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Abstract. Hyperconical universes can be represented by means of an inhomogeneous

metric with positive curvature and linear expansion, that is isomorph to flat universes

with acceleration thanks to an appropriate transformation. Various symmetry

properties of this metric are analysed, primarily at the local scale. In particular, the

Lagrangian formalism and the Arnowitt-Deser-Misner (ADM) equations are applied.

To this extent, a modified Gravity Lagrangian density is derived, from which the

comoving paths as solutions of the Euler-Lagrange equations leading to a stationary

linear expansion are deduced. It is shown that the evolution of this alternate metric

is compatible with the ADM formalism when applied to the modified Lagrangian

density, thanks to a redefinition of the energy density baseline (according to the global

curvature). Finally, results on symmetry properties provide that only the angular

momenta are global symmetries. The radial inhomogeneity of the metric is interpreted

as an apparent radial acceleration, which breaks all the non-rotational local symmetries

at large distances.

Keywords: Modified Lagrangian density; Hyperconical Universe; Symmetry.

PACS numbers: 04.20Fy, 04.90e

1. Introduction

1.1. Motivation

The standard ΛCDM theory is based on the assumption that General Relativity (GR)

and the Einstein field equations are valid for the Universe as a whole. Moreover,

hypothesis of homogeneity and isotropy are taken to choose the family of possible metrics

for the Universe [1]. Modified f(R) gravities and f(T,R) extended teleparallel models

attempt to generalise the frame by assuming that local limit approaches to the GR

[2, 3, 4, 5]. Moreover, if the homogeneity hypothesis is not imposed, it is possible to

explain the accelerated Universe’s expansion by using alternatives such as the timescape

cosmology of Wiltshire and others, or models based on back-reaction effects of cosmic

inhomogeneities [6, 7, 8].

At the local limit, the ΛCDM theory uses the Friedmann–Lemâıtre–Robertson–

Walker (FRW) universes, which consider that space and temporal factors are separable

[9]. Let ~̀ be spatial coordinates of the Universe; so they can be rewritten by using

comoving coordinates ~̀′ and a scaling factor a(t) varying with time t. For instance, if

we choose a Universe characterised by S3
R :=

{
~̀ ∈ R4 : |~̀| = R(t)

}
, i.e. an expanding

3-sphere of radius R(t) ∈ R≥0 and centred in the origin (singularity in t = 0), the

scaling factor is a(t) = R(t)/R(to) and total spatial coordinates are ~̀ = a(t)~̀′ ∈ S3
R.

Therefore, the line element contains both spatial and temporal differentials, i.e., d` =

a(t)d`′ + `′da(t). If the second term is absorbed, a radial inhomogeneity appears in the

spatial term. It follows that the FRW model does not include the simplest expanding

3-sphere according to R(t) = t, embedded in R5. If the Hubble parameter is defined as

H := ȧ/a, this linear expansion corresponds to H = 1/t, which is compatible with the
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empirical age of the universe [10, 13, 11, 12]. For this reason, alternative cosmological

models are based on the equality 1/H = t, such as the Dirac-Milne model and the

inhomogeneous hyperconical model [14, 15, 16, 17]. However, symmetry properties of

these universes have not been analysed yet, so it is necessary to explore conserved

quantities and contrast them with physical observables.

The aim of this paper is to analyse the symmetry properties of a radially

inhomogeneous hyperconical model according to the Killing vectors of the metric, the

Lagrangian formalism and the Arnowitt-Deser-Misner (ADM) equations [18, 19, 20].

This work expands new results obtained from the family of metrics proposed in [16, 17].

The model is also based on the same hypothesis of linear expansion as [14, 15], but

analyses the curvature tensor according to the point of view of a hypothetical observer

located in the hypersurface of an expanding universe (hypercone section), which can

have both positive or negative curvature. This contrasts with the Dirac-Milne universe,

which assumes a zero or negative curvature in a classic FRW metric [14].

Assuming hyperconical universes with linear expansion, isotropic but radially

inhomogeneous metrics are obtained by transformations that preserves the proper time.

These metrics are compatible with observations of luminosity distance of 580 SNe Ia

from the Supernova Cosmology Project [16]. Moreover, there exists a family of locally

conformal transformations that lead the (linearly expanding and curved) metrics to

become the flat FRW metric, absorbing the spatial inhomogeneity as an acceleration

in time. That predicted a dark energy density about ΩΛ = 0.6937181(2) (presented

in [17]), compatible with the standard-model-dependent observation (ΩΛ = 0.690(6))

[21, 22]. The relation between radial inhomogeneity, Lagrangian curvature terms and

effective dark energy is also found in other modified gravities, but without a prediction

of its value [23, 24, 25, 26, 7, 27].

In order to present new results, this work requires some previous sections.

