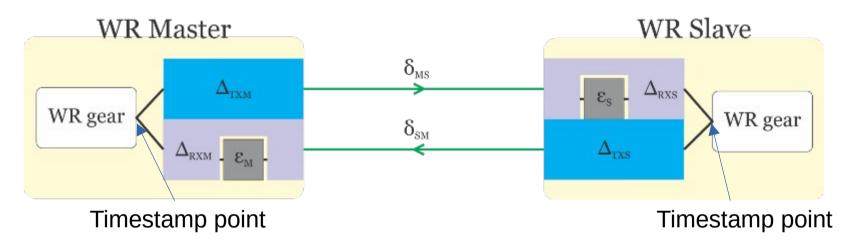
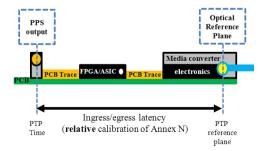
White Rabbit Switch Calibration

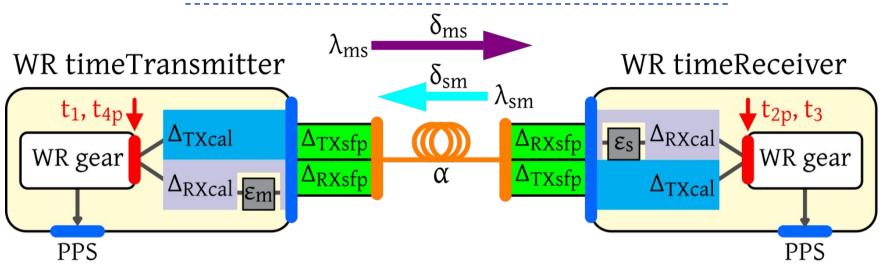


4 December 2024 CERN Adam Wujek White Rabbit Collaboration


Calibration overview

- Do I need to calibrate my devices?
- It depends...
- WR devices should provide sub-ns accuracy out-of-the-box
- But one could use not officially support equipment (e.g., SFP)
- If better accuracy is needed then calibration may be required
 - WR switch
 - SFP modules
 - Fibers (also add/drop filters)
 - DelayAsymmetry (difference in ps) two fibers
 - delayCoefficient (difference as unit-less) one fiber
 - Coaxial cables

Link model



- δ_{MS} and δ_{SM} deepens on fiber length and used wavelength
- Difference in fiber length can be avoided with using single fiber
- For LPDC ports ϵ_m and ϵ_s (bitslide) are equal 0

٠

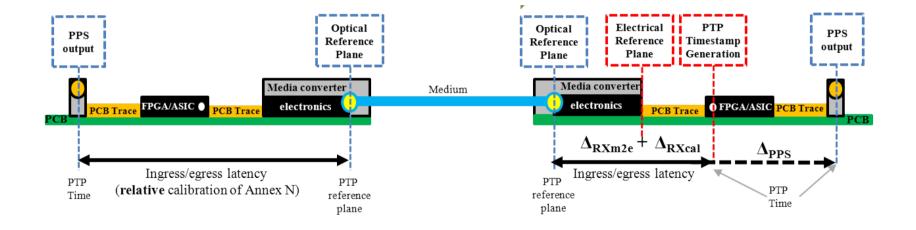
Mapping of parameters to dot-config

- $(\delta_{MS}-\delta_{SM})/\delta_{SM}$ is alpha (delayCoefficient) stored in
 - CONFIG_PORT01_FIBER=0
 - CONFIG_FIBER00_PARAMS="alpha_1310_1490=0.0002743"
- Δ_{TXsfp} , Δ_{RXsfp} as tx=X, rx=Y in CONFIG_SFP00_PARAMS="vn=Axcen Photonics,pn=AXGE-3454-0531,vs=AX12390009629, tx=0,rx=0,wl_txrx=1490+1310"
- Δ_{RXM} , Δ_{RXS} PORTXX_INST01_INGRESS_LATENCY
- Δ_{TXM} , Δ_{TXS} PORTXX_INST01_EGRESS_LATENCY
- For LPDC ports ϵ_m and ϵ_s (bitslide) are equal 0, otherwise are read in runtime from HW

White Rabbit

SFP database matching

- Why needed? To get relative calibration values of SFPs RX and TX
 - For absolute calibration, values will be read from SFPs EEPROM (see SFF-8472, rev 12.4.2)
- Entries in dot-config like: CONFIG_SFP00_PARAMS="vn=Axcen Photonics,pn=AXGE-3454-0531,vs=AX12390009629, tx=0,rx=0,wl_txrx=1490+1310"
 - vn vendor name
 - pn product name
 - vs vendor serial
 - tx,rx relative TX, RX delays (they may be negative!)
 - wl_txrx TX and RX wavelengths in nm
- VN, PN, VS, TX wavelength are read from SFP's EEPROM
- Matching order:
 - TX wavelength, PN, VN, VS
 - TX wavelength, PN, VN
 - TX wavelength, PN
- After match, deltas are taken from tx= and rx=


