
WRPC integration into WR
Node

Training
material

2024/12/4

Version 1.0

Main Topics
What you will learn:

● What should be added on the PCB for a WR node
– Oscillators
– SFP
– eeprom for parameters and MAC address

● Clocking structure
● How to instantiate the WR core
● Troubleshooting

Version 1.0

Vocabulary
WR: White Rabbit – the fully deterministic Ethernet-based network for
general purpose data transfer and synchronization.

WRPC: WR PTP Core – HDL + SW IP implementing WR. In general,
it’s a slave (the WR switch is master/grandmaster/boundary clock).
Sometimes we use the redundant name ‘WRPC core’

WR Node: A device which includes the WRPC core, as opposed to the
WR switch

Version 1.0

White Rabbit PTP Core (WRPC)
Main HDL components:

● 1G Ethernet endpoint (with timestamps)
● DDMTD to extract phase between clocks
● Timetag + PPS generation
● GPIOs for storage, LEDs
● UART
● CPU + ram for control

FPGA

Phase detector
(DDMTD)

Deterministic GbE SerDes
providing bitslide

SoftPLL
(C on embedded CPU)

Endpoint with
timestamper

VCTCXO

DAC
2x

WR node
WR-PTP stack

(PPSi)

SFP

PPS output

Version 1.0

White Rabbit PTP Core (WRPC)
Main software components:

● SoftPLL to discipline clocks (topic for another talk)
● PTP (ppsi) for delay
● Remote management (BOOTP, ARP, SNMP, LLDP, …)
● Local storage (MAC address, calibration parameters)
● CLI

Version 1.0

Non-clocking external hardware

Version 1.0

Storage
The core needs non-volatile storage (fallback if absent):

● Calibration parameters
● MAC address
● SFP database

This is fully handled by software, and quite flexible:
● SPI flash
● I2C eeprom
● One wire

Version 1.0

Storage
For MAC address, unique id chip like 24AA02E48 could be used

For non-SoC FPGA, the bitstream flash could also be used as non-
volatile storage (different page!)

SPI and I2C are done in software (bit-banging)

Version 1.0

Misc
SFP cage

● Follow vendor recommendations
● AC capacitors

Optional:

Sensors (temperature)

UART for command line interface: USB adapter

Anything you want to add (and you are ready to write the software for)!

Version 1.0

Clocking Structure

Version 1.0

WR main purpose
What does White Rabbit ?

● It disciplines an oscillator from time information provided over
ethernet

(Probably you have seen this question many times, and also different
answers…)

What does discipline mean ?
● Same frequency (or an integer multiple)
● Fixed phase offset

Version 1.0

How to discipline an oscillator ?
Local oscillator frequency phase is compared with the phase of a virtual
oscillator.

Not so virtual, it’s the clock recovered from ethernet (in fact, a divided
one). This clock represents the master clock.

From phase comparison, a PI controller (the SoftPLL) disciplines a local
oscillator.

Version 1.0

How to compare two clocks ?
The solution: DDMTD – Digital Dual Mixed Time Difference

RX clock

Local clock

Sampling
clock: `

0 1 2 3 4Counter:

Version 1.0

External oscillators

WR needs 2 tunable clocks:

● The disciplined clock (the reference clock)

● The DDMTD clock

WR is also able to discipline other clocks (auxillary clocks)

Version 1.0

External oscillators: frequency

Mostly defined by the transceiver
● Which provide the WR frequency

We are using 1G ethernet, but 1GHz is too high for an FPGA clock,
The transceiver use a 16b parallel interface (8b on Spartan6 or Virtex5).

So the data clock is 1GHz/16 = 62.5Mhz (125Mhz on Spartan6 or Virtex5)
For DDMTD, we use n=214=16384, so Fddmtd≈62.496MHz

Note:
1G ethernet use 8B/10B encoding, so serial clock is 1G*10/8 = 1.25GHz
This recovered clock is then divided by 20.

