WRPC integration into WR

Node

i Training
ey material
White Rabbit

OOOOOOOOOOOOO

2024/12/4

What you will learn:

What should be added on the PCB for a WR node
- Oscillators
- SFP
- eeprom for parameters and MAC address

Clocking structure

How to instantiate the WR core

Troubleshooting

Version 1.0

WR: White Rabbit — the fully deterministic Ethernet-based network for
general purpose data transfer and synchronization.

WRPC: WR PTP Core — HDL + SW IP implementing WR. In general,
It's a slave (the WR switch is master/grandmaster/boundary clock).
Sometimes we use the redundant name ‘WRPC core’

WR Node: A device which includes the WRPC core, as opposed to the
WR switch

Version 1.0

Main HDL components:

1G Ethernet endpoint (with timestamps)
DDMTD to extract phase between clocks
Timetag + PPS generation

GPIOs for storage, LEDs

UART

CPU + ram for control

Deterministic GbE SerDes

providing bitslide

8 DAC

Version 1.0

Main software components:

SoftPLL to discipline clocks (topic for another talk)
PTP (ppsi) for delay

Remote management (BOOTP, ARP, SNMP, LLDP, ...)
Local storage (MAC address, calibration parameters)
CLI

Version 1.0

PLL DACs drive (SP1)

5:1 PLL, s
Fanout MGTREFCLK 1/O Connector

(optional)
VCTCXO Unique ID
25 MHz (optional)
2.5 ppm
REF clock generator . EEPROM '
e (optional)

GCLK,
6.25:1 PLL

FOTxRx

wh{é%m Version 1.0

The core needs non-volatile storage (fallback if absent):
« Calibration parameters
 MAC address
* SFP database
This is fully handled by software, and quite flexible:
* SPI flash
* |2C eeprom

e One wire

Version 1.0

For MAC address, unique id chip like 24AA02E48 could be used

For non-SoC FPGA, the bitstream flash could also be used as non-
volatile storage (different page!)

SPI and 12C are done in software (bit-banging)

Version 1.0

SFP cage
 Follow vendor recommendations

* AC capacitors

Optional:
Sensors (temperature)
UART for command line interface: USB adapter

Anything you want to add (and you are ready to write the software for)!

Version 1.0

|
|
)

PLL DACs drive [SP1) = ‘E
—@ REFCLK !
P S:1PLL, o mw— i :
| Fanout WMAMR G TREFCLK 1/0 Connector |
i (optional))
: DAC VCTCXO Unique ID
T 16bit 25 MHz (optional)
E i 2.5 ppm
E.‘ REF clock generator) EEPROM
IR b A G {optional)
VCXO GOLK, SFPCTRL
20MHz 6.25:1 PLL :
100 ppm SFPTX SFP
1 - SEPRX FO TxRx
DMTD clock generator E

#

b

wh@m Version 1.0

What does White Rabbit ?

* It disciplines an oscillator from time information provided over
ethernet

(Probably you have seen this question many times, and also different
answers...)

What does discipline mean ?
 Same frequency (or an integer multiple)

* Fixed phase offset

Version 1.0

Local oscillator fregueney phase is compared with the phase of a virtual
oscillator.

Not so virtual, it's the clock recovered from ethernet (in fact, a divided
one). This clock represents the master clock.

From phase comparison, a Pl controller (the SoftPLL) disciplines a local
oscillator.

Version 1.0

The solution: DDMTD - Digital Dual Mixed Time Difference

Sampling
clock:

Local clock

RX clock]

Counter: O 1 2 3 4

Version 1.0

_____________ External oscillators

WR needs 2 tunable clocks:

* The disciplined clock (the reference clock)

* The DDMTD clock

WR is also able to discipline other clocks (auxillary clocks)

Version 1.0

Mostly defined by the transceiver
* Which provide the WR frequency

We are using 1G ethernet, but 1GHz is too high for an FPGA clock,
The transceiver use a 16b parallel interface (8b on Spartan6 or Virtex5).