Fiber database matching

- Why needed?
 - To get delayCoefficient (alpha) of a fiber
 - Fiber has no memory that can store this value
- Entries in dot-config like: CONFIG_PORT01_FIBER=0 CONFIG_FIBER00_PARAMS="alpha_1310_1490=0.0002743"
- Port has to define which fiber type is used (marked with gray)
- For matching alpha_XX_YY, values of XX and YY are taken from wl_txrx parameter of SFP DB entry. Like:
- CONFIG_SFP00_PARAMS="vn=Axcen Photonics,pn=AXGE-3454-0531,vs=AX12390009629, tx=0,rx=0,wl_txrx=1490+1310"
- If alpha_XX_YY is not matched, swapped XX and YY is tried (alpha_YY_XX)

Note alpha in the opposite direction is not -alpha, but: $\frac{1}{1+alpha}-1$ which is equivalent to: $-\frac{alpha}{1+alpha}$

Relative calibration

- Unable to measure all delays separately
- Use of the arbitrary value works pretty well

Golden calibrator

- Created once
- Kept as a reference for other devices
- Possible to create another Golden calibrator from original one (local Golden calibrator
- WR switch is not enough, needs pair of golden SFPs
- Can use independent golden calibrator
 - Device calibrated with one will show offset when connected to another

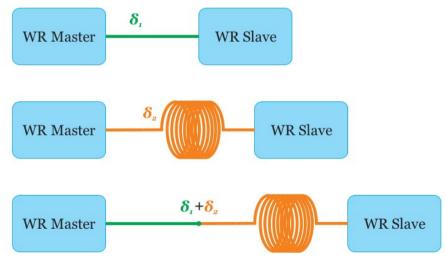
Calibration

WRS Basics, 2024-12-04

Getting measurements

- Delays
 - wr_mon (try different options)
 - wrs_dump_shmem
- Oscilloscope/Time Interval Counter
 - PSS level at 850mV
- Make average over some time
- Be aware about temperature variations

Before starting the calibration


- Non-LPDC (13-18) ports can have up to ~70ps offsets between WRS reboots/linkup
- Make sure used calibration values are for a proper WRS HW version
- Make sure equal lengths of cables are used when necessary
- Precise enough measurement devices are used (Oscilloscope, Time Interval Counter)

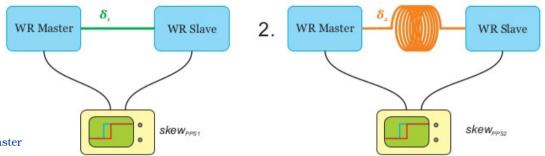
Equipment requirements

- Fibers
 - One short (few meters)
 - One long (few kilometers)
 - Adapter to connect two fibers
- WRS devices
 - Golden calibrator+device to be calibrated
 - Or two identical devices to make golden calibrator
- Two oscilloscope cables with the same length (or known lengths)
- Oscilloscope or Time Interval Counter
- Stable 1PPS and 10MHz source

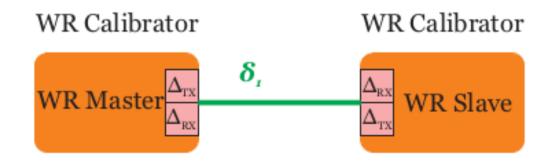
Reference fiber latency

- Set all delays and alpha to 0
 - PORT01_INST01_EGRESS_LATENCY=0
 - PORT01_INST01_INGRESS_LATENCY=0
 - CONFIG_FIBER00_PARAMS=""
- Measure delay_{MM} of (e.g., read from wr_mon)
 - Short fiber (delay_{MM1})
 - Long fiber (delay_{MM2})
 - Short+long connected with adapter (delay_{MM3})
 - For LPDC, bitslide can be skipped (is 0)
- $\delta_1 = \text{delay}_{\text{MM3}} \text{delay}_{\text{MM1}}$
- $\delta_2 = \text{delay}_{\text{MM3}} \text{delay}_{\text{MM1}}$

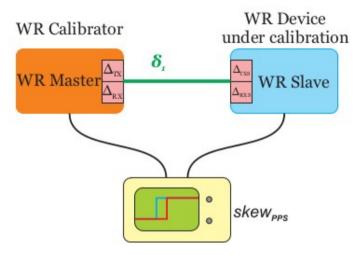
Fiber asymmetry


- Set all delays and alpha as 0
- Measure PPS skew of
 - Short fiber (skew_{PPS1})
 - Long fiber (skew_{PPS2})
 - Skew is positive if PPS_{slave} follows (right side) PPS_{master}

$$\alpha = \frac{2(skew_{PPS2} - skew_{PPS1})}{\frac{1}{2}\delta_2 - (skew_{PPS2} - skew_{PPS1})}$$