Version 1.0

External Clocking (SPEC - ohwr) 1/2

Version 1.0

SPEC clocking comments 1/2
● Reference clock is provided by a 25MHz VCTCXO, small pull range

● External low-jitter PLL to provide 125MHz (better than the internal PLL)

● Double footprints for the oscillator

● External DACs to tune the oscillators

● PLL drives the transceivers and the FPGA

● Clean 3.3V power supply + DACs vref

Version 1.0

External Clocking (SPEC) 2/2

Version 1.0

SPEC clocking comments 2/2
● 20Mhz VCXO for DDMTD (with +-100ppm pullability)

● Use internal PLL to get ~62.5Mhz
● n/(n+1) ≈ 0.999_938 so need > 60ppm of pullability

● Some components may not be available anymore

● Quality of the clock

● Many components!

Version 1.0

WR2RF (CERN) clocking (1/2)

OCXO provides a very stable clock, small pullability!

Version 1.0

WR2RF clocking (2/2)

PLL discipline a VCSO (SAW) to provide a very stable high frequency clock!
Much higher price
Cf SPEC7 for another design with very low phase noise clock

Version 1.0

BabyWR (Nikhef) clocking

Version 1.0

BabyWR clocking comments
● Clocks (Ref and DDMTD) provided by 2* Sit5359

● Integrated oscillator + fractional PLL

● Small package

● Single ended signal

● Tuned through I2C

Version 1.0

WREN (CERN) clocking
● Si5340 fractional PLL

● NOT for ultra-low phase
noise

● But very flexible

● ‘Tuned’ through SPI

Version 1.0

Fractional PLL vs VCO+DAC

With fractional PLL, fixed oscillators can be used.

This simplifies the BOM (less components).

But according to (some) crystal vendors, fractional PLLs have more phase
noise…

Some FPGA (eg: ZynqUS+) even have fractional PLLs inside with enough
precision bits (eg: QPLL of GTHE4).

See branch mle/upstream/zcu102 for an example.

Version 1.0

Oscillator tuning

WRPC (SoftPLL) tunes the oscillators
The interface is generic:
 data port + pulse

There are many ways to tune:
 DAC (SPI-like), I2C, SPI, …

The repository provides many ‘adapters’:
● modules/wr_dacs: serial interface (SPI-like) + arbiter
● modules/wr_sit5359_interface: for Sit5359
● modules/wr_si57x_interface: for Si57x

You can design you own adapter (eg: WREN)

Version 1.0

Clocking Structure (inside)

Version 1.0

Clocking Structure

The FPGA requires one or more clock for the logic, and a reference clock
for the transceiver

Bootstrap: a clock must be present to start the FPGA...

Current FPGA can clock the logic from the transceiver reference clock
(save some pins)

The WRPC also needs a sys_clk (in general 62.5Mhz).

If you want your node to also be grantmaster, you need to provide
10MHz+PPS input

Version 1.0

clk_ref: WR reference clock (1/2)

THE clock which is generated and disciplined by WR

● Must derive from a tunable source

● Must be compared with the RX clock

● Must be transmitted by TX (as the master will also compare it)

Note: the terms ‘reference clock’ are also used in other contexts (like PLL),
or at other places in the WR core (like reference clock for GT). Do not
confuse!

Version 1.0

clk_ref: WR reference clock (2/2)

clk_ref:

● Clock time ports (tm_tai, tm_cycles, …) and pps.

● Might not be present during reset…

● Might not be in sync with sys_clk. Might be an issue if you need to
send it over the network (fabric is clocked by sys_clk).

● It’s an internal clock. Can be output, but not with a high quality

Question: who generates this clock ?

Version 1.0

Clocking Structure

mgtref

sysclk

dmtd_clk

The key element is the transceiver:

● RX recover the clock from the master. The
phase is compared to the local reference.

● TX transmit the local clock to the master. The
master also measure the phase.