So the data clock is 1GHz/16 = 62.5Mhz (125Mhz on Spartan6 or Virtex5)
For DDMTD, we use n=2%=16384, so Fyimi=62.496MHz

Note:
1G ethernet use 8B/10B encoding, so serial clock is 1G*10/8 = 1.25GHz
This recovered clock is then divided by 20.

Version 1.0

29 (8]
¥ - - ReT ¥ E 31 B
Hlm]nl-' <L xiN OUTPD E e :_::,:!’:: :,H EH HEH ::_:{ t\ EPGA PLL REF CLK(123 P}
Mounted: No 4 OUTND | L= e e ==~ —] FPGA PLL REF CLED 123 N
e P3V3 CLEAN CE e : -
¥ —_— q i] ¥| & 1)
Lo oy cDE03 12 | RSTN OUTPl ———4 L L N P
[= o i R245 0 Mo 2 7 E= FPGA FLL REF CLE 101 N et e {
VDD OUT GNDI—saCE o — 5. OUTNI FPGA PLL REF CLK 101 N}
o It GND —{ T} =— PRO e S
LDAC OUT1 1 3 RS0 —— 0 Mo 26 2 == SEP CLE P
- VOO GND ———GND GND =1} S PRI OUTE? ——= — . SFP CLE P
2 =2 SFP CLE N ———
OUTNZ SFP CLE N
25MHz GNDL—R25L—— @ Na 13 |
TSR TS 3 I Tag—T - N, n 5 3
L IRALE S (e GND RR.;' | :; T‘;H tj abl OUTP: ;; = :_::,:!’:: Hﬁ f\ FPGA CLE P
GMD ———— T ————— 02 OUTHY = L FPGA CLE N
WS 253 ¥y
3 L) te GND Eﬁi"T" :; LL“ t‘l] 081 0sCOUT =
Vs _OUT = GND —{ =} 050
| | 3 19 1% s
VO T GND —GND 77| REGCAPL VCCPLLI —— 2R D0 MHz
YT Ck JT REGCAP2 VCCPLL2 (— . . . {P3V3 CLEAN
CEaT ; p T : VOCVeO L 452 _L 451
S I53-25.000-2.5-30+75 =11} 3 : i 2z ; :
VIS I53-25.000-2. 530475 ufF uf 1: NE VCCIN ln 00aF \uF
" = NC VCCOUT — x
Control voltage is +1.5V =1V, — —L % VCCOUT = — o CDCMGE1 004 configuration:
Min. pull mnge is +10 ppm for £1V. Sl bl =— GNDI VOCOUT ;f] G N LVDS outputs
Positive slope | Positive voltage for EP VCOOLUT = It"j‘-\-’i—i CLEAM PRESC DIV = 4
itive fr oy shift). FEDIV =20
i e CDCMGL0DAR HET AN
e OUT DIV = 4

All config mputs have
mntermal pull-ups.

Input = 25 MHz
Cutput=125 MHz

th?ni.,n Version 1.0

Reference clock is provided by a 25MHz VCTCXO, small pull range

External low-jitter PLL to provide 125MHz (better than the internal PLL)

Double footprints for the oscillator

External DACs to tune the oscillators

PLL drives the transceivers and the FPGA

Clean 3.3V power supply + DACs vref

Version 1.0

13
s [— R1& ; oL
PLLZSDACE SYNC N _» = SYNC VOUT j + =1 PLIDAC OUIZ
PLLISDAC SCLE. - > SCLE. VFB —-J; 240] C7
PLLISDAC DIN DIM VREF [100nE
I] |
R BAC Vil = 3V so it P3V3 CLEAN} VDD GND ———GND N
accepts 2.5V CMOS AD560IBRMZ-1 o |
signal DAC cuput range: 0% to 2.5V
IC7
5 [=—— 4 L9 PLLDAC OUTI
[PLIZSDACT SYNC N > = SYNC VOUT {——+ {—1—» =
= SCLK VFB 4; 240 Cd
DIM VREF [— 100nE
V3 CTEAN
PAVI_LLEAN P3V3 CLEAN} Ll vbb @ND L-—|{i:~;u N
AD560IBRMZ-1

- —ll —L Cl2 08C2

. T i
11 E 5 IHH]DF 12uF PLLDOAC OUT2 '_lr VOTRL Ol
LM336M-2 S/NOPB ST £ ED ||| wec —=— "
N GND GND P3V3_CLEAN +VE GND =
L 20MHz GND
e LF VEXO026156
GND

White Rabbit

Version 1.0

20Mhz VCXO for DDMTD (with +-100ppm pullability)
* Use internal PLL to get ~62.5Mhz
* n/(n+1) = 0.999 938 so need > 60ppm of pullability

Some components may not be available anymore

Quality of the clock

Many components!