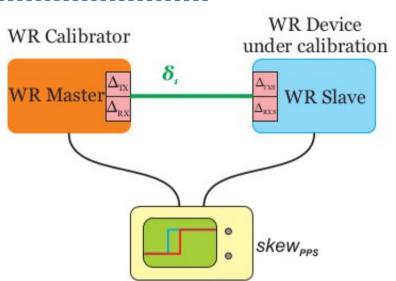

• Take δ_2 from Reference fiber latency calculations

1.


Calibrator pre-calibration

- Assume that both devices are identical
 - (We already know that SFPs used in both directions are different, but let's ignore it)
- $\Delta_{\text{TXM}} + \Delta_{\text{RXM}} = \Delta_{\text{TXS}} + \Delta_{\text{RXS}}$
- Then: delay_{MM1} $\delta_1 = 2(\Delta_{TX} + \Delta_{RX})$
- When we assume that golden calibrator has no asymmetry
 - $\Delta_{\text{RX}} = \Delta_{\text{TX}}$
 - This assumption is why we have "relative calibration"
 - delay_{MM1} $\delta_1 = 4(\Delta_{TX}) = 4(\Delta_{RX})$
 - In other words: $\Delta_{TX} = (\text{delay}_{MM1} \delta_1)/4$

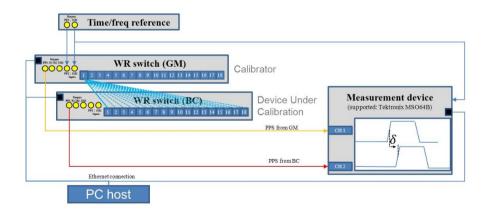
WR Device calibration


- Set delays on golden from "Calibrator pre-calibration"
- Set correct alpha measured in "Fiber asymmetry"
- Restart devices to apply changes
- Connect devices
- Read delay_{MM} from slave
- Calculate: $\Delta_{TXS} = \Delta_{RXS}$
- $\Delta'_{\text{TXS}} = \Delta'_{\text{RXS}} = \frac{1}{2} * (\text{delay}_{\text{MM}} \Delta_{\text{TXM}} \Delta_{\text{RXM}} \delta_1)$
- Save deltas on slave, restart it
- Measure skew_{PPS} on oscilloscope and correct $\Delta'_{TXS} = \Delta'_{RXS}$
- Calculate:
 - $\Delta_{\text{TXS}} = \Delta'_{\text{TXS}} \text{skew}_{\text{PPS}}$
 - $\Delta_{\text{RXS}} = \Delta'_{\text{RXS}} + \text{skew}_{\text{PPS}}$
- Save new values on slave, restart WRS
 - Repeat measurement of skew_{PPS} and last calculation if needed (use Δ_{TXS} as Δ'_{TXS} and Δ_{RXS} as Δ'_{RXS})
- Repeat this slide for all ports

SFP calibration

- Keep the setup from the previous slide
- Measure skew_{PPS} on oscilloscope
- Calculate:
 - $\Delta_{\text{TXSfp}} = \text{skew}_{\text{PPS}}$
 - $\Delta_{\text{RXSfp}} = \text{skew}_{\text{PPS}}$
- Save new values on slave, restart WRS
 - Repeat measurement of skew_{PPS} and last calculation if needed

 (subtract or add the new value of skewPPS to Δ_{TXSfp} and Δ_{RXSfp})

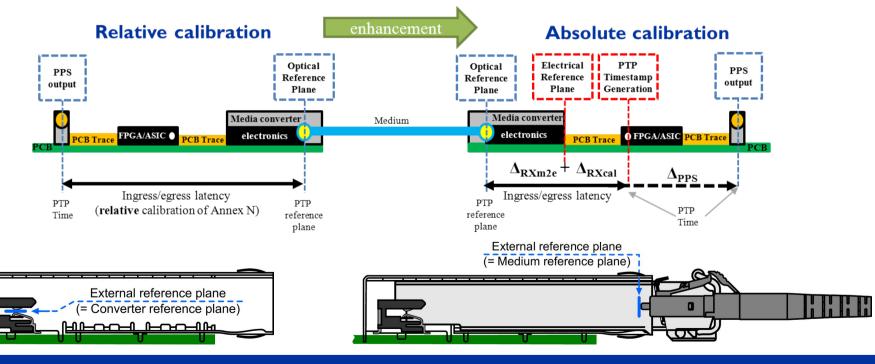


Calibration automation

- As today, only WR switch is supported (no node)
- Some steps can be automated
 - Data collection from measurement device
 - Supported Tektronix MSO64b and LeCroy WaveRunner 8104
 - More can be easily added
 - Possible manual input
 - Re-configuration of WR Switch
 - Calculations
- Needs some manual interactions, e.g., fiber changing

