
Introduction to Machine
Learning with Keras

NSF HDR ML Hackathon
Max Cohen

Support by

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997

Introduction to Neural Networks

Max Cohen

Goals:

1) Give you a good intuition for how neural networks work, and what they’re

doing

2) Go over basic implementations in python using TensorFlow / Keras

Introduction to Neural Networks

Max Cohen

Question: Is it possible to approximate the outputs of arbitrary functions if we

have enough tunable parameters?

Examples: f(x) = y

● A function which takes in CT scan images, and outputs 1 when the patient has

cancer, 0 otherwise

● A function which takes in arbitrary text as inputs, and outputs the next word

(which can be looped over and over)

● A function which takes in images as inputs, and outputs the names of each

object in the image

Introduction to Neural Networks

Max Cohen

● Answer: Yes!

Introduction to Neural Networks

Max Cohen

● So, how does this work?

f(x) = y

Step 1: Turn your inputs (x) into numbers

● For pictures, give each color an RGB

value

● For text, associate each word to a

different number

● For scientific data, the inputs are often

already numerical

Introduction to Neural Networks

Max Cohen

● So, how does this work?

● Step 2: matrix multiplication

Input data

Output data

Introduction to Neural Networks

Max Cohen

● So, how does this work?

● Step 3: Nonlinearity

ReLU activation

G()

G =

New output data

Introduction to Neural Networks

Max Cohen

● So, how does this work?

● Step 4: Repeat 1 Network Layer

 =

Introduction to Neural Networks

Max Cohen

● So, how does this work?

● Step 4: Repeat

Introduction to Neural Networks

Max Cohen

f(x) = y

● Question: How do we choose the network parameters (values in the matrices)

such that the outputs actually approximate our function of interest?

Introduction to Neural Networks

Max Cohen

f(x) = y

● Question: How do we choose the network parameters (values in the matrices)

such that the outputs actually approximate our function of interest?

● Answer: Gradient Descent with Backpropagation

Introduction to Gradient Descent and Backpropagation

Max Cohen

f(x) = y

Step 1:

Collect your training data: Compile a large number of input, output pairs

Introduction to Gradient Descent and Backpropagation

Max Cohen

f(x) = y

Step 2:

Define a loss function:

MSE (mean squared error):

Negative Log Likelihood:

Introduction to Gradient Descent and Backpropagation

Max Cohen

f(x) = y

Step 3:

Minimize the loss function!

● We know that functions are extremized when the derivative is 0

● Accordingly, we take derivatives of the loss function with respect to the model

parameters (matrix elements)

● Then, update the parameters in the

direction of steepest descent (the

direction of the negative gradient)

● Repeat until loss is minimized

Introduction to Gradient Descent and Backpropagation

Max Cohen

That's it!

Now that the model parameters have been tuned correctly, our network will

successfully approximate the output of the function we wanted!

One more detail: other types of layers

Max Cohen

Dense Layer:

 Transformer Layer:

Convolutional Layer:

Implementations in Keras

Max Cohen

TensorFlow is a python package which handles the detailed calculations of neural

networks, including gradient descent and tensor operations

Keras is a wrapper around TensorFlow which makes implementing neural networks

very easy!

The Core of Keras: the Model and Defining Layers

Max Cohen

The model is defined as an instance of the pre-defined “model” keras class

We define layers with the following syntax:

● The input data has shape (784,), which means it is a vector with 784 elements

● Next, we define 3 dense layers
○ The number written (e.g. 128) is the output dimension from that layer

○ The activation function (nonlinearity) is defined by the ‘activation’ argument

The Core of Keras: the Model and Defining Layers

Max Cohen

For convolutional layers, we can write:

● Here, the input shape is a 2d picture, e.g. 28 by 28 with 1 channel

● We define convolution layers (with a 3 by 3 filter), alternating with max

pooling layers

● Pictures are then flattened into a vector before two dense layers

The full training / testing pipeline: Imports and load data

Max Cohen

Plot a few sample images

Max Cohen

Preprocessing

Max Cohen

Build and compile the model

Max Cohen

● After we build the model, we have to compile it
○ Define the optimizer (the algorithm which controls gradient descent)

○ Define the loss function

Train the model

Max Cohen

● Define the training data

● Specify the number of epochs, e.g. how long the network should train for

● Specify batch size e.g. how many samples are seen before weights update

● Specify what percentage of the data will be used for validation instead of training

Generate model predictions over the test data

Max Cohen

Plot confusion matrix

Max Cohen

Thank you for listening!

Max Cohen

● Let me know if you have any questions

● The example notebook also trains a convolutional network, so feel free to take

a look at the details!

● Good luck hacking!