Specifically to remind notions of local symmetries under Lagrangian formalism, the

paper firstly revisits generalities on Field Theory and the ADM formalism. The second

section is a summary to describe the Inhomogeneous Hyperconical Universe model, and

the following sections show results on the modified Lagrangian density for that universe

and the local symmetry properties. Finally, main conclusions close the paper.

1.2. Generalities on Field Theory

To fix the notations used in this paper, it is required a brief reminder of generalities

on the classical Field Theory. Let M be a spacetime manifold with the target space C
determined by the values of the fields at arbitrary points. Taking m real-valued scalar

fields, φ1, . . . , φm, the target manifold is Rm. We assume S[φ] is the integral over M

of a function called Lagrangian density L, which depends on φ, its derivative and the

position, L(φ, ∂µφ, x
µ). Note that the classical Lagrangian L is the volume integral of

the Lagrangian density L, i.e. L =
∫
dnxL. The action functional S : C → R, is given
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by:

S[φ] =

∫
M

L[φ(x), ∂µφ(x), x] dnx (1)

In addition to this, some boundary conditions are required The Euler-Lagrange

equations are:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 (2)

Definition. A solution subspace of C is called an on-shell solution if it consists of

functions φ such that all functional derivatives of S at φ are zero, that is:

δS[φ]

δφ(x)
≈ 0 (3)

and that φ satisfies the given boundary conditions. If a functional derivative D can

be lead to off shell, we say D generates an off-shell symmetry. If this only holds on

shell, we say D generates an on-shell symmetry. Then, we say D is a generator of an

one-parameter symmetry Lie group [28].

Theorem. (Noether current) Given an infinitesimal transformation on C, generated by

a functional derivation D such that

D

[∫
M

L dnx

]
=

∫
∂M

F µ[φ(x), ∂φ, ∂∂φ, . . .] dsµ (4)

for all compact manifolds M , i.e. D[L(x)] ≈ ∂µF
µ(x) for all x, where we set

L(x) = L[φ(x), ∂µφ(x), x]. Then the following quantity:

Jµ :=
∂L

∂(∂µφ)
D[φ]− F µ (5)

satisfies the continuity equation ∂µJ
µ = 0.

Therefore, Jµ is the Noether current associated with the symmetry. If we consider

noncompact manifolds M with currents fall off sufficiently fast at infinity, the current

can be integrated over a space-like slice X . In this case, the continuity equation implies

that we get a conserved quantity Q called the Noether charge:

Q :=

∫
X
J0d3x (6)

1.3. ADM Formulation of Gravity

In this work we denote by R1,n
η := (Rn+1, η1,n) the flat Lorentzian manifold, where the

metric tensor is given by η1,n := diag(1,−1, ...,−1). Taking n = 3 and normalising the

gravitational constant 16πG ≡ 1, the general action should be:

S =

∫
d4x
√
−g (f(R) + LM) ≈

∫
d4x
√
−g (R− Λ + LM) (7)

where R is the Ricci scalar curvature, Λ is the cosmological constant and LM is the mass

term. In fact, f(R) can be the standard Lagrangian density (R−Λ) from the Einstein-

Hilbert action, or can be any function of modified gravity depending on scalars built using
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the Riemann curvature tensor Rρ
αβγ or the Ricci curvature R := gαγRβ

αβγ among others,

or using torsion tensor f(T ) like in parallel gravities [29, 5]. With Gαβ := Rαβ−gαβR/2
being the Einstein tensor, the field equations are given by:

Gαβ − Λgαβ = 8πGTαβ, (8)

where Tαβ := −2δLM/δgαβ +gαβLM is the stress-energy tensor. If the space-time of the

universe is foliated into a family of space-like surfaces, we can introduce a Hamiltonian

formulation according to the Arnowitt-Deser-Misner (ADM) formalism [18, 19]. This

is useful because, from the Hamiltonian H := pq̇ − L, a set of equations of motion

can be obtained for the generalized coordinates q and momenta p as q̇ = ∂H/∂p and

ṗ = −∂H/∂q. Still according to the ADM formalism, the spatial submanifold can be

interpreted as an embedding into the global space-time and thus the metric elements

can be separated in a temporal part g00 and another spatial part gij. Moreover, ADM

takes LM = 0 = Λ and then Lagrangian density can be rewitten as:

L = −gij∂tπij + lh+ 2liπ
ij

;j − 2∂is
i (9)

where l := (g00)−1/2 is the lapse, li := g0i is the shift, πij are conjugate momenta, h is

the Hamiltonian constraint and si are auxiliary momenta:

πij =
√
−g
(
Γ0
pq − gpqΓ0

rsg
rs
)
gipgjq (10)

h = −√gsRk
k −

1
√
gs

(
1

2
π2 − πijπij

)
(11)

si = l0jπ
ij − 1

2
l0iπ +∇i

√
−g (12)

where li := g0i/g00, πij := gikgjlπ
kl, π = gijπ

ij, g := det gµν is the determinant of the

metric and gs := det gij is the determinant of the spatial metric. The ADM equations

for the metric evolution are:

∂tgij = 2
1√
−gsg00

(
πij −

1

2
πgij

)
+∇ig0j +∇jg0i (13)

In this context, it is of special interest to study the evolution of the metrics with nonzero

lapse (g00 6= 1) and shift (g0r 6= 1). A particular case is given by an inhomogeneous

universe built from an appropriate transformation of the hyperconical metric (Sec. 2).