(The dmtd clock is used only for measuring the
phase)

ref_clk

Version 1.0

Clocking Structure

(From Xilinx ug476 – 7Series GTX/GTH)

Transceiver have PLLs to generate
serial clocks (1.25Ghz)

And use dividers to generate ‘parallel’
clocks (there are RX and TX dividers)

Dividers create uncertainties of the
phase (n times UI, so 8/16ns!)

All these clocks are not necessarly
aligned.

Version 1.0

Clock non-determinism

For RX: the phase non-determinism can be lifted by looking for the
comma character. The phase offset corresponds to the number of bits
shifted during comma alignment (bit-sliding)
Well, hopefully. That’s the theory and might be more complex…

Version 1.0

Clock non-determinism

For TX: we don’t know as we don’t have any readback!
Solution: the TX clock is the reference clock. (Or a clock in phase). This
is the clock to be aligned with the master. This is the clock of the
timestamp.

Or: It is possible to use (or synchronize or align) a clock with the TX
clock. That’s deterministic and this could be the reference clock.

The latter is enforced by LPDC. This allows ref_clk to be synchronized
with an external source, which could be then also used to locally
distribute a ‘WR clock’ (with a fixed phase)

Version 1.0

Quizz
● What if Fddmtd > Fref ?

● Do we need an external Ref clock ? Can’t we instead use the recovered
clock ?

● Can the transceiver clock be a fixed clock ?

● Can Fddmtd be directly derived from Fref ?

● What about using n=215 or 216 for DDMTD offset instead of 214 ?

Version 1.0

HDL: Instantiation

Version 1.0

The Structure
● modules/wrc_core/xwr_core.vhd: the bare core, should be the

reference
● modules/wrc_core/wr_core.vhd: without records (for verilog)

● board/XX/xwrc_board_XX.vhd: Wrapper for a board. Core +
transceiver + PLL + DAC adapter. Recommended to simplify reuse of
WR for a particular board.

● board/common/xwrc_board_common.vhd: Common part of the
wrapper, define multiple fabric interfaces (Streamer, Etherbone,
Loopback, Plain)

Version 1.0

The Structure
● platform/xilinx/wr_gtp_phy: Transceivers for Xilinx family

● platform/xilinx/xwrc_platform_xilinx.vhd: Clocking +
Transceiver for Xilinx family (ISE)

● platform/xilinx/xwrc_platform_vivado.vhd: Likewise but for
Vivado (ZUS+)

Note: The xwrc_platform_xxx files are not very flexible. It might be
easier to simply inspire from them instead of using them.

Note: See platform/altera for Altera FPGA.

Version 1.0

The transceivers (Xilinx)

platform/xilinx/wr_gtp_phy: Transceivers for Xilinx family

● 7 series: gthe2, gtxe2, gtpe2
● US: gthe3
● US+: gthe4
● Virtex6 (For the switch)
● Spartan6, Virtex5
● Missing: gty

Wrapper around Xilinx transceivers
● Mostly deals with bitsliding
● LPDC (topic for another presentation)

Version 1.0

Wrpc-sw: the software

Version 1.0

Embedded software

It is required.

Mostly C code (+ crt0.S + linker script)

Target Risc-V on wrpc-v5 (and probably on the future too)

Should be compiled on a Linux platform

We provide gcc 11 for Risc-V on ohwr.org. But any Risc-V compiler
should work (if not too old).

Generic platforms (8b and 16b), configuration through a menu.

Version 1.0

Embedded software

Some parts are shared with the switch (SoftPLL)

Structure: topic for another talk.

Version 1.0

Host Software

wrpc is now the tool which does everything. The swiss knife.

Could be used only if there is a path to the slave_i/slave_o bus port of
the core.

pci and host are generic
Hopefully, you don’t have to deal with vme!

Version 1.0

PCI based boards

For cores reachable through PCI/PCIe.

