

High Field Magnets Programme

Report on High Field Magnet Programme

<u>E. Todesco,</u> HFM programme leader B. Auchmann, HFM programme co-leader

24 September 2024, SPC

A big thanks to our predecessors

D. Tommasini, leading EuroCirCol studies 2014-2020

Luca Bottura, leading HFM program 2020-2021 Andrzej Siemko, leading HFM program 2022-2023

Contents

- Guidelines for the program
- Status of Nb₃Sn and recent results
- HTS hopes and challenges
- Appendix: News from US and China

Guidelines since 2024

- Orient HFM more towards direct R&D for FCC-hh
- Injecting the experience we are getting from the HL-LHC project
- More synergies between the numerous WPs, and with other programs in particular with US MDP

HFM as direct R&D

- Direct R&D: focused on a magnet for a specific use (in our case of accelerators, making TeV, i.e. T m)
 - Example: LARP mandate for the LHC IR upgrade was something like "build a 90 mm aperture quadrupole, with 200 T/m, …"
 - Note that target can evolve in time
- Generic R&D: focused on developing the technology, not directly related to a specific application (making T, not TeV)
 - Example: MDP mandate "explore the limits of Nb₃Sn technology, reduce training, …"

HFM as direct R&D

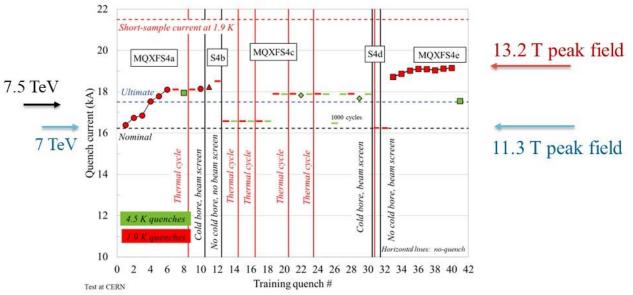
• Our main mandate is to make a dipole for FCC-hh

The HFM Programme's principle goals are:

- Develop a Nb₃Sn accelerator dipole with ~14 T operational field, compatible with the FCC-hh minimum target of 80 TeV center of mass energy;
- Explore the use of HTS magnet technologies for an up to ~20 T operational field, compatible with FCChh target of order of 120 TeV center of mass; the dipole shall be either based on a Nb₃Sn-HTS hybrid coil, or on an HTS-only coil to open the possibility of operating at higher temperatures (above 10 K);
- Promote the required developments for the associated superconductors (both Nb₃Sn and HTS);
- Highlight the innovative nature of high-field magnets development and its implications for the broader scientific community and societal applications.
- For Nb₃Sn the target is 14 T operational field, giving a c.o.m. energy of 85-90 TeV
- For HTS the target is a range 16-20 T operational field, giving 100-120 TeV c.o.m. energy
- We keep one non-FCC WP: HTS solenoids for muon collider

FCC-hh targets

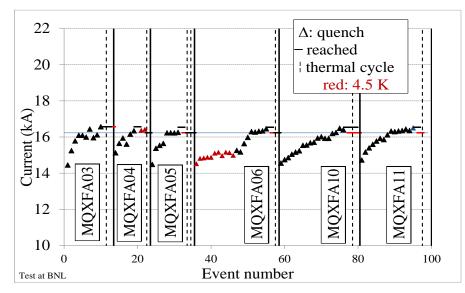
- The new targets for FCC-hh in Nb₃Sn allow reaching 90 TeV with 87% filling factor
 - The magnet is at 80% of short sample, and this gives more margin, allowing to consider operation at 4.5 K according to HL-LHC experience
 - 14 T operational field means that short sample shall systematically reach 15-15.5 T


FCC-hh parameters	CDR 2019	2024- Nb ₃ Sn	2024- HTS
Dipole field (T)	16.0	14.0	16-20
Tunnel length (km)	100	90.7	90.7
Arc length (km)	82.0	76.9	76.9
Arc filling factor (adim)	0.80	0.87	0.85
Energy c.o.m (TeV)	100	90	100-125
Loadline margin	86%	80%	TBD