2. Inhomogeneous Hyperconical Universe

2.1. Hypothesis

A summary of the used model is described in this section, according to [16, 17]. Let

M ⊂ R1,4
η be a support manifold contained in the 5-dimensional Minkowski space, more

specifically M := (R≥0 ×R4, η1,4), with inner product (·) given by the usual Lorentzian

metric η of signature (1,4). In order to restrict the 5-dimensional support manifold

M to the 4-dimensional H4, we take into account a constraint based on a hyperconical



Lagrangian density and symmetries of inhomogeneous hyperconical universes LATEX 2ε6

universe with linear expansion. More specifically, we focus on an expanding distance

between two points X,O ∈M as a function of an observable time t ∈ R≥0:

H4 :=
{
X ∈M : |X −O|η1,4 = βot

}
. (14)

Here βo ∈ C is assumed as a constant with respect to the time t ∈ R≥0 but dependent

on the chosen origin O ∈M .

Let C := (TOM, Id, η1,4) be a coordinate system or chart such that the coordinates

of the points X,O ∈ TOM are respectively X = (x0, ..., x4) and O = (0, ..., 0), with

the identity Id mapping. However, the coordinates of X are rewritten as (tX , ~r, u) for

convenience, where ~r := (x1, x2, x3) ∈ R3 is the ordinary 3-vector, u := x4 ∈ R is the

additional spatial dimension and tX := x0 ∈ R≥0 is the time dimension. Choosing

t = tX , the condition of the hypersurface H4 is now ν2t2−~r2−u2 = 0 with ν2 := 1−β2
o .

Note that the hypercone with ν > 0 is an asymptotic limit of hyperboloid manifolds.

In fact, if the constraint is taken as t2 − ~r2 − u2 = α with constant α 6= 0, the spaces

are known as de Sitter universes [30, 31]. Moreover, H4 is not a Dirac-Milne universe

because it admits positive spatial curvature.

Remark. The manifold (H4, η1,4) is spatially homogeneous. The homogeneity of H4 is

verifiable because it can be foliated by spatial hypersurfaces Σt such that, for ∀p, q ∈ Σt

and ∀t, there exists a transformation (diffeomorphism) carrying the point p to point q

and leaving the metric invariant. In other words, a spheroidal submanifold S3
t can be

defined for each time t as the intersection between the hypercone H4 and the isochronous

hyperplane at this time t:

S3
t :=

{
(~r, u) ∈ R4 : ~r2 + u2 = ν2t2

}
⊂ H4 (15)

That is, the time coordinate t is considered as the age of the universe (radius)

and the t-isochronous 3-spheroid S3
t could be homeomorph to our expanding spatial

universe (Eddington idea), locally conformally flat. Consequently, the universe manifold

is globally hyperbolic, i.e, each S3
t is also a Cauchy surface‡ [32].

Remark. The manifold (H4, η1,4) is spatially isotropic. Note that H4 can be covered

by a set of timelike curves {X|γ} ⊂ H4 and ∀p ∈ X|γ and ∀v, w ∈ TpS3
t orthogonal to

X|γ there exists a transformation (diffeomorphism) leaving fixed p and carrying v to w,

and leaving the metric invariant. These curves {X|γ} are called comoving observers.

The expansion of the universe is an absolute movement with respect to the point

O = (0,~0, 0)C , which is fixed (respect to chart C). Therefore, the minimum movement

of “particles” corresponds to the comoving observers with coordinates (t,~0, νt)C ⊂ H4.

These particles are interpreted as paths at rest with respect to the expanding universe

S3
t

‡ A Cauchy surface is any subset of space-time which is intersected by every causal (timelike) curve

exactly once.
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2.2. Moving charts

2.2.1. Problem on measuring proper time According to an expected equivalence, an

observer that lives in H4 will measure local distances as in the Minkowskian space

R1,3
η := (R4, η1,3). Therefore, the proper time must be the same. For instance, let

x0, x ∈ R1,3
η be two static points of an observer with coordinates x0 = (t0,~0) and

x = (t,~0) with 0 < t0 < t. Their extended points in H4 are x0
′ = (t0,~0, νt0) and

x′ = (t,~0, νt), as we can take spaces R1,3
η that intersect to H4 at points x0 and x. We

infer that there exists a smooth map f : (H4 r {O} , η1,4)→ (R>0 × R3, g) := R1,3
g such

that the metric g inherits the form of H4 but produces the same local (~r = ~0) distance

at rest in R1,3
g as does for R1,3

η . As x and x0 are at rest for definition in R1,3
η , the distance

turns out to be the proper time of the observer:

t− t0 = |x− x0|η1,3 = |x− x0|g = |f(x′)− f(x0
′)|g (16)