Version 1.0

£ A T -

L DAl CTRL ;

White Rabbit

PAND RF

WEEF _CRCNCE

2w our |2
TEMP NC [
GHDF TRIM [—

HEFSA A1

I

LRy

1

LE b

A0 O MS

4 Q QKO CLE

!

LEL

E CIET LI e Ol CLIP?
[y I 4. 0l
o)
LT LT LMD LEE T Plice om 6 el el aed PCH ama
EAE vt b v o clamnper cmdl e e B bo
AL CTRL [l

J— 1
5 N = .'1.1..‘\'5. WHEF s
SCLK ———————— &K 4 OCX0 TUME

IHN — DN SORLT i : - — . Wi UT
POV RF i | —| VREF IDI
AN j— WA My
™ 3 LA | LA]
WINY ALY
' 100l Jle s g JidHz
EVERTIC 1
A ae e LilE L LR
YA N
Pl L8 L
(I D

NG (LE >

Version 1.0

WR2RF clocking (2/2)

Layious mose - Heesemoes st bee

H see
10 gl

placed close 10 the PLL
el

hacuskd 1

4 & VS0 OUT A= LY O6T | [l
T 1T
S0 TINEL 68 | |10
114
! GND ot | |1 » 1
3 PECL
= Ll PECLL L
48 | |0 L F ML AE
1
[
L i PEC o
iy 4T | |100aF T 1) 1 jﬁ:fﬂ-:ﬂf&‘*
1 WATN_PLIL_CTHL 3 e B s
4 == 18P
3 wAIN_PLL (TR o HE
OO CLE L] MAIN PLLCTRIL
Ml _CP Py
[3 SLAIN_PLL CTRL AE G
OCND OUT N 7= MAIN FIL CTRL = - L

VAE O
VAE O

PV ECL L PAVO_RF

VOB

PV VP _PLL
A

capaciors sha ll be placed
mear LTCRS30, one por pas

(V). A sharmg
capuemors for mkiple P o

capacies skall be

placed mear LTOS250 NI

T a0l HARP B

PLL discipline a VCSO (SAW) to provide a very stable high frequency clock!

Much higher price
Cf SPECY for another design with very low phase noise clock

Version 1.0

White Rabbit

M : Gue IV e 2V5 0CS
' ' '
0 Wisw M '
-1 ¥ .
: i : TRSTAZ TP 00 R
[] $ 3 Am aur [
: UM g [} C19_|'_ s J.:’ En cs_l‘_ cml
M AT : L7 1000 ‘l“ 1006 47uF
H '
H '
' '
: GND : GAD GHD GND GHD GND
' H '
: Inductors + Capacitors : _
¢ Close to Swikched 9 . =1
¢ Mode Power Supply : " BSMO G503 1k 400ma
] ' 8 s 4 —
: [: I SIT53504C -FS G 2510125 000000 I
Yoo
. : L Ri3)
: . lcz cus B EE REF CLK
M : 100nF
1
' ’ PCABITAT? & 7
[] H e THI
' 1 g d GHD .
' [] 4 looas SOAA 01 som
: [} 5lseie scLa 2 25
H V| vECcA:ovesys <P | REF Oscillator O mue
: [] Y{CB: 2V7-5V5 o E S R2CADDR = 1101.010x 4 [o = REF CLK
' : EN pulled-up to VCCB 3] - 0xD4 Wr, 0xD5 Rd Ll
H ' ERE
REFCLK SDA ' 2
REFCLK SCL v []
+ ¥ GND GHD
' .