FCC layout and evolution of parameters

FCC targets and feedback from HL-LHC

- 14 T operational field means that short models shall systematically reach 15-15.5 T
 - Do not make confusion between operational and achieved field: LHC dipoles reached 9.5 T, but they operate in the LHC slightly above 8.0 T
 - HL-LHC short models systematically reached >13 T, but they will operate at 11.3 T



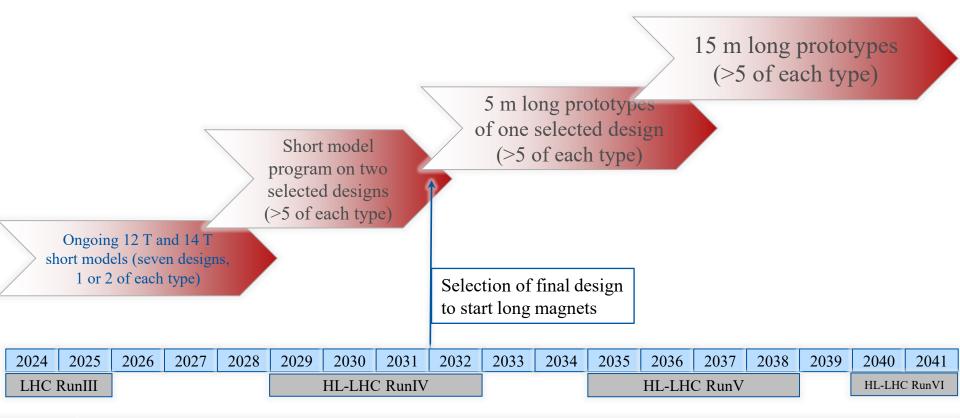
MQXFS4 test results [S. Izquierdo Bermudez, J. C. Perez, P. Ferracin, F. Mangiarotti, et al.]

FCC targets and feedback from HL-LHC

- Having the magnet at 80% of short sample at 1.9 K (instead of 86%), allows to consider operation at 4.5 K
 - HL-LHC MQXF experience shows that all magnets reaching operational field at 1.9 K are also able to operate at 4.5 K
 - With what margin ? We are exploring this aspect

Powering test of first six conform MQXFA magnets [J. Muratore, B. Ahia, S. Feher, G. Ambrosio et al.]

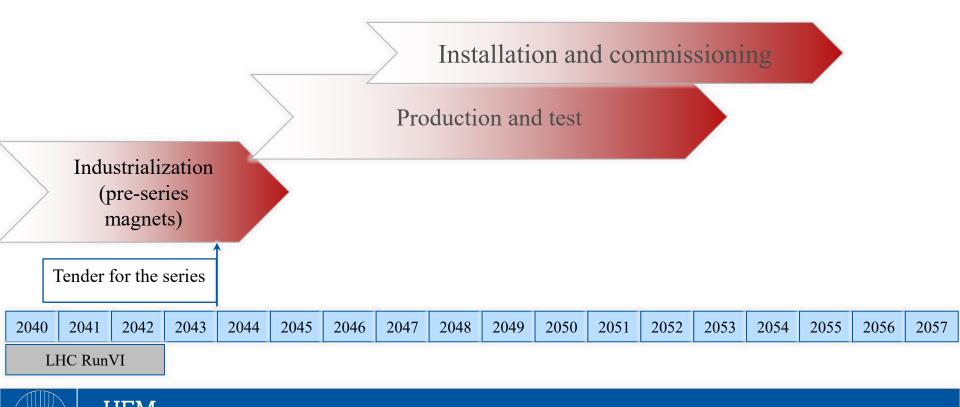
One of the first 7-m.long Nb₃Sn magnets


Integration in the FCC

- Two paths are given to reach a higher filling factor
 - Optimization of the lattice, together with the optics team
 - Longer cell--> less and less powerful quadrupoles → more space for dipoles
 - Work on high gradient correctors
 - Ideal test bench for HTS, and allows to get more TeV for the same field
 - For the moment scarce feedback on this proposal, please help
- Cooling
 - We are working on the 4.5 K option that has been opened by the HL-LHC results (WP4.6, P. Borges de Sousa and R. van Weelderen)
 - First preliminary results give a factor >3 of energy saving in going from 1.9 K to 4.5 K