The resource file should be something like:
 /sys/bus/pci/devices/0000:02:00.0/resource1
(The option -s translate bus:slot to a resource file)

The offset is the offset of the wrpc core within the BAR.

Version 1.0

Hosted boards

For cores directly reached in memory

Useful for SoC like ZynqUS+, when Linux is running on the chip and the
wrpc core is connected on an AXI bus

BASE is the physical address of the core

(Strictly speaking, this could also be used on PCI, except the physical
address is set only after enumeration)

Version 1.0

wrpc commands

Version 1.0

wrpc info

Display static information about the core:
● Features (memory size)
● Identification (arbitrary 4 letter string)

Very useful to check if access is OK (much less intrusive than other
commands)

Try before any other command

Access method
 Method specific option (here slot)

Core offset

Version 1.0

wrpc load

Load the wrpc-sw

Useful during the development to quickly change/update the software

It resets the cpu (which means it has to lock again)

Can load the ELF file (no need to convert to raw binary)

Version 1.0

wrpc vuart

Just connect to the uart, no need for a cable

Press Control-A to exit

You can also directly execute a command:

Version 1.0

wrpc spll-recorder

Dump the timetags (which are the primary data for the spll).
Very low-level tool, useful only if you need to debug the spll.

Version 1.0

wrpc gdbserver

Connect a gdb server to the Risc-V core
Allows you to debug the software

Maybe a topic for a talk – you need to know a little bit about gdb

Notes:
● You’d better to build wrpc-sw without LTO and with a low level of

optimization
● Before reloading software, do mon reset to reset the cpu (in particular,

to disable the interrupts)

Version 1.0

Troubleshooting...

Version 1.0

Troubleshooting
This is a list of problems I had or I have seen.

Some might be completely stupid mistakes

Not comprehensive, but I will try to update the list.

Your contribution is welcome!

IMPORTANT: it is HIGHLY recommended to make the WRPC visible on
the host bus (connect slave_i/slave_o). It allows to easily update the
software, have vuart, and the debugger. If not, connect at least the uart
(uart_rxd_i, uart_txd_o). Have a few free pins you can connect to a
scope.

Version 1.0

My board doesn’t start !

I boot my board, but nothing appear on the console

● Baudrate ? If you are using the serial console, it should be 115200
baud. Maybe the sys_clk is not correct…

● Address ? If you are using ‘wrpc vuart’, maybe the address is not
correct. Check the output of ‘wrpc info’

● No software loaded ? During development, it makes sense to not
embed the wrpc-sw (as Vivado parse it very slowly). It needs to be
loaded. Maybe the address is not correct too.

● Last solution: ILA on the cpu instruction bus, it should load instructions.

Version 1.0

The software crashes quickly

I can see some startup messages, then nothing

● Maybe incorrect configuration (like addressing a non-existant device) ?

● The software is too large and get truncated or overwritten. Check the
configuration with your hardware configuration.

● Enable more traces to see progress

● Debug with pp_printf, or ‘wrpc gdbserver’

Version 1.0

Link issue

Version 1.0

No link

I have a prompt, but link is never present

● Check SFP is present, fully pushed in the cage, fibre is present…

● Maybe sfp_tx_disable is not driven or incorrectly driven.

● The transceiver is incorrectly clocked. Check presence of clocks.

● Might be a problem after the transceiver (auto negotiation)

● Connections between VHDL and Verilog (depends on Vivado
versions…)

● Start with non-lpdc transceiver (and non-lpdc software)

Version 1.0

No link

● Mismatching SFPs ?

● Try with an SFP loopback

● (GT near-end loopback is possible but not well supported)

● PCB issue (impedence)

● ILA on the transceiver, in particular the reset FSMs

Version 1.0

No lock

Link is present but cannot lock

● Check details with ‘pll stat’

●

●

●

●

●

HL1: Helper (DDMTD) locked
ML1: Main locked

● Important: First link, second helper, third main pll

Version 1.0

No helper lock

If helper is not locked…

● ddmtd clock not present ?