Version 1.0

White Rabbit

Clocks (Ref and DDMTD) provided by 2* Sit5359

Integrated oscillator + fractional PLL

Small package

Single ended signal

Tuned through 12C

Version 1.0

________ WREN (CERN) clocking

=0 All autpubs LVDOS . .
o RN i e * Si5340 fractional PLL
|25 WROIKMAMFE
i{-ﬂ% gg% 2 WA_LLK.MAI
31 FecRowese
SRR 8 e smirass « NOT for ultra-low phase
| 56 WA CLEANLPE
-\e:iuz ﬁ{:ﬁ E-H-E 35 WR_LLEAUN W nOise
= b e [22«
.L5|1:|-_3_|-|j;5 e
I_L 2 INTR
A a—a T e But very flexible
GHD_CRYSTAL WE_ELK,SPLECK LY y
WR_CLE.5P_HISO il Mfgl]
WR_COLE.SPLMAIHL L5 H 1E ADSTS
enp = 28 sEL
wi| 7F 4]
s by o * ‘Tuned’ through SPI
WRA_CLE_RSTH iy RST
E+] WED y¥oDoda i
Sl H o T
WoD VoDO3
PIVE_EL |—t§£ VDDA e s
1.?2—5 Eg[[;; GHD 22
GHD EI53%00-D—CM GND

Wh@m Version 1.0

Fractional PLL vs VCO+DAC

With fractional PLL, fixed oscillators can be used.
This simplifies the BOM (less components).

But according to (some) crystal vendors, fractional PLLs have more phase
noise...

Some FPGA (eg: ZynqUS+) even have fractional PLLs inside with enough
precision bits (eg: QPLL of GTHEA4).

See branch mle/upstream/zcul02 for an example.

Version 1.0

1oyt I

WRPC (SoftPLL) tunes the oscillators exsss —eaeef e |

The interface is generic: a3 e
+ spec sen'a ac a AD5662 VM5383-25.000 CDCM61004
data port pUISe e _p - da(i__(:s_rT_or(?))‘J—{ DAC — vexo—| SN ﬁ
Destalo = ————— G0-Cs 1
There are many ways to tune: | e——
DAC (SPI-like), 12C, SPI, ... e |

clk_dmtd_i 62.5MHZ pLi_pASE <l
= ~J

The repository provides many ‘adapters’.

* modules/wr_dacs: serial interface (SPI-like) + arbiter
* modules/wr_sit5359 interface: for Sit5359

* modules/wr_si57x_interface: for SI57X

N |

You can design you own adapter (eg: WREN)

Version 1.0

Clocking Structure (inside)

Version 1.0

The FPGA requires one or more clock for the logic, and a reference clock
for the transceiver

Bootstrap: a clock must be present to start the FPGA...

Current FPGA can clock the logic from the transceiver reference clock
(save some pins)

The WRPC also needs a sys_clk (in general 62.5Mhz).

If you want your node to also be grantmaster, you need to provide
10MHz+PPS input

Version 1.0

THE clock which is generated and disciplined by WR

* Must derive from a tunable source

* Must be compared with the RX clock

* Must be transmitted by TX (as the master will also compare it)

Note: the terms ‘reference clock’ are also used in other contexts (like PLL),

or at other places in the WR core (like reference clock for GT). Do not
confuse!

Version 1.0

clk_ref:
* Clock time ports (tm_tai, tm_cycles, ...) and pps.
* Might not be present during reset...

* Might not be in sync with sys_c1k. Might be an issue if you need to
send it over the network (fabric is clocked by sys_c1k).

 It's an internal clock. Can be output, but not with a high quality

Question: who generates this clock ?

Version 1.0

The key element is the transceiver:

 RX recover the clock from the master. The
mgtref phase is compared to the local reference.
sysclk « TX transmit the local clock to the master. The
ref clk master also measure the phase.
mtd_c (The dmtd clock is used only for measuring the

phase)

Version 1.0

RX PMA

+=| cobr

RX DATA

i i

LB |
A%
FAN

Interp.

[

/D
Phase 11,24, /4 or |

/5

8,16)

/2 or
/4

[1 o\

RXSYSCLKSEL[O]

L

CPLL

RXSYSCLKSEL[1]

R

']

(From Xilinx ug476 — 7Series GTX/GTH)

Transceiver have PLLs to generate
serial clocks (1.25Ghz)

And use dividers to generate ‘parallel’
clocks (there are RX and TX dividers)

Dividers create uncertainties of the
phase (n times Ul, so 8/16ns!)