Calibration automation, requirements

- 2x WR Switch
 - One local calibrator
 - Or two the same to make golden calibrator
- Optional Oscilloscope (manual input supported)
 - Tektronix MSO64b
 - LeCroy WaveRunner 8104
- 1-2 fibers depends if golden calibrator is available
- Pair of SFPs
- PC with installed python to run script
- Optional time/freq reference to improve calibration

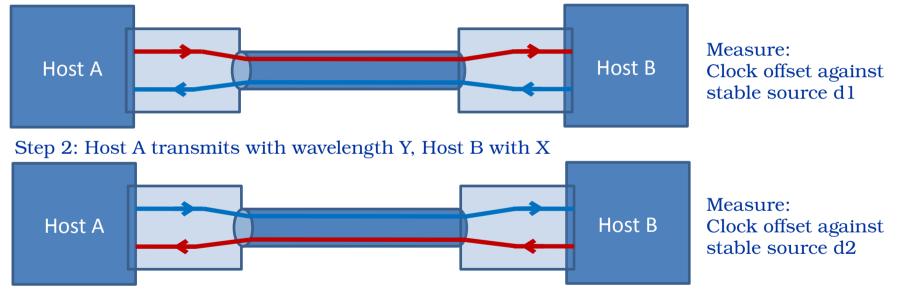


Calibration automation

- Supported Calibration Scenarios
 - Full calibration
 - Create new calibrator
 - Calibrate against the new calibrator
 - Measure delays of reference fibers
 - Calculate delay asymmetry coefficient (alpha)
 - Partial calibration
 - Create new calibrator
 - Calibrate against the new calibrator
 - Provide delays of reference fibers
 - Normal calibration
 - Calibrate against already existing calibrator
 - Calibration of SFPs is included
 - See https://ohwr.org/project/wr-switch-sw/-/tree/master/userspace/host_tools/calibration
 - wrs-user-manual Appendix 5 https://ohwr.org/project/wr-switch-sw/-/wikis/uploads/d1f78666704fb292982453e1429b9f10/wrs-user-manual-v7.0.pdf

Absolute calibration (future)

- Electrical
- Electrical to Optical (SFP)
- In-situ Fiber calibration (as alternative to lab measurements)

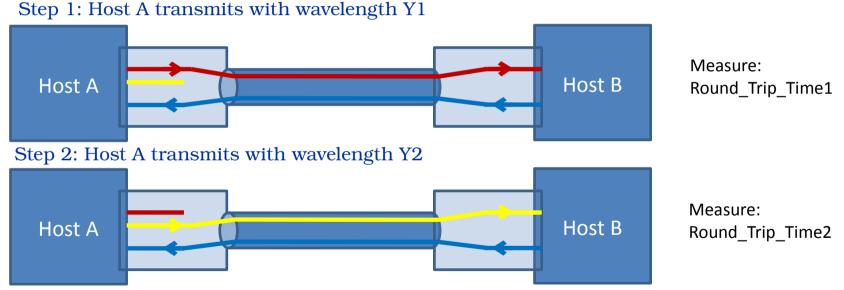

White Rabbit

20/24

In-situ fiber calibration

• Swapping of one-way delays

Step 1: Host A transmits with wavelength X, Host B with Y



(d2-d1)/2 is the delayAsymmetry

White Rabbit

In-situ fiber calibration

- Three one-way delays (with tunable SFP)
- Host B transmits with wavelength X all the time, Host A with a help of tunable SFP transmits two different wavelengths

Based on wavelength X, Y1, Y2, Round_Trip_Time1, Round_Trip_Time2 it is possible to calculate delayCoefficient (alpha) for X, Y1

white Rabbi

Future work

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- Characterize changes with temperature changes
 - delayCoefficient
 - Port delays
 - SFP delays
- Apply corrections in runtime

More info

WR Calibration procedure v1.1

https://ohwr.org/project/white-rabbit/uploads/76cdbdbadccc9d6c54d5caf246550fbf/WR_Calibration-v1.1-20151109.pdf

WR Calibration Application Note1:

 $https://ohwr.org/project/white-rabbit/-/wikis/uploads/11f29675590d6d62b296064bd4e87921/WR_Calibration-Application_Note_1_v0.4.pdf$

WRS: User Manual, Appendix 5:

https://ohwr.org/project/wr-switch-sw/-/wikis/uploads/d1f78666704fb292982453e1429b9f10/wrs-user-manual-v7.0.pdf