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Introduction to Neural Networks

Max Cohen

Goals:

1) Give you a good intuition for how neural networks work, and what they’re 

doing

2) Go over basic implementations in python using TensorFlow / Keras
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Question: Is it possible to approximate the outputs of arbitrary functions if we 

have enough tunable parameters?

Examples: f(x) = y

● A function which takes in CT scan images, and outputs 1 when the patient has 

cancer, 0 otherwise

● A function which takes in arbitrary text as inputs, and outputs the next word 

(which can be looped over and over)

● A function which takes in images as inputs, and outputs the names of each 

object in the image
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● Answer: Yes!
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● So, how does this work?

f(x) = y

Step 1: Turn your inputs (x) into numbers

● For pictures, give each color an RGB 

value

● For text, associate each word to a 

different number

● For scientific data, the inputs are often 

already numerical
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● So, how does this work?

● Step 2: matrix multiplication

Input data

Output data
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● So, how does this work?

● Step 3: Nonlinearity

ReLU activation

G(                           )

G =

New output data
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● So, how does this work?

● Step 4: Repeat                                                                                                     1 Network Layer

  =



Introduction to Neural Networks

Max Cohen

● So, how does this work?

● Step 4: Repeat                                                                                                     
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f(x) = y

● Question: How do we choose the network parameters (values in the matrices) 

such that the outputs actually approximate our function of interest? 
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f(x) = y

● Question: How do we choose the network parameters (values in the matrices) 

such that the outputs actually approximate our function of interest?

● Answer: Gradient Descent with Backpropagation 
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f(x) = y

Step 1: 

Collect your training data: Compile a large number of input, output pairs
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f(x) = y

Step 2: 

Define a loss function:

MSE (mean squared error):

                                                           

Negative Log Likelihood:                                       
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f(x) = y

Step 3: 

Minimize the loss function!

● We know that functions are extremized when the derivative is 0

● Accordingly, we take derivatives of the loss function with respect to the model 

parameters (matrix elements)

● Then, update the parameters in the

direction of steepest descent (the

direction of the negative gradient)

● Repeat until loss is minimized
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That's it!

Now that the model parameters have been tuned correctly, our network will 

successfully approximate the output of the function we wanted!



One more detail: other types of layers
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Dense Layer:                               

                                                                                                  Transformer Layer:

Convolutional Layer:  



Implementations in Keras
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TensorFlow is a python package which handles the detailed calculations of neural 

networks, including gradient descent and tensor operations

Keras is a wrapper around TensorFlow which makes implementing neural networks 

very easy!



The Core of Keras: the Model and Defining Layers
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The model is defined as an instance of the pre-defined “model” keras class

We define layers with the following syntax:

● The input data has shape (784,), which means it is a vector with 784 elements

● Next, we define 3 dense layers
○ The number written (e.g. 128) is the output dimension from that layer

○ The activation function (nonlinearity) is defined by the ‘activation’ argument
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For convolutional layers, we can write:

● Here, the input shape is a 2d picture, e.g. 28 by 28 with 1 channel

● We define convolution layers (with a 3 by 3 filter), alternating with max 

pooling layers

● Pictures are then flattened into a vector before two dense layers



The full training / testing pipeline: Imports and load data
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Plot a few sample images
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Preprocessing
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Build and compile the model
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● After we build the model, we have to compile it
○ Define the optimizer (the algorithm which controls gradient descent)

○ Define the loss function



Train the model
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● Define the training data

● Specify the number of epochs, e.g. how long the network should train for

● Specify batch size e.g. how many samples are seen before weights update

● Specify what percentage of the data will be used for validation instead of training



Generate model predictions over the test data
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Plot confusion matrix
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Thank you for listening!
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● Let me know if you have any questions

● The example notebook also trains a convolutional network, so feel free to take 

a look at the details!

● Good luck hacking!