All these clocks are not necessarly
aligned.

Version 1.0

Clock non-determinism

For RX: the phase non-determinism can be lifted by looking for the
comma character. The phase offset corresponds to the number of bits

shifted during comma alignment (bit-sliding)
Well, hopefully. That’s the theory and might be more complex...

Version 1.0

Clock non-determinism

For TX: we don’t know as we don’t have any readback!

Solution: the TX clock is the reference clock. (Or a clock in phase). This
IS the clock to be aligned with the master. This is the clock of the
timestamp.

Or: It is possible to use (or synchronize or align) a clock with the TX
clock. That's deterministic and this could be the reference clock.

The latter is enforced by LPDC. This allows ref _clk to be synchronized
with an external source, which could be then also used to locally
distribute a ‘WR clock’ (with a fixed phase)

Version 1.0

What |f Fddmtd > Fref 7

Do we need an external Ref clock ? Can’t we instead use the recovered
clock ?

Can the transceiver clock be a fixed clock ?

Can Faumw be directly derived from Fres ?

What about using n=2*°or 2 for DDMTD offset instead of 24 ?

Version 1.0

HDL: Instantiation

Version 1.0

The Structure

modules/wrc_core/xwr_core.vhd: the bare core, should be the

reference
modules/wrc_core/wr_core.vhd: without records (for verilog)

board/XX/xwrc_board_XX.vhd: Wrapper for a board. Core +
transceiver + PLL + DAC adapter. Recommended to simplify reuse of
WR for a particular board.

board/common/xwrc_board_common.vhd: Common part of the
wrapper, define multiple fabric interfaces (Streamer, Etherbone,
Loopback, Plain)

Version 1.0

The Structure

* platform/xilinx/wr_gtp_phy: Transceivers for Xilinx family

* platform/xilinx/xwrc_platform_xilinx.vhd: Clocking +
Transceiver for Xilinx family (ISE)

e platform/xilinx/xwrc_platform_vivado.vhd: Likewise but for
Vivado (ZUS+)

Note: The xwrc_platform_xxx files are not very flexible. It might be
easier to simply inspire from them instead of using them.

Note: See platform/altera for Altera FPGA.

Version 1.0

platform/xilinx/wr_gtp_phy: Transceivers for Xilinx family

* 7 series: gthe2, gtxe2, gtpe2

* US: gthe3

« US+: gthe4

* Virtex6 (For the switch)

e Spartan6, Virtex5

* Missing: gty

Wrapper around Xilinx transceivers

* Mostly deals with bitsliding

* LPDC (topic for another presentation)

Version 1.0

Wrpc-sw: the software

Version 1.0

Embedded software

It is required.

Mostly C code (+ crt0.S + linker script)

Target Risc-V on wrpc-v5 (and probably on the future too)
Should be compiled on a Linux platform

We provide gcc 11 for Risc-V on ohwr.org. But any Risc-V compiler
should work (if not too old).

Generic platforms (8b and 16b), configuration through a menu.

Version 1.0

Embedded software

Some parts are shared with the switch (SoftPLL)

Structure: topic for another talk.

Version 1.0

Host Software

wrpc IS how the tool which does everything. The swiss knife.

Could be used only if there is a path to the slave_i/slave_o bus port of
the core.

$./wrpc board
List of supported boards (or access methods):
pci

spec

host
vme
vme-1le
wr2rf

pci and host are generic
Hopefully, you don’t have to deal with vme!

Version 1.0

PCIl based boards

For cores reachable through PCI/PCle.

$./wrpc board pci
Generic PCI board
-f resource-file

-s [domain:]bus:slot[.func][@bar]
-0 offset
One of -f or -s 1is required to identify the board
The resource file should be something like:
/sys/bus/pci/devices/0000:02:00.0/resourcel
(The option -s translate bus:slot to a resource file)

The offset is the offset of the wrpc core within the BAR.

