

Effects observed in electron BPM readings

<u>Collette Pakuza</u>, Stefano Mazzoni, BI and AWAKE teams 20th AWAKE Instrumentation Meeting, Tuesday 26 November

General observations with 1 Hz data

More detailed look with 10 Hz data

2

General observations with 1 Hz data

More detailed look with 10 Hz data

3

Overview

BPM systems at AWAKE

ELECTRONS

Stripline:

- 7 shorted stripline BPMs in the 18 MeV electron line
- 5 in the common beam line

High-frequency:

- 2 ChDR BPMs in the common beam line
- 1 HF DESY inspired conical-shaped button BPM in the common line

PROTONS

 20 button BPMs from SPS extraction to AWAKE

During the tests for the high-frequency pick-ups in 2024, effects in the BPM readings were observed when AWAKE was in the SPS cycle even when protons were not being extracted

C. Pakuza, March 2024

Overview

BPM systems at AWAKE

ELECTRONS

Stripline:

- 7 shorted stripline BPMs in the 18 MeV electron line
- 5 in the common beam line

High-frequency:

- 2 ChDR BPMs in the common beam line
- 1 HF DESY inspired conical-shaped button BPM in the common line

PROTONS

20 button BPMs from SPS extraction to AWAKE

During the tests for the high-frequency pick-ups in 2024, effects in the BPM readings were observed when AWAKE was in the SPS cycle even when protons were not being extracted

C. Pakuza, March 2024

General observations with 1 Hz data

More detailed look with 10 Hz data

6

Data from nxcals

Selected timeframes for the BPM position data:

28/07/2024 20:07:00 to 20:10:00 UTC - 1 x 10¹¹ protons per bunch, 200 pC electron bunches (shown below)

28/07/2024 20:03:00 to 20:06:00 UTC – 3 x 10^{11} protons per bunch, 200 pC electron bunches

23/07/2024 17:50:30 to 17:53:30 UTC – 3 x 10¹¹ protons per bunch, 200 pC electron bunches

05/08/2024 08:47:00 to 08:50:00 UTC - 200 pC electron bunches only

14/05/2022 12:56:00 to 12:59:00 UTC - check of 2022 data

15/10/2024 13:00:00 to 13:07:00 UTC - check of the last day of this year's run

 1×10^{11} protons per bunch, eBPMs in common line, H plane, 28/07/2024

Data from nxcals

- Beam position of common line eBPMs, including the ChDR and HF BPMs, plotted and one pBPM (all horizontal plane)
- Screen in just before BPM 412351 stopping the electrons but not the protons, so BPM 412351 is reading the proton shots
- All eBPMs and pBPMs are triggered on the signal except the ChDR and HF BPMs that are triggered with 10 Hz external trigger
- The eBPM position readings publish both an average of 10 shots at 1 Hz (plotted) and a set of 10 readings at 1 Hz
- The pBPM readings are cycle bound and are published with the cycle timestamp misaligned with timestamp of eBPM 412351 reading of the protons
- Plot shows that even when we are in the cycle but not extracting protons, peaks are present at the rate of proton extraction

 1×10^{11} protons per bunch, eBPMs in common line, H plane, 28/07/2024

COMMON LINE

ELECTRON LINE

- Peaks in the H plane of common line e-BPMs
- Peaks also present in H plane of e-line BPMs but in the opposite direction
- No peaks or within noise in vertical plane in the common and e-line BPM readings

COMMON LINE

ELECTRON LINE

- Same day, few minutes apart, no e-beam parameters changed
- Similar situation for higher-intensity proton bunches

COMMON LINE

ELECTRON LINE

• Example from a different day, different e-beam conditions

- Peaks are more pronounced in the H plane of BPM readings in both the common and e line, where the amplitude of the peaks are increasing as you go further down the e-line
- Also some peaks can be seen in the V plane of the common line

11

2022 data check

COMMON LINE

• For 1 x 10¹¹ protons per bunch

12:59:00

12:59:00

Last day of 2024 Run check

COMMON LINE

ELECTRON LINE

Peaks still present

Overview

General observations with 1 Hz data

More detailed look with 10 Hz data

COMMON LINE

- Plotted is the current in a magnet in the p-line
- Correlation between the peaks in the BPM readings and this current
- Presence of the protons affects the signal in the stripline eBPMs, which we already know as they operate at 404 MHz
- Don't see much difference for the ChDR and HF BPMs
- These are better at rejecting the proton signal at 1 x 10¹¹ ppb – what we already know from previous measurements without the TRIUMF detection system and simple 30 GHz detection and scope

COMMON LINE

- Similar situation for higher-intensity protons
- Makes sense as magnet current doesn't change

