Performance Requirements for WLCG Storage

US ATLAS Perspective

Lincoln Bryant University of Chicago

WLCG Open Technical Forum 10 December 2024

Storage is Real Estate

- Storage is the most expensive service that sites provide
 - Requires significantly more care and attention than compute
 - Inaccessible or failed storage is painful for sites, DDM, users
- Sites primarily pursue storage capacity per unit money, because capacity is pledged
 - Availability is also monitored by WLCG, and therefore important
 - Performance is not pledged or accounted, and is largely considered an internal site matter

HDD performance-per-TB is eroding

- Large pools of spinning disk have been the best combination of capacity, price, and performance for a long time
- However, throughput and IOPS per TB are trending downwards year-over-year!
- This will have impacts on performance, reliability in the next 5–10 years unless the technology improves significantly

Two disks, ten years apart

4TB Seagate Enterprise Disk

Specifications			3 285MB/s sustained
Standard Model Number	4TB ^{1,2} ST400(throughput
SED Model Number		5MB/s sustained	
SED-FIPS Model Number	ST4000	JIVID/S SUSLAITIEU	
Features		oughput	168 IOPS read
Protection Information (T10 DIF)		Jugripul	10010F31Eau
Humdity Sensor			Р
Super Parity			PowerBalance [™] Power/Performance Technology Yes
a latera		DS unspecified	Hot-Plug Support ³ Yes
Low Halogen	(/O	PS unspecified,	Cache, Multisegmented (MB) 256
PowerChoice TM Technology	- but	thonohmorko[1]	Organic Solderability Preservative Yes
Cache, Multisegmented (MB)		benchmarks[1]	RSA 3072 Firmware Verification (SD&D) Yes
Reliability/Data Integrity			Reliability/Data Integrity Mean Time Between Failures (MTBF, hours) 2,500,000
Mean Time Between Failures (MTBF, hours)	1.4 arc	ound 80 IOPS)	Mean Time Between Failures (MTBF, hours) 2,500,000 Reliability Rating @ Full 24×7 Operation (AFR) 0.35%
Reliability Rating @ Full 24x7 Operation (AFR)	0.	/	Nonrecoverable Read Errors per Bits Read 1 sector per 1
Nonrecoverable Read Errors per Bits Read	1 sector per 10E15		Power-On Hours per Year (24×7) 8760
Power-On Hours per Year	8760		512e Sector Size (Bytes per Sector) 512
Bytes per Sector	512, 520, 528		4Kn Sector Size (Bytes per Sector) 4096
Limited Warranty (years) ⁵	5	— 🖊 5x capacity k	Limited Warranty (years) 5
Performance		a subst	Performance
Spindle Speed (RPM)	7200	only	Spindle Speed (RPM) 200RPM
			Interface Access Speed (Gb/s) 6.0, 3.0
Max. Sustained Transfer Rate OD (MB/s)	175	1.5x through	Dut in Max. Sustained Transfer Rate OD (MB/s, MiB/s) 285/272
Average Latency (ms)	4.16		Raildoni Read/While 4K QD16 WCD (IOPS) 100/550
Interface Ports	Dual	— 10 years	Average Latency (ms) 4.16
Rotation Vibration @ 1500 Hz (rad/s ²)	12.5	youro	Interface Ports Single Rotation Vibration @ 20-1500 Hz (rad/sec ²) 12.5

(1) <u>https://techgage.com/article/seagate-constellation-es-3-4tb-enterprise-hard-drive-review/4/</u>

20TB Seagate Enterprise Disk

SATA 6Gb/s

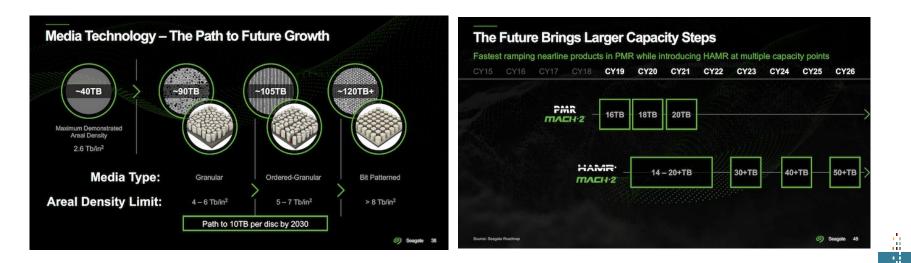
She sit chuic na

.

÷.

What does this mean for sites?

- Expect sites' throughput per TB (i.e., 1.5x throughput / 5x capacity) to go **down** in the future with HDDs
- With ideal (highly sequential) workloads, HDD performance will continue to be good enough and push the bottleneck toward network
- The read/write mix and sequential/random mix of real-world WLCG workloads should probably be studied
 - See *backup slide for an example of how I/O mixture affects HDD performance


HDD reliability risks in Run 4

- Huge HDDs bought during Run 4 will probably have longer, riskier RAID rebuild times
 - Speculation: 3 days or more to replace one 100TB disk
- Sites may feel pressure to switch to object stores?
 - Self-healing; amortize the rebuild time across the cluster

YEAR	2011	2021	2031 (crude extrapolation)
Capacity	4TB	20ТВ	100TB
IOPS	80 IOPS	168 IOPS	250 IOPS
Throughput	175MB/s	285MB/s	425MB/s
RAID Rebuild Time (Perf./Capacity)	6h	19h	65h

Compared to marketing material

- Capacity not too far off from the manufacturer's predictions
 - <u>https://www.tomshardware.com/news/seagate-technology-roadmap-2021</u>

Let's talk about solid state storage

- Despite the hype, solid state storage has not eliminated HDDs and probably will not for some time to come
 - Street price 30.72TB NVMe: <u>\$130/TB</u>
 - Street price 24TB HDD: <u>\$20/TB</u>
- NVMe is starting to hit attractive price points for certain types of workloads (e.g. Analysis Facilities) where the performance is worth the cost
- Sites in Run 4 may see a mix of HDD and NVMe
 - Caching layers perhaps, but even better if DDM software is aware of it

à

What about caching?