Version 1.0

Hosted boards

For cores directly reached in memory

$./wrpc board host
host (WRPC on an AXI bus)

-b BASE address of wrpc (required)
-f /dev/mem (default)

Useful for SoC like ZynqUS+, when Linux is running on the chip and the
wrpc core is connected on an AXI bus

BASE is the physical address of the core

(Strictly speaking, this could also be used on PCI, except the physical
address is set only after enumeration)

Version 1.0

$./wrpc help
usage: ./wrpc [command] [-b BOARD] [OPTIONS...]
command is one of:

help display list of commands (this help), or help for a command
version display tool version

board display list of supported boards, or help for a board
load load wrpc firmware and restart

vuart virtual uart, connect to wrpc cli

info display wrpc info and check board

spll-recorder SoftPLL log recorder

gdbserver risc-v gdb-sever

wdiags WR diags dumper

aux-logger display wdiag AUX® value for logging

Version 1.0

White Rabbit

Display static information about the core:
* Features (memory size)
* |dentification (arbitrary 4 letter string)

Very useful to check if access is OK (much less intrusive than other
commands)

Try before any other command
- Method specific option (here slot)

~ Access methogJ d Sp

$./wrpc info(-b vme-le -s 8/(-o0 @x1000@
hwfr=0100100b: memsize: 192kB, STtorage: @, storage sector size: 256kB
hwir=564d454e: VMEN

Version 1.0

Load the wrpc-sw
Useful during the development to quickly change/update the software
It resets the cpu (which means it has to lock again)

Can load the ELF file (no need to convert to raw binary)

$./wrpc load -b wr2rf -s 3 wrc.elf

Version 1.0

Just connect to the uart, no need for a cable

Press Control-A to exit

$./wrpc vuart -b vme-le -s & -o @x1000
[press C-a to exit]

help

Available commands:
calibration
diag

You can also directly execute a command:

$./wrpc vuart -b vme-le -s 8 -o @x100@0 -c time

Thu, Nov 28, 2024, 13:56:12 +650097424 nanoseconds.

Version 1.0

Dump the timetags (which are the primary data for the spll).
Very low-level tool, useful only if you need to debug the spll.

$./wrpc spll-recorder -b vme-le -s 8 -o @x1000
main phase_current=6140 phase_target=6140 time_ms=3188190@0 ref=16384 tag=16385 err=8 sample=7
790573 y=29757

err=-21 sample

=7790574 y=29765
main phase_current=614@ phase_target=6140 time_ms=3188191 ref=16370 tag=16387 err=-38 sample
=779@575 y=29770

Version 1.0

Connect a gdb server to the Risc-V core
Allows you to debug the software

$./wrpc gdbserver -b vme-le -s 8 -o 0x1000

Waiting for connection on port 7471

Maybe a topic for a talk — you need to know a little bit about gdb

Notes:
* You'd better to build wrpc-sw without LTO and with a low level of

optimization
» Before reloading software, do mon reset to reset the cpu (in particular,
to disable the interrupts)

Version 1.0

Troubleshooting...

Version 1.0

This is a list of problems | had or | have seen.
Some might be completely stupid mistakes
Not comprehensive, but | will try to update the list.

Your contribution is welcome!

IMPORTANT: it is HIGHLY recommended to make the WRPC visible on
the host bus (connect slave_i/slave_o). It allows to easily update the
software, have vuart, and the debugger. If not, connect at least the uart
(uart_rxd_i, uart_txd_o). Have a few free pins you can connect to a
scope.

Version 1.0

| boot my board, but nothing appear on the console

Baudrate ? If you are using the serial console, it should be 115200
baud. Maybe the sys clk is not correct...

Address ? If you are using ‘wrpc vuart’, maybe the address is not
correct. Check the output of ‘wrpc info’

No software loaded ? During development, it makes sense to not
embed the wrpc-sw (as Vivado parse it very slowly). It needs to be
loaded. Maybe the address is not correct too.

Last solution: ILA on the cpu instruction bus, it should load instructions.

Version 1.0

| can see some startup messages, then nothing

Maybe incorrect configuration (like addressing a non-existant device) ?

The software is too large and get truncated or overwritten. Check the
configuration with your hardware configuration.