2.2.2. Physical solution Let y′(t) = (t, ~r, νt), x′(t) = (t,~0, νt) ⊂ (H4, η1,4) be two

comoving paths, considering the second one as an observer, i.e. taking y′0 := y′(t0)

and x′0 := x′(t0) as a point of the past. If the observer performs measurements in t0
and t, there exists a deformed path y′′(t) := Tty′(t) intersecting in H4 during these

measurements, with changes in 0 < t0 < t due to a Deformation Operator, Tt, such as

Tt : (H4, η1,4) → (M, η1,4) ⊂ R1,4
η (17)

y0
′ = (t0, s(t0)) 7→ y0

′′(t) :=

(
t0,

t

t0
s(t0)

)
⊂M (18)

where t0 ∈ R>0 and s(t) := (~r(t), νt) ⊂ R4 are respectively the temporal and spatial

components of the path y(t) = (t, s(t)) = (t, ~r, νt) ⊂ H4.

With this, x′′ = x′ and x0
′′ = (t0,~0, νt) ∈ R1,4. Now, the u-component of the

difference x′− x0
′′ is zero, and the proper time is the same that Eq.( 16). Therefore the

metric g of H4 is induced by the differential line of x′ − x0
′′ in R1,4

η :

|d (x− x0))|2g = |d (f(x′)− f(x0
′))|2g = |d (x′ − x0

′′)|2η1,4 (19)

where the morphism f : (t, ~r, u) 7→ (t̂, ~̂r) ∈ R1,3
g can be chosen such that t̂(~r, t) = t,

~̂r(~r, t) = ~r, ∀~r2 < ν2t2 satisfying the constraint condition of H4. However, it is possible

to use other projections.

Let y′(t) := (t,~0,−νt) 3 O be antipodal in S3
t of the comoving observer x′(t) =

(t,~0, νt), with t ∈ R≥0. [17] analysed the locally conformal family of azimuthal

projections fα : Tt (S3
t r {y′}) ⊂ R1,4

η → R1,3
g for the angular coordinate γ ∈ [0, γk),

mapping (t, ~r, u) 7→ (fα
t̂

(t, ~r), fαr̂ (t, ~r)) = (t̂, ~̂r) ∈ R1,3
g with:

~̂r = fαr̂ (t, ~r) := νt
γ

(1− γ/γk)α
~kr (20)

t̂ = fαt̂ (t, ~r) (21)

where ft̂(t,~0) ≡ t, ~kr := ~r/r, r := |~r| , α is the distortion parameter, and

γk := sin−1(
√
k − k2/4) ∈ [π/3, π) is a domain limit according to the parameter

k := ν−2 ∈ (0, 1]. Note that it can be also defined the comoving vector ~̂r′ := (tô/t)~̂r.
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The above discussion Eq. (16-19) is equivalent to saying that the observer fixes

time coordinate for measurements using a initial time tô, but it is moving with respect

to O := (0,~0, 0). Thus, its reference line is Ô := Ttx′(tô) = (tô,~0, νt) ⊂ M (note that

Ô 6⊂ H4 except at t = tô). This reference line allows us to define the notion of moving

charts.

2.3. Metric tensor

Let X ⊂ H4 be any curve. The differential line element dX is easily obtained knowing

that d~r′ can be decomposed in spherical coordinates as d~r′ = dr′ ~kr + r′dΣ′ ~kΣ, where

dΣ′ ~kΣ := dθ′ ~kθ + sin θ′dφ ~kφ is orthogonal to radial direction ~kr. According to Eq. (19),

and since dtô = 0, the non-zero elements of the metric g for the reference Ô are:

g00 = 2k−1(b− 1) + 1 (22)

grr = −a
2

b2
(23)

gθθ = −a2r′
2

(24)

gφφ = −a2r′
2

sin2 θ (25)

g0r = −ar
′

tôb
(26)

where b :=
√

1− kr′2/t2ô, k−1 := ν2 = 1 − β2
o and a := t/tô is the scale factor (see

more details in [16]). Note that if Tto is used instead of Tt, it is obtained a static metric

equivalent to the FRW universe but without expansion.