- Converting sites to diskless / cache-only sites could reduce a lot of operational expense
 - Disk becomes easy to operate, easy to scale, and fungible like compute
 - especially at sites where personpower is lacking
 - NVMe provides excellent performance, if a bit expensive still
 - Perhaps concentrate storage at the most reliable sites

• But poorly designed caches cause all kinds of problems:

- If the working set size (~ratio of compute to cache) is too large for the cache, the cache will be nearly useless
- Performance/TB problem of HDDs is much amplified (see backup slide)

Improving site networking

- Adding NVMes to our sites will also necessitate improving our network infrastructure considerably
 - One server full of NVMes can easily saturate a 100Gbps+ link
- Happily, 100Gbps networking is becoming affordable within the datacenter, even if sites are a ways off from Tbps WAN links
- These sort of site networking overhauls are largely invisible to the WLCG, but are essential to site operations

Summary

- Sites are incentivized to prioritize capacity over performance
- Performance/TB is trending downward for HDD, making them less suitable devices in the future
- Sites adding NVMe may become common in Run 4
 - Software support, pledging/accounting these high-performance resources would help
- Well-designed, diskless (cache-heavy) sites can have excellent performance characteristics with a simpler operations model

Comments/Questions?

MWT2 2014 vs MWT2 2024

• MWT2-UC 2014

- About 4PB total
- \circ 1,620 disks, ranging from 1TB 3TB in size
- Assuming 175MB/s throughput and 100 IOPS per disk (100% sequential read):
 - 1,620 * 100 IOPS = 162,000 IOPS
 - 1,620 * 175MBps = 283GB/s
- MWT2-UC 2024
 - About 21PB total
 - \circ 2,040 disks, ranging from 6TB 20TB in size
 - Assuming 250MB/s throughput and 150 IOPS per disk (100% sequential read):
 - 2,040 * 150 IOPS = 306,000 IOPS
 - 2,040 * 250MBps = 510GB/s
- Today MWT2–UC has, compared to 2014:
 - 500% capacity with 25% more disk, but only ~40-50% more IOPS and throughput per disk

*Worst case and the real world

- As always, spec sheet numbers and benchmarks are purely synthetic
- The numbers showed in the spec sheet slide are best possible performance
- Worst case performance **is** impactful:
 - 4K block size * 150 IOPS ~= 600KB/s per disk.
 - Even with 2000 disks (e.g. MWT2), this is only a bit over 1GB/s *for the whole storage pool* in the worst case
- Real world will have a mix of random, sequential
 I/O, mix of read/write (70/30 maybe?)
- The bottom line: Bad workloads can seriously impact HDD storage pool performance

avg-cpu:	%user 0.58	%nice 0,00	%system 1.04	%iowait 5.49	%steal 0,00	%idle 92.89		
Device		tps	MB/s	rqm∕	s await	areq-sz	aqu-sz	%util
sda		779.80	33.14		0 1.10	43.52	0.86	39.52
sdb		779.60	65.27		0 1.20	85.73	0.93	53.36
		3.80	0.03	3.2	0 0.16	7.58		0.10
avg-cpu:	%user		%system		%steal	%idle		
	0.58		0.99	7.18		91.24		
Device		tps	MB/s	rqm/	s await	areq-sz	aqu-sz	‰util
sda		622.60	26.33			43.31	0.49	36.54
								80.46
sdc		1.00	0.00	0.6	0 0.20	4.80	0.00	0.06
avq-cpu:	%user	%nice	%system i	%iowait	%steal	%idle		
	0.58		0.79	3.70		94.92		
Device		tps	MB/s			areq-sz		‰util
sda		558.20	21.15			38.80	0.42	34.94
sdb		559.00	21.48			39.35	0.62	40.56
sdc		51.20	0.54	85.2	0 0.64	10.70	0.03	0.22

sda and sdb here are two 12-disk RAID-6 arrays on a random, newer storage node at UChicago Note the %util, MB/s and TPS (sampled at 5 second intervals)

****HDD cache back-of-the-envelope perf.:**

- Suppose a typical 2U cache server with HDDs:
 - 24x 24TB disks in two RAID 6s = 480TB usable
 - 280MB/s (100% sequential read, from Seagate spec sheet)
 - Assume 50–100MB/s read per disk with ongoing mixed read+write operations
 - 50 to 100MB/s * 24 disks = 1.2 to 2.4GB/s
 - Assume each job reading 4MB/s continuously on avg
 - 2.4GB/s / 4MB/s = 600 job slots before the cache is completely stressed!