Roadmap for Nb₃Sn

• At the beginning of 2024 we were asked to present an accelerated roadmap FCC based on Nb₃Sn

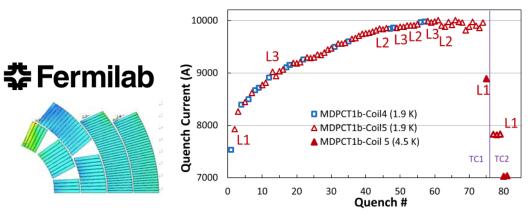


B. Auchmann, E. Todesco

Roadmap for Nb₃Sn

• This is rather a conservative roadmap, and could be shortened by 5-10 years (with more risk and cost) having less staggered phases and with earlier involvement of the industry

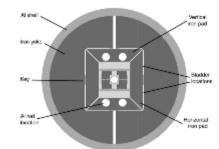
B. Auchmann, E. Todesco


Table of contents

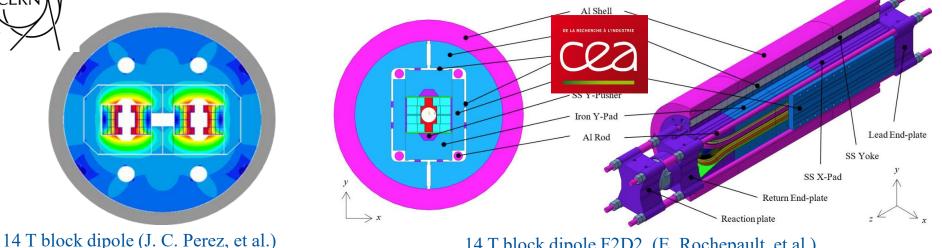
- Guidelines for the program
- Status and results of Nb₃Sn
- HTS hopes and challenges
- Appendix: news from US and China

Nb₃Sn program for 14 T

- The $\cos\theta$ option: the more classical path
 - MDPCT1: four layer cos theta made in FNAL reached 14.5 T at 4.2 K but degraded
 - This path was abandoned by MDP
 - INFN is proposing to have a 4 layer $\cos\theta$ (endorsed by steering board, not yet approved)
 - Test in 2029-30 at earliest



Power tests of MDPCT1 [S. Stoynev, et al. IEEE TAS 32 (2022) 4000705]

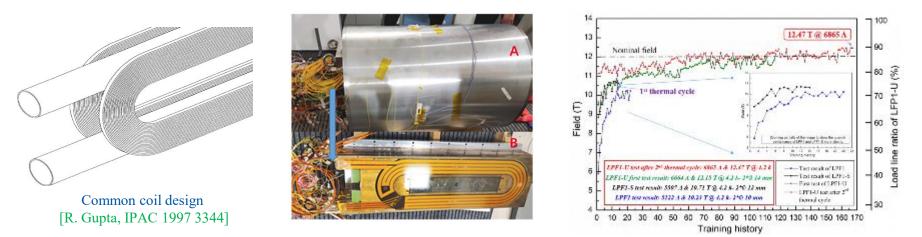


Nb₃Sn program for 14 T

- The block option: this design has the world record
 - Advantage: no stress accumulation in the midplane
 - HD2 reached 13.8 T at 4.2 K
 - Two options:
 - CERN (no grading) test in 2026
 - CEA (with grading) –test in 2027/8

[G. L. Sabbi, et al. IEEE TAS 15 (2005) 1128]

14 T block dipole F2D2 (E. Rochepault, et al.)



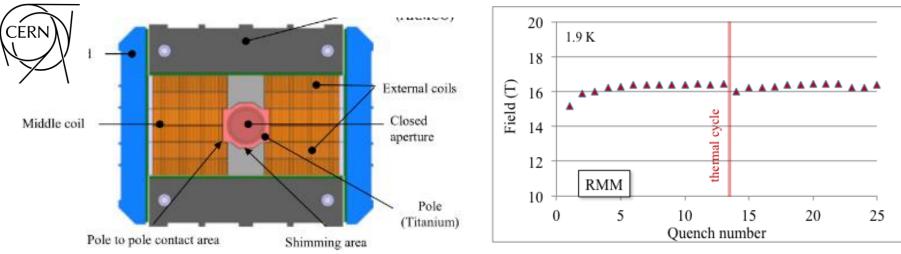
CERN

24th September 2024

Nb₃Sn program for 14 T

- The common coil design: a simpler path ?
 - Racetrack coils (but non planar coils needed for correcting field quality) less efficiency
 - The IHEP program reached 12.5 T in Nb₃Sn, but with small aperture (14 mm and no field quality, see appendix)
 - CIEMAT is planning to build a common coil, test in 2027/8