Symmetrical spatial elements gii obtained from Eq. (22) are compatible with some

FRW metrics, but elements g00 6= 1 and g0r 6= 0, respectively, imply lapse and shift

terms, as in the ADM formulation of gravity [19]. To compare g with the FRW metrics, a

diagonal version of the metric is given by the coordinate change t′ := t
√

2k−1(b− 1) + 1,

which is equivalent to selecting g′00 = 1, g′0r = 0 and:

g′rr = grr −
g2

0r

g00

= −a(t′, r′)
2 1− k−1(b− 1)2

b2(2k−1(b− 1) + 1)
(27)

g′φφ = −a(t′, r′)
2
r′

2
sin2θ (28)

g′θθ = −a(t′, r′)
2
r′

2
(29)

where a(t′, r′) = t′/(tô
√

2k−1(b− 1) + 1). Despite this, important differences remain

in the FRW metric. Result is an inhomogeneous hypersurface similar to the Lemâıtre-

Tolman-Bondi (LTB) type [33, 34], but with the same factor scale a for the radial and

angular components of the metric (in contrast with the LTB universes, that distinguish

between angular and radial expansion). Differences are also found comparing with the

McVittie metric, which is an asymptotically spatially flat FLRW metric for largest

distances. [35]

To compare with similar FLRW metrics, we can see that the t′-isochronous

hypersurface is similar to a paraboloid, in contrast to the homogeneous hypersphere

given by the t-isochronous (Fig. 1).
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Metric tensor constructed from Ô describes a universe with linear expansion,

directly proportional to its age or time, t. With this, the Hubble parameter is defined

as H := ȧ/a = 1/t. The most current value of the Hubble parameter is Ho = 1/tô
and, taking the age of the universe as tô = (1.380 ± 0.004) · 1010 years [21, 22], it is

obtained a value Ho = 70.9±0.2 km · s−1 ·Mpc−1 compatible with the local observations

[16, 36, 11, 12].

2.4. Ricci scalar curvature

Let Rαβ be local coordinates of the Ricci curvature tensor defined for signature (1,3),

Rαβ := Rµ
αµβ = ∂µΓµαβ − ∂βΓµµα + ΓµρµΓραβ − ΓµρβΓραµ (30)

where Γµαβ are the Christoffel symbols.

It is found that the manifold is only maximally symmetric in the spatial components

(Rij = 1/3 · Rgij) at a local scale (r′ = 0, i.e. b = 1). In this case, the spatial part

of the Ricci tensor Rij approximates to Rij ≈ −2k(ȧ/a)2gij. This contrasts with the

non-accelerated case for the FRW metric, i.e. RFRW
ij = −2 (ȧ/a)2 gFRWij − 2K/a2gFRWij ,

where K is the FRW curvature. Taking the Ricci scalar curvature, obtained from the

trace R := Rα
α,

R = −6k2

t2
2b− 1

3
(2b2 + 1) + k − 1

(2b− b2 + k − 1)2
(31)

local limit (r′ = 0) leads to the simplification R ≈ −6k/t2 = −6/(νt)2, as a 3-sphere (of

radius νt) embedded into R1,4, like in the Anti-de Sitter spaces. For the local universe

with k = 1, the Ricci scalar corresponds to the case of FRW metric with linear scale

factor a = t/tô and curvature K = 0, i.e., this is apparently flat under the FRW view.

Despite the assumption of linear expansion with constant factor βo, this expansion

could depend on the spatial coordinates (~r, u(~r)), of course excluding the time t, and then

a most general constraint is |X −O|η = β(~r, u)t. In this case, the resulting curvature

k = 1/(1−β(~r, u)2) also depends on the spatial coordinates. However, we can normalise

the local limit as k(0, u(0)) = 1.

Figure 1. Isochronous hypersurfaces normalised to universe age scale (tô ≡ 1)

for: a) Linearly-expanding homogeneous space (t-isochronous), obtained considering

coordinates such that g0r 6= 0 and g00 6= 1; b) linearly-expanding inhomogeneous space

(t′-isochronous), obtained considering coordinates such that g′0r = 0 and g′00 = 1;

c) apparently-accelerated flat FRW universe according to locally conformal map

(distorted azimuthal projection α = 0.28, Eq. (20))
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3. Results I: Derivation of modified Lagrangian density

3.1. Local Friedmann equations

According to the new theoretical frame, a modified Lagrangian density can be obtained

from the local Friedmann equations, assuming GR valid for that scale. While most of

studies find the Universe metric as a solution of the Friedmann equations, the work

of [16] found new Friedmann equations and the value of the energy parameters as a

solution of the proposed inhomogeneous ”void” metric. Locally, equations with positive

curvature (ko = 1) is compatible with the flat FRW case (assuming linear expansion).

Additionally, taking ρcrit(t) = ρo + ρΛ, where ρcrit(t) := 3koH
2/8πG and ρΛ := Λ/8πG,

the hyperconical model leads to:

4πGρo(1 + w) =
ko
t2

(32)

Λt2 = ko
1 + 3w

1 + w
(33)

where w is the parameter of the matter state equation. If Λ is finite and constant, it

is obtained that Λ = 0, G is constant, and w = −1/3 for any time t [16]. In addition,

if mass is homogeneously and isotropically distributed throughout the Universe, we can

define a mass function m(r) := 4πρor
3/3, and Eq. 32 can be formulated as:

ko
t2

=
8πGρo

3
=

2Gm(r)

r3
(34)

Note that for ko = 1, we get ṙ = r/t =
√

2Gm(r)/r, i.e. Hubble’s law is an escape

velocity. If this approach is considered for the spatial components of the hyperconical

metric, grr = −a(t)2/(1−r2/t2), it locally approaches to the Schwarzschild components,

grr = −a(t)2/(1 − 2Gm(r)/r), as expected for inhomogeneous metrics (e.g. LTB and

McVittie metrics [33, 35]).

