to Townsend:

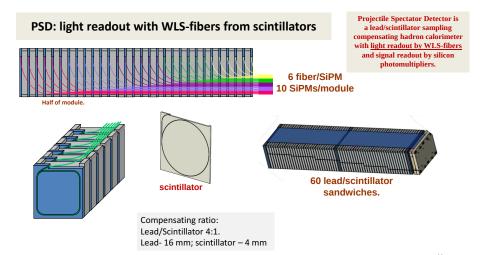
$$n = n_0 e^{\alpha z}$$


$$G = \frac{n}{n_0} = e^{\alpha x} \\ \underset{\text{x : traversed path length}}{\text{α : Townsend coefficient}} \\ \underset{\text{G : amplification (gain)}}{\text{α : models of the set of the set$$

□ Raether limit: $G = 10^8$ ($\alpha x = 20$), then sparking sets in ...


Time jitter: time to cross sensitive region

Projectile Spectator Detectors

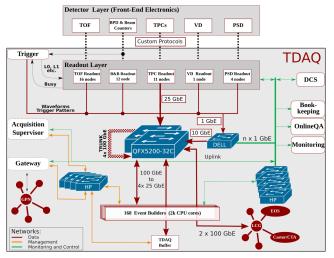


Energy asymmetry = (Eblue-Ered) / (Eblue+Ered)

Deposited energy vs asymmetry

Projectile Spectator Detectors

Problems? Call PSD Expert.


DRS4 Readout

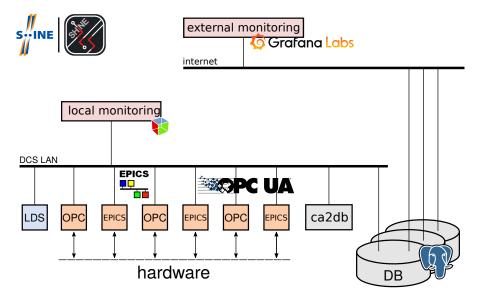
Problems? Call DRS Expert

- One channel samples waveforms to 1024 time bins (with adjustable sampling frequency)
- Each DRS board has 32 data channels and 4 timing channels
- One BPD needs 14 boards, counters: 2, TOF-L: 54, TOF-F: 2, PSD: 14
- Data from boards collected by readout machines (up to 4 boards can be connected to one)

Data Acquisition System

Problems with DAQ Control? Call DAQ Expert

Detector Control System


Detector Control System

Bartek and Sasha

NA61/SHINE facility

Detector Control System

List of Experts

- Detector Supervisors
 ≈ Technical Coordinators
 Piotrek, Bartek, Sasha D.
- Beam/BPD Experts Kamil, Yuliia
- Trigger Experts Jarek, Eric
- Vertex Detector Experts Paweł, Mateusz
- Gas and TPC HV Experts Bobby, Sasha D., Vitalii
- TOF-L Experts
 Sasha D., Andrey
- TOF-F Experts
 Eric, Amelia
- PSD Experts Sergey, Nikolay, Vadim, Marcin, Łukasz

- TPC Readout Electronics Experts Dominik, Bartek
- DRS Experts Dominik, Yuliia, Bartek
- DAQ Experts
 - Network Bartek
 - DAQ Interfaces Ivan
- DCS Experts Tobiasz, Valeria

Thank you!