● ddmtd clock cannot be tuned ?

● ddmtd clock out of range ?

● wrong Ki/Kp sign ?

Connect the clock to a pin and check with a scope

Use freqmon command

Version 1.0

Freqmon

Optional hardware + software feature

It directly drives the DAC lines and measure the clocks frequency
The best reference is the uplink clock (so link must be present)

Set low and high values, measure frequency and compute pullability

As DAC lines are driven, softpll and ptp are disabled!

● Check Fmin < 62.5MHz, Fmax > 62.5Mhz

Version 1.0

Freqmon

Version 1.0

No main lock

If the main does not lock...

● Clock stability

● Detuned oscillator (output frequency out of the specification)

● Upstream clock not stable enough for an oscillator with tiny pullability
● Use a low-jitter switch locked on an atomic clock

● SoftPLL PI parameters (Kp/Ki) incorrect

● wrpc spll-recorder can record and display time tags

Version 1.0

PPS (or clocks) not aligned

The core is synchronized (TRACK_PHASE), but the PPS output is not
aligned with the PPS of the switch (or of the GPS receiver)

● If the PPS of the switch is not aligned with the PPS of the receiver, you
first need to align them

● It’s about calibration

Version 1.0

PPS phase jumps every restart

Each time the core is reset, or powered off and on, or the link goes down
and up, the PPS phase (compared to the switch PPS) changes

● So the system is not deterministic!

● Main culprit: the FPGA transceiver

● How important is the jump: more than the UI (800ps) or less ?

● Some transceivers (GTX, Virtex6, GTHE4) have an LPDC version (jump
is less than ~20ps). Topic for another talk...

Version 1.0

PPS phase depends on the temperature

The PPS phase (compared to the PPS of the switch) depends on the
temperature

● It’s a feature

● Setting the alpha parameter may help

● There are some temperature sensors

Version 1.0

Backup: DDMTD

Version 1.0

How does DDMTD work ?

Stroboscope

Beat wavesWheels

Version 1.0

How does DDMTD work ?
Zoom-in effect

● Input (the clock) is periodic
● Watched at a slightly different frequency

Let use the rotating wheel effect:

Sampling point

Version 1.0

How does DDMTD work ?
When sampling frequency is much higher than the sampled clock:

Sampling point

0 1 1 1 1 0 0 0 0 1

No zoom-in effect, low precision (defined directly by the sampling frequency)

Version 1.0

How does DDMTD work ?
When sampling frequency is equal to the sampled clock:

Sampling point

0 0

Always 0 (or always 1), not very interesting!

Version 1.0

How does DDMTD work ?
When sampling frequency is slightly lower than the sampled clock:

Sampling point

0 1

Zoom-in effect!

 1

Version 1.0

How does DDMTD work ?

Sampling
clock:

 0 1 1 1 1 0 0 0 0 0

Clock 1:

If Ps > P1, δ=Ps – P1

n = P1 / δ = P1 / (Ps – P1) = 1 / (Ps / P1 – 1) = 1 / (F1/Fs – 1)

1/n = F1/Fs – 1 so Fs = F1/(1/n + 1), Fs = F1*n/(n+1)

δ

n

Version 1.0

How does DDMTD work ?

Sampling
clock:

 0 1 1 1 1 0 0 0 0 0

Clock 1:

 0 0 1 1 1 1 1 0 0 0

Clock 2:

DDMTD provides the phase difference between two clocks

Version 1.0

Backup: wrpc-v5 vs wrpc-v4

Version 1.0

What has changed with wrpc-v5 ?
The cpu has moved from
lm32 to risc-v

The cpu memory is not
directly visible

Address space is much
smaller!

Base+0
Base+256K

LM32
memory

Base+256K
Base+...

WRPC regs

Base+0
Base+4K

WRPC regs

minic
endpoint
softpll
pps
syscon
uart
onewire
diags
CPU

	[Title]
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