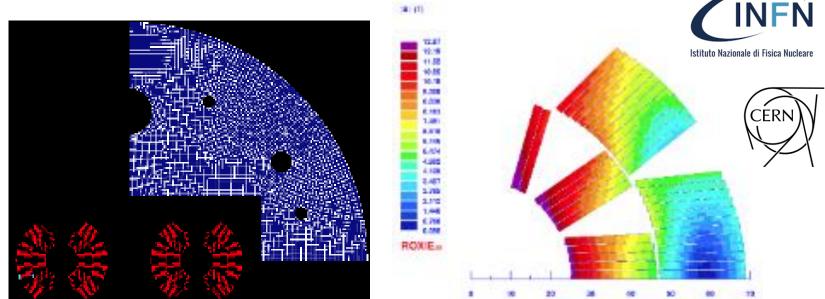
LFP3 magnet [J. Shi, Q. Xu, et al., IEEE TAS 34 (2024) 4701405]


LPF1 training [C. Wang, et al., SUST 36 (2023) 065006]

24th September 2024

Recent results: Nb₃Sn magnets

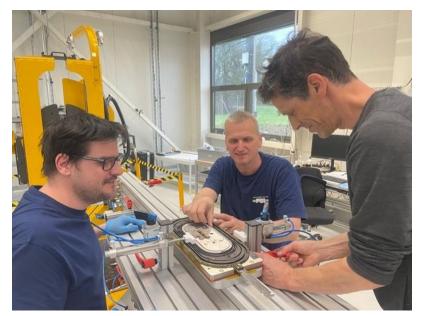
- All these design do not rely on stress management
 - RMM, based on a block coil, proved that 14 T can be achieved with a large margin without interception of stress
 - RMM reached 16.4 T in a 50 mm bore in 2022
- Test of reproducibility of the assembly coming in fall 2024
- Test of reproducibility of manufacturing (new set of coils) in 2025

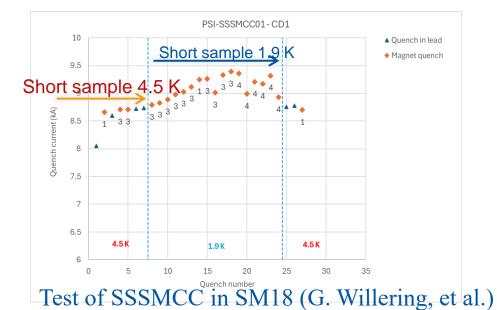


Cross-section and training of RMM [E. Gautheron, et al. IEEE TAS 33 (2023) 4004108]

Nb₃Sn program: the 12 T option

- A 12 T dipole based on cosθ geometry is in the HFM baseline since 2020
 - Why a 12 T? Mainly because it can provide a cheaper magnet
 - It has about 30% less conductor


FalconD cross-section [S. Farinon, et al.]