Summarising, inhomogeneous metric with a locally valid GR leads to ΩΛ =

ρΛ/ρcrit = 0, but if that metric is projected on a flat FRW metric (forcing GR to

be generally valid), the inhomogeneity is absorbed as an acceleration and dark energy

is ΩΛ = 0.6937181(2) ([[17]]).

3.2. Modified Lagrangian density

From the assumption that GR is valid at local scale, it follows that the expansion of the

Universe is compatible with the equation of state w = −1/3 for the energy density, i.e.,

ρo = ρcrit and po = −ρcrit/3 [16]. This simplyfies the Einstein field equations to:

Gαβ = 8πGTαβ = 8πG (T oαβ + Tmαβ) , (35)

where Tmαβ is the stress-energy tensor of the ordinary matter-energy and T oαβ =

(ρo + po)uαuβ − pogαβ is the stress-energy tensor of the background space-time, with

w = −1/3 and energy density equal to ρcrit = 3ko/8πGt2. We deduce the total
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Lagrangian density as locally equal to:

L ≈ 1

16πG

(
R +

6ko
t2

)
+ LM, (36)

where LM is the Lagrangian term of the ordinary mass-energy. Note that the curvature

term R + 6ko/t
2 corresponds to the local difference between the total Ricci curvature

R and the local limit of the Ricci curvature estimated for the empty hyperconical

universe, Ru ≈ −6ko/t
2. Therefore, a modified gravity is required for the general case.

The simplest modification for the Lagrangian density is given by the general difference

∆R := R−Ru, that is

L =
∆R

16πG
+ LM, (37)

which corresponds to a simple type of modified gravity Lagrangian density, which leads

to equations similar than those obtained using a flat FRW universe.

The modification of the Lagrangian can be interpreted as a redefinition of the energy

density baseline or “vacuum energy”, given by the global curvature Ru, i.e. the critical

energy density.

4. Results II: Analysis of Symmetries

4.1. Euler-Lagrange equations

Let S be the action functional for describing the hyperconical manifold H4 embedded

in M , it corresponds to a constant m 6= 0 multiplied by the distance τ := |X − O|η of

the relative path of X − O ∈ M under the metric η, and the Lagrangian L coincides

with the constant product mβo. That is,

S [τ(t)] =

∫
H4

mdτ =

∫ t

0

mβodt (38)

This retrieves the constraint |X − O|η = βot, viewed under the chart C. However, if

a path x = x(t) ⊂ R1,3
g is analysed respect to the chart D, the new action is given by

τ(t) = |x(t)|g:

S [X(t)] =

∫ t

0

m

√
gαβ

dxα

dλ

dxβ

dλ
dλ ∼=

∫ t

0

m

2
gαβ

•
xα
•
xβdτ (39)

where
•
xµ := dxµ/dτ , and it is used the homomorphism between the extremal δ

√
• = 0

and 1
2
δ• = 0. Therefore, the Lagrangian functional for R1,3

g can be taken as L =
1
2
gαβ

•
xα
•
xβ. Euler-Lagrange equations provided by the above action are the corresponding

geodesic equations
••
xρ = −Γραβ

•
xα
•
xβ, being Γραβ the Christoffel symbols of second kind,
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the non-vanishing ones being:

Γij0 =
ȧ

a
δij (40)

Γ0
ij = − gij

ȧ

a

k(1− b)
2b− b2 + k − 1

(41)

Γrrr =
1

b2

kr′

t2ô

b+ k − 1

2b− b2 + k − 1
(42)

Γrφφ = − r′ sin2 θ
b+ (k − 2)b2 + b3

2b− b2 + k − 1
(43)

Γrθθ = − r′ b+ (k − 2)b2 + b3

2b− b2 + k − 1
(44)

Γθθr = Γφφr =
1

r′
(45)

Γθφφ = − sin θ cos θ (46)

Γφφθ = cot θ (47)

Angular velocities
•
θ and

•
φ remain spherical symmetry as in the flat Minkowski

universe. However, time and radial coordinates present a flux:

••
t = − k(1− b)

2b− b2 + k − 1

t

t2ô

( •
r′2

b2
+ r′

2
•
Σ′2

)
(48)

••
r ′ = −2

•
r′
•
t

t
−

kr′

b2t2ô
(b+ k − 1)

2b− b2 + k − 1

•
r′

2
+
b+ (k − 2)b2 + b3

2b− b2 + k − 1
r′
•
Σ2 (49)

where
•
~r′2 := −gii

•
xi
•
xi is the square of the spatial velocity, and it is taken H := ȧ/a = 1/t.