ELECTRON LINE

• Effect increases as you go further down the e-line

Individual channels

- Individual channels are logged for the ChDR and HF BPM
- Effect is seen mainly in the H-plane
- Channel a (H+ looking downstream) and b (Hlooking downstream) are anticorrelated
- Little or no effect in the V-plane

- Peaks observed predominantly in the H plane of all electron BPMs in the electron and common line when AWAKE is in the SPS cycle both when protons are being extracted and not being extracted
- These peaks correlate with the ramping of the magnets in the proton line
- When the protons are present, the stripline eBPM signals are affected, which we already know
- The ChDR BPM and HF BPM operating at 30 GHz give better rejection of the proton signal (1 x 10¹¹ ppb) which also agrees with observations in the past

Open questions

- Not yet identified the way in which the magnet currents affect the e beam
 - Is this a direct effect on the beam? Effect on other instruments causing physical movement of the beam?
 - Effect on the cables to the electronics?
 - Combination of both?
- Some further investigations needed, check all BTVs for physical movement, check cable routing (dismantling)
- Do we need cable shielding for the future?
- Do we keep the ChDR and HF BPMs for Run 2c?

Thank you for your attention!

home.cern

Extra slides

Magnet current, 1×10^{11} protons per bunch

Magnet current, 3×10^{11} protons per bunch

10 Hz data alignment for the eBPMs

FEC publishes the 10 Hz data in sets of 10 at 1 Hz Data looks like:

... Pos 9 | Pos 0 | Pos 1 | Pos 2 | Pos 3 | Pos 4 | Pos 5 | Pos 6 | Pos 7 | Pos 8 | Pos 9 | Pos 0 | ...

- One timestamp published for all 10 data points in a set
- This timestamp is somewhere between Pos 9 and Pos 0 of the following set
- This creates some timing error
- This timestamp can either be allocated to Pos 9 or Pos 0 of the following set
- No problem if we do the same for everything but stripline BPMs are triggered on signal whilst ChDR and HFB are triggered on external 10 Hz trigger
- Therefore, need to align the ChDR and HFB data to the stripline BPMs
- For all the stripline BPMs, I allocated the timestamp to Pos 9 and for the ChDR and HFB, I allocate them to Pos 0 of the following set by looking at the correlation between them
- Still some error there but it is better aligned

[•] TT41.8PM.4123433HOR_PO5_ARRAY(2024-07-23 17:51:45.978 (UTC) TT41.8PM.412346_CHDRAcquisition.horPos(2024-07-23 17:51:45.978 (UTC) T41.8PM.412348_HF8.Acquisition.horPos(2024-07-23 HF8.Acquisition.horPos(2024-07-23 HF8.Acquisition.horPos(2024-07

UIC			•
Time Windows			
● (2024-07-23 1	7:51:45 - 202	4-07-23 17	/×
Dynamic	Fixed	F	ills
- Seleo	ct a predefine	d period	
Start time 23/07/2024	Ē	17:51:45	Q
End time	-	17/51/46	
23/07/2024		17:51:46	U
+ Ac	ld New Time I	Range	
Selected Variables			^
TT41.BPM.412343:HOR_POS_ARRAY Horizontal beam position shots during last BP Vector_NUMERIC m			~ ×
TT41.BPM.412346_CHDR:/	Acquisition:horP	VECTOR_NUMERIC	<i>m</i> ×
TT41.BPM.412348_HFB:Ac	quisition:horPo	S	
: Actions + Add Variable			
Selected Fundamentals			^
Discard Changes	Save As New		Save
	3 variables		

Electrons only

COMMON LINE

• Electrons only, not in SPS cycle, no peaks at the rate of SPS extraction

Electrons only, 10 Hz data

COMMON LINE

- Vertical plane
- Again proton signal measured in the stripline BPMs
- Can't see any dips/peaks or they are within noise

COMMON LINE

• Similar situation for higher-intensity protons

ELECTRON LINE

- Dips also observed in H plane readings of eBPMs but in opposite direction to the peaks in the H readings of the eBPMs in the common line
- Other dips observed in eBPM 430010 at 1 Hz – digital issue, electronics or software
- Ignore eBPM 430129 H as it was not working at this point

ELECTRON LINE

• Similar situation for higher-intensity protons

ELECTRON LINE

• Either no peaks or they are in the noise

ELECTRON LINE

• Similar situation

COMMON LINE

• Different day, different e-beam conditions

COMMON LINE

- Vertical plane
- Can see the dips in a couple of the stripline BPMs

ELECTRON LINE

Collab meeting presentation

Nikita Z. van Gils, AWAKE collaboration meeting, 6-8 November 2024