Enable more traces to see progress

Debug with pp_printf, or ‘wrpc gdbserver’

Version 1.0

White Rabbit

Link Issue

2024-11-25-13:40:53

0)| d8:47:8f:a7:47:91 | 45745

--- HAL ---|
Itf | Frq | Config

wr@® | Lck | auto | 64:fb:81:2F:f9:f5 | SLAVE /IDLE

Synchronization status
White-Rabbit: TRACK_PHASE

20375 |

fEXT_ON | R-W

Version 1.0

No link

| have a prompt, but link is never present

Check SFP is present, fully pushed in the cage, fibre is present...

Maybe sfp_tx_disable is not driven or incorrectly driven.

The transceiver is incorrectly clocked. Check presence of clocks.

Might be a problem after the transceiver (auto negotiation)

Connections between VHDL and Verilog (depends on Vivado
versions...)
Start with non-Ipdc transceiver (and non-lpdc software)

Version 1.0

No link

Mismatching SFPs ?

Try with an SFP loopback

(GT near-end loopback is possible but not well supported)

PCB issue (impedence)

ILA on the transceiver, in particular the reset FSMs

Version 1.0

No lock

Link is present but cannot lock

* Check details with ‘pll stat’

wrc# p stat

softpll: mode:3 seq:ready n_ref 1 n-out 1

1rqs:79287690 alignment_state:@ HL1 ML1 HY=7531 MY=5800 DelCnt=0 setpoint:5482 refcnt:39644391 tagcn
t:39646590 h_kp:-15@0 h_ki:-2 h_shitt:12 m_kp:-1100 m_ki:-3@ m_shift:12 h_lock_duration:274@ m_freq_l

ock_duration:10@ m_phase_lock_duration:384

softpll: ptracker®: enabled 1 n_avg 512 value 5477
WIC# I

HL1: Helper (DDMTD) locked
ML1: Main locked

* Important: First link, second helper, third main pll

Version 1.0

If helper is not locked...

e ddmtd clock not present ?

* ddmtd clock cannot be tuned ?

e ddmtd clock out of range ?

* wrong Ki/Kp sign ?

Connect the clock to a pin and check with a scope

Use fregmon command

Version 1.0

Optional hardware + software feature

g_with_clock_freq_monitor : boolean = true;

[*] Add 'fregmon' command for built-on clock frequency monitor

It directly drives the DAC lines and measure the clocks frequency
The best reference is the uplink clock (so link must be present)

Set low and high values, measure frequency and compute pullability
As DAC lines are driven, softpll and ptp are disabled!

e Check Fmin < 62.5MHz, Fmax > 62.5Mhz

Version 1.0

Fregmon

rc# fregmon

CMON initialized

Reference clock for frequency measurement:
Channel @: SYS tunable=0, freq=UNKNOWN
Channel 1: DMTD tunable=1, freq=UNKNOWN
Channel 2: REF tunable=1, freq=UNKNOWN
Channel 3: RX tunable=0, freq=UNKNOWN

wrc# fregmon checkvco
Checking VCOs. Note: the board must have its uplink connected to a stable frequency referenc
e. Press ESC to abort anytime.
- DAC value=0, f=62492025 Hz, delta_f=-7975 Hz
- DAC value=32767, f=62507287 Hz, delta_f=7287 Hz
- DAC value=65534, f=62522537 Hz, delta_f=22537 Hz
VCO: DMTD : f_min=62492025 Hz, f_max=62522550 Hz, f_center=62507287 Hz, APR=127600 ppb
- DAC value=0, f=62499175 Hz, delta_f=-825 Hz
- DAC value=32767, f=62500125 Hz, delta_f=125 Hz
- DAC value=65534, f=62501087 Hz, delta_f=1087 Hz
VCO: EEF : f_min=62499175 Hz, f_max=62501087 Hz, f_center=62500131 Hz, APR=13200 ppb

wnf.;l?im Version 1.0

No main lock

If the main does not lock...