The local limit (r′/tô << 1) without rotation (
•
Σ = 0) for Eq. (48) is only non-zero at

the third order, and Eq. (49) is non-zero for the first order:

••
t ≈ − kr′2t

2t4ô

•
r′2 (50)

••
r ′ ≈ − 2

t

•
r′
•
t− kr′

t2ô

•
r′

2
(51)

where
•
t = dt/dτ := γ, and therefore

••
t = γγ̇, while

•
r′ = γṙ′ and

••
r ′ = γ2(r̈′ + γ̇ṙ′).

Considering
••
r ′ ≈ γ2r̈′, and taking the comoving relation r′ := (tô/t)r, Eq. (50) and (51)

are approximately:

γ̇ ≈ − γ kr
2

2t3

(
ṙ − r

t

)2

(52)

r̈ ≈ − kr

t2

(
ṙ − r

t

)2

(53)

As might be expected, the comoving case (ṙ = r/t) is a solution of the Eq. (53), for

which the linear expansion is stationary (r̈ = 0 = γ̇).
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4.2. Modified Gravity and ADM equations

Applying the Einstein field equations to the studied metric, it is obtained that energy

density of the local universe is equal to Ru ≈ −6ko/t
2 in appropriate units (see 3).

According to this, total Lagrangian density of our universe is given by the following

modified gravity action:

S =

∫
d4xL =

∫
d4x
√
−g (R−Ru + LM) (54)

where LM is the term of mass.

As space-time is foliated into a family of space-like surfaces Σt, the spatial submanifold

can be interpreted as an embedding into the space-time (in our case H4). And therefore,

the ADM formalism can be used to obtain a set of equations of motion for the generalised

coordinates, which corresponds to the spatial elements gij of the metric (see Sec. 1.3).

We consider the local limit

Ru ≈ −
6ko
t2

= −ko
2

(
gij∂tgij

)2
(55)

and then Lagrangian density can be rewitten according to ADM formalism (Eq. (9)),

but with an additional term from the curvature Ru:

L = −gij∂tπij + lh+ 2liπ
ij

;j − 2∂is
i +
√
−gRu (56)

where l := (g00)−1/2 is the lapse, li := g0i is the shift, h is the Hamiltonian constraint

(Eq. (11)), si is an auxiliary momenta (Eq. (12)), but πij is now the modified conjugate

momenta (which slightly different to Eq. (10)):

πij =
√
−g
[(

Γ0
pq − gpqΓ0

rsg
rs
)
gipgjq − ∂Ru

∂(∂tgij)

]
(57)

where g := det gµν is the determinant of the metric, in contrast with gs := det gij, that

is the determinant of the spatial metric.

For the studied metric, Eq. (41) is locally as Γ0
ij ≈ −gij(kor′2)/(2t2ôt) and therefore

Eq. (57) is simplified as:

πii ≈
√
−g
[(
−gii

kor
′2

2t2ôt
+ giiδ

m
m

kor
′2

2t2ôt

)
(gii)2 + ko(g

ii)2∂tgii

]
≈

≈
√
−gkog

ii

t

(
kor
′2

t2ô
+ 2

)
≈ 2
√
−gkog

ii

t
=
√
−gko(gii)2∂tgii (58)

where the metric determinant is locally g ≈ gs ≈ −a(t)6r′4 sin2 θ, since g00 ≈ 1. The

ADM equations for the metric evolution are given by the Eq. (13), and using that

πij = giagjbπ
ab and gij = 0 for j 6= i > 0, it is obtained that πii = πgii = πiigii

2. That is:

∂tgii =
1√
−gsg00

πiigii
2 + 2∇ig0i (59)

Trivially, it is obtained that:

ko = 1 (60)
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where it is used that the covariant derivative of the shift g0r is locally zero:

∇rg0r = ∂rg0r − Γr0rgrr − Γrrrg0r ≈ −
a

tô
+
a2

t
= 0 (61)

Therefore, the evolution of the used metric is compatible with the ADM formalism

applied to the modified Lagrangian density L.

4.3. Killing Vectors

As is well known, the Killing vectors Kµ correspond to the infinitesimal generators of the

isometries of the metric tensor [37, 38], hence, in terms of the Levi-Civita connection, we

have the identity g(∇XK,Y ) = g(X,∇YK). In local coordinates the Killing equation

is given by

∇µKν +∇νKµ = 0. (62)

An important property of the Killing vectors is the conservation of a quantity Q respect

to the affine parameter λ, i.e. dQ/dλ = 0, where:

Q := Kµ
dxµ

dλ
(63)

Note that this quantity corresponds to the Noether charge conserved by the coordinate

transformation

xµ −→ xµ + dϕµ(λ) = xµ +Kµdλ (64)

and one can identify Q = Kµπµ where πµ := ∂L/∂ẋµ is the generalised momentum and

L is the Lagrangian functional in R1,3
g .

