Introduction to Machine Learning with Keras

NSF HDR ML Hackathon Max Cohen

Goals:

- 1) Give you a good intuition for how neural networks work, and what they're doing
- 2) Go over basic implementations in python using TensorFlow / Keras

Question: Is it possible to approximate the outputs of arbitrary functions if we have enough tunable parameters?

Examples: $f(x) = y$

- A function which takes in CT scan images, and outputs 1 when the patient has cancer, 0 otherwise
- A function which takes in arbitrary text as inputs, and outputs the next word (which can be looped over and over)
- A function which takes in images as inputs, and outputs the names of each object in the image

● **Answer:** Yes!

A

'enn

- ChatGPT 4o \sim **① Share** How are you doing today? (50) I'm doing great, thanks for asking! How about you? Anything exciting or challenging on your mind today? ው ው ው Can you give me a complete, in-depth history of academic skepticism, addressing each major work and player in the field, from origin up to modern day?
- 66 Certainly! Academic skepticism, a school of philosophy originating in ancient Greece, represents a rigorous tradition of questioning knowledge claims and emphasizing intellectual humility. Below is a detailed historical overview,

Max Cohen

● **So, how does this work?**

 $f(x) = y$

Step 1: Turn your inputs (x) into numbers

- For pictures, give each color an RGB value
- For text, associate each word to a different number
- For scientific data, the inputs are often already numerical

● **So, how does this work?**

● **So, how does this work?**

Step 3: Nonlinearity

● **So, how does this work?**

● **So, how does this work?**

● Step 4: Repeat

 $f(x) = y$

• Question: How do we choose the network parameters (values in the matrices) such that the outputs actually approximate our function of interest?

 $f(x) = y$

- **Question:** How do we choose the network parameters (values in the matrices) such that the outputs actually approximate our function of interest?
- **Answer:** Gradient Descent with Backpropagation

Introduction to Gradient Descent and Backpropagation

 $f(x) = y$

Step 1:

Collect your **training data:** Compile a large number of input, output pairs

Introduction to Gradient Descent and Backpropagation

 $f(x) = y$

Step 2:

Define a **loss function:**

MSE (mean squared error):

$$
L=\frac{1}{N}\sum_{i=1}^N(y_i-\hat{y}_i)^2
$$

Negative Log Likelihood:

$$
L = -\sum_{i=1}^N y_i \log(\hat{y}_i)
$$

Introduction to Gradient Descent and Backpropagation

 $f(x) = y$

Step 3:

Minimize the loss function!

- We know that functions are extremized when the derivative is 0
- Accordingly, we take derivatives of the loss function with respect to the model parameters (matrix elements)
- Then, update the parameters in the direction of steepest descent (the direction of the negative gradient)
- Repeat until loss is minimized

That's it!

Now that the model parameters have been tuned correctly, our network will successfully approximate the output of the function we wanted!

One more detail: other types of layers

Input image

Filter

Output array

Max Cohen

Implementations in Keras

TensorFlow is a python package which handles the detailed calculations of neural networks, including gradient descent and tensor operations

Keras is a wrapper around TensorFlow which makes implementing neural networks very easy!

Simple. Flexible. Powerful.

The Core of Keras: the Model and Defining Layers

The model is defined as an instance of the pre-defined "model" keras class

We define layers with the following syntax:

- \bullet The input data has shape (784,), which means it is a vector with 784 elements
- Next, we define 3 dense layers
	- \circ The number written (e.g. 128) is the output dimension from that layer
	- The activation function (nonlinearity) is defined by the 'activation' argument

```
model = models.Sequential(layers.Input(shape=(784,)),layers.Dense(128, activation='relu'),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
```


The Core of Keras: the Model and Defining Layers

For convolutional layers, we can write:

```
conn model = models. Sequential([layers.Conv2D(32, (3, 3), activation='relu', input shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(10, activation='softmax')
1)
```
- Here, the input shape is a 2d picture, e.g. 28 by 28 with 1 channel
- \bullet We define convolution layers (with a 3 by 3 filter), alternating with max pooling layers
- Pictures are then flattened into a vector before two dense layers

The full training / testing pipeline: Imports and load data

```
import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
import numpy as np
```

```
# Load MNTST dataset from TensorFlow datasets
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
```

```
# Print dataset shape
print("Training set shape:", x train.shape)
print("Test set shape:", x test.shape)
```
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11490434/11490434 **and Southern Os Ous/step** Training set shape: (60000, 28, 28) Test set shape: (10000, 28, 28)

Plot a few sample images

Label: 1

Label: 3

Max Cohen

Preprocessing

```
# Normalize pixel values to range [0, 1]
x train = x train / 255.0
x test = x test / 255.0
# Flatten the images for the DNN
x train flat = x train.reshape(x train.shape[0], -1)
x test flat = x test.reshape(x test.shape[0], -1)
```
print("Flattened training shape:", x train flat.shape) print("Flattened test shape:", x test flat.shape)

Flattened training shape: (60000, 784) Flattened test shape: (10000, 784)

Build and compile the model

- After we build the model, we have to **compile** it
	- \circ Define the optimizer (the algorithm which controls gradient descent)
	- Define the loss function

```
Build the DNN model
model = models.Sequential(layers . Input(shape=(784,)), # Input layer (28x28 flattened)layers. Dense(128, activation='relu'), # Hidden layer 1
    layers. Dense (64, activation='relu'), # Hidden layer 2
    layers. Dense(10, activation='softmax') # Output layer (10 classes)
# Compile the model
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics = ['accuracy']# Print the model summary
model.summary()
```


Max Cohen

Train the model

- Define the training data
- Specify the number of epochs, e.g. how long the network should train for
- Specify batch size e.g. how many samples are seen before weights update
- Specify what percentage of the data will be used for validation instead of training

```
# Train the model
history = model.fit(x train flat, y train,
                    epochs=10,batch size=32,
                    validation_split=0.2)
```


Generate model predictions over the test data

Plot confusion matrix

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

Compute confusion matrix

y_pred = np.argmax(predictions, axis=1) $cm = \text{confusion_matrix(y_test, y_pred)$

Plot confusion matrix

 $disp = ConfusionMatrixDisplay(configuration_matrix = cm, display_labels = range(10))$ disp.plot(cmap='Blues', xticks_rotation='vertical') plt.title("Confusion Matrix") plt.show()

- Let me know if you have any questions
- The example notebook also trains a convolutional network, so feel free to take a look at the details!
- Good luck hacking!