* Clock stability

Detuned oscillator (output frequency out of the specification)

Upstream clock not stable enough for an oscillator with tiny pullability
* Use a low-jitter switch locked on an atomic clock

SoftPLL Pl parameters (Kp/Ki) incorrect

* wrpc spll-recorder can record and display time tags

Version 1.0

The core is synchronized (TRACK_PHASE), but the PPS output is not
aligned with the PPS of the switch (or of the GPS receiver)

 If the PPS of the switch is not aligned with the PPS of the receiver, you
first need to align them

* |It's about calibration

Version 1.0

Each time the core is reset, or powered off and on, or the link goes down
and up, the PPS phase (compared to the switch PPS) changes

So the system is not deterministic!

Main culprit: the FPGA transceiver

How important is the jump: more than the Ul (800ps) or less ?

Some transceivers (GTX, Virtex6, GTHE4) have an LPDC version (jump
IS less than ~20ps). Topic for another talk...

Version 1.0

The PPS phase (compared to the PPS of the switch) depends on the
temperature

 It's a feature
e Setting the alpha parameter may help

* There are some temperature sensors

Version 1.0

Backup: DDMTD

How does DDMTD work ?

VERNIER CALLIPER

Jaws for
measuring
_inner
dimension
Stem for
Measuring
depths
i

6*
|
‘ ®
Vernier Main Scale
Scale

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A e AR e e e e e

Jaws for
measuring Screw
_outer Clamp
dimension

fFa AR AR AR AR AR AR AN

AN i

OOV U U U PO
T

RATATAY
VUV VY Y

|
U T T 1]
+
O | | i BoA R 5 5 !
I|'|I I|| III III I|I II"I I| [I|I II|||| I|I IlI I|IIII|| |I||| ||||||” |I| |I| I,I III
ATAY INRTAN INRTAN L) A
III|“||IIIII| ATRIATRTRIRTRIATATR YRR |"||'|I||
\ L}]] W W R
'I fl hhoa § 1 i
2 nil ' |
|I“ |1 'II| | I il ! IIII'IIIII
I|) -I (] |IIIIII|"_.-""II| | | (1
I||I|| 11 i |l|I|||'||

Nl | III' I.I {l '__,' L iy Be at waves

L) LI f

Version 1.0

White Rabbit

How does DDMTD work ?

Zoom-in effect
* Input (the clock) is periodic
 Waitched at a slightly different frequency

Let use the rotating wheel effect:

Sampllng point

I@G'DQ/ PHRA

Version 1.0

How does DDMTD work ?

When sampling frequency is much higher than the sampled clock:

Sampling point

I@ "N w oD

No zoom-in effect, low precision (defined directly by the sampling frequency)

Version 1.0

How does DDMTD work ?

When sampling frequency is equal to the sampled clock:

Sampling point
\ —) t | | J
o

0 0

Always 0 (or always 1), not very interesting!

Version 1.0

How does DDMTD work ?

When sampling frequency is slightly lower than the sampled clock:

Sampling point
;‘/ \Q/ / \ 7 \ /\i\ 5/ | ‘\\ / \ 5/ / \\ /Q
\\» O 1

" Y41 NIy A Yl 4
1

Zoom-in effect!

Version 1.0

How does DDMTD work ?

o
Sampling
clock: T
Clock 1:
0 1 1 1 1 0 0 0 0 0

If Ps> Pl, 6:P5_P1
N=P,/8=Pi/(Ps—P)=1/(Ps/Pi—1)=1/(Fi/Fs—1)

In=Fi/Fs—1 soFs=F.J/(1/n+ 1), Fs = Fi*n/(n+1)

Version 1.0

How does DDMTD work ?

clock N
Clock 1:

0 1 1 1 1 0 0 0 0 0
Clock 2:]

0 0 1 1 1 1 1 0 0 0

DDMTD provides the phase difference between two clocks

Version 1.0

Backup: wrpc-v5 vs wrpc-v4

Version 1.0

The cpu has moved from

Im32 to risc-v EREEA LM32
Base+256K memory P—
Base+256K WRPC regs ya
The cpu memory is not Base+... endpoint
directly visible i softpll
pps
Address space is much | £aseto WRPC regs syscon
Base+4K
smaller! N uart
AN onewire
AN diags
~ CPU

Version 1.0

	[Title]
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