For our case, the first Killing vector is determined by the independence of the metric

Eq. (22) with respect to the coordinate φ, hence K(1) = δµφ∂µ = (0, 0, 0, 1). The other

two Killing vectors, resulting from the angular symmetry, can be obtained from Eq. (62)

as K(2) = (0, 0,− cosφ, cot θ sinφ) and K(3) = (0, 0, sinφ, cot θ cosφ), respectively.

These vector fields are easily seen to generate a copy of so(3) the angular momenta

`(i) = gµνK
µ
(i)dx

ν/dλ are preserved, according to Eq. (63). For simplicity, we choose the

coordinates with θ = π/2, so that the direction of angular momentum is on the z-axis

(i.e. θ = 0) and thus the motion is in the xy-plane:

`(1) = a(t)2r′
2dφ

dλ
= r2dφ

dλ
(65)

where for computational convenience we use that r = a(t)r′ and λ = τ .

Concerning the translation symmetries, we have to distinguish between local and global

symmetries. Spatial translations are clearly not global for the analysed metric, but

a temporal translation is found for the static conformal metric g′ given by dλ2 :=

a(t)−2dX2, i.e. changing the time coordinate as dη := a(t)−1dt. The time-like conformal

Killing vector is thus K(η) = ∂η. This implies the conservation of the energy

E(r′) = g′µνK
ν
(η)

dxµ

dλ
=
(
2k−1 (b(r′)− 1) + 1

) dη
dλ

(66)
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in a static universe. Note that, locally,

E(r′) ≈ (1 + 2Φ(r′)) γ, (67)

where 2Φ(r′) := −r′2/t2ô and γ = dt/dτ = dη/dλ. If we take into account the

relation between r′2/t2ô and the density of the Universe (see Eq. (34) in the Appendix),

then Eq. (67) can be interpreted as an analogue to the potential gravitational energy.

Spatial translations close to r′ ≈ 0 are local symmetries for the three orthogonal

spatial directions xi′, with i = 1, 2, 3, where x1′ := r′ sin θ cosφ, x2′ := r′ sin θ sinφ,

x3′ := r′ cos θ. As the metric is locally flat for these coordinates, the space-like Killing

vectors are trivially K(i′) = ∂i′ , and the linear momentum conserved is P i = a(t)dxi′/dτ .

Finally, the three Lorentz boosts B(i) = xi∂0 − t∂i are symmetries for the ordinary

coordinates xi = a(t)xi′. Summarising, there are 10 = 3 + 1 + 3 + 3 Killing vectors of

either global/local type, corresponding to the three global angular rotations K(i), the

temporal translation K(η) for the conformal static Universe, as well as three local spatial

translations K(i′) and three local boosts B(i) as it is locally found in GR [37].

5. Conclusions

This work explores some of the symmetry properties of inhomogeneous hyperconical

universes. The metric tensor is obtained assuming that the Universe expands linearly

and independently of its matter content. In particular, we assume that any observer

is placed on either a 3-spheroid or 3-hyperboloid with radial expansion (4-hypercone).

The key assumption is that the proper time of each observer is preserved, and thus fixes

an initial reference time, even though its position varies in time due to the expansion.

The Lagrangian analysis for the proposed model is in agreement with the

observations. The comoving trajectories are solutions of the Euler-Lagrange equations,

corresponding to the trivial case with stationary linear expansion. However, for the

ADM formalism, we require a modified Gravity Lagrangian density in order to ensure

that the evolution of the metric is consistent at local scale, obtaining positive curvature

of (k = 1). This is also consistent with the best prediction of dark energy density, also

found for k = 1.

With respect to the Killing vectors, it is shown that the angular rotations are global

symmetries, while spatial translations are merely local symmetries. The corresponding

preserved linear momentum presents a scaling factor a(t), as expected. Finally, the

three Lorentz boosts are also local symmetries (for the ordinary orthogonal frame).

For the most of the analysed cases, the symmetric properties are referring to the

local case and assuming that the parameter k(~r, u(~r)) = ko is globally homogeneous

(leading to a radial inhomogeneous metric). That is, the proposed model should be

understood as an alternative model to be analysed in greater depth, adding corrections

from higher order terms or other approximations. We observe that the gauge Noether

symmetries are potentially relevant in the analysis of the field equations in the linearly

expanded system. Whether the related conservation currents derived from this approach



Lagrangian density and symmetries of inhomogeneous hyperconical universes LATEX 2ε16

provide an additional insight into the interpretation of the Hubble parameter compatible

with observational data is still an open question. For instance, we can interpret the

radial inhomogeneity of the metric as an apparent radial acceleration, which breaks all

the non-rotational local symmetries at large distances.
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