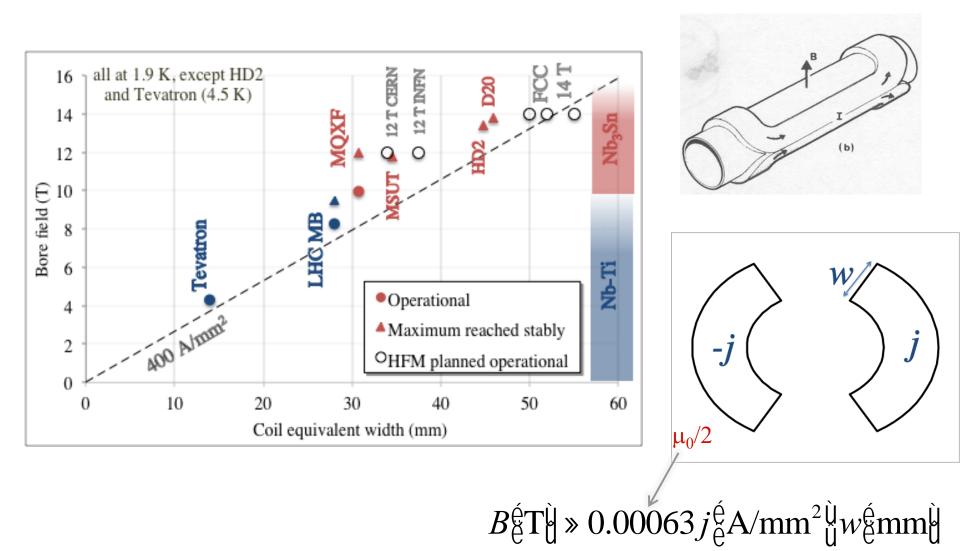


24th September 2024

Nb₃Sn program: stress management

- Even though stress management is mandatory only towards 20 T, it can provide precious margin at 14 T PSI explores this option
 - Test of PSI subscale stress managed common coil (SSSMCC) at CERN wax impregnated, reaction and test made at CERN
 - Peak field in the coil of 6.5 T reached, >5 T in the centre (June 2024)

Manufacturing of SSSMCC in PSI (D. Araujo, B Auchmann, et al.)



24th September 2024

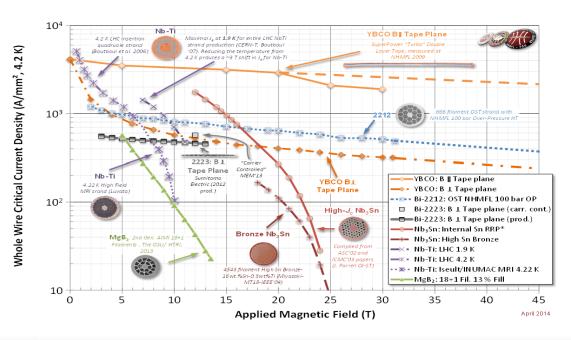
E. Todesco

PS

What are we building


Table of contents

- Guidelines for the program
- Status and results of Nb₃Sn
- HTS hopes and challenges
- News from US and China


HTS: the ideal superconductor?

- ... a critical current that does not decrease with field
- ... a critical current that does not increase at lower fields (to reduce hysteresis, persistent currents)
- ... 1500 A/mm² (just what is needed, nothing more) at high temperatures

HTS: the ideal superconductor?

- ... a critical current that does not decrease with field
- ... a critical current that does not increase at lower fields (to reduce hysteresis, persistent currents)
- ... 1500 A/mm² (just what is needed, nothing more) at high temperatures

[Raffaello et al., The School of Athens, detail, Musei Vaticani (1510)]

... and

Cheap: 5 \$/(kA m) Stress resistent at least up to 200 MPa Available in long (km) lengths

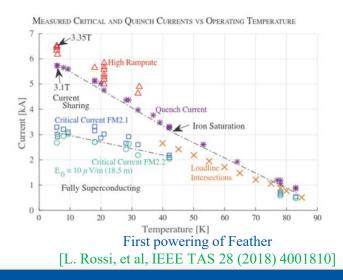
24th September 2024

Three paths for HTS

- BSSCO 2212 (mainly developed in the USA)
 - Available in round strand, dipoles reaching 1.5 T have been done (LBNL)
 - Expensive, complicated manufacturing process (more than Nb_3Sn): reaction at 800 C in 100 bar of O_2
 - No activities foreseen in HFM
- REBCO (strong impluse from fusion investments of order of BCHF)
 - Recently, large reduction of cost, but still one 5-10 larger than what needed in the unfavorable direction, and with limited lengths
 - Available in tape, cable geometries being considered (Roebel, Corc®, Star ®)
 - Hysteresis losses can be a showstopper: the filament is the tape width
 - Workhorse for HFM
 - IBS (strong impulse from China)
 - Critical current is improving (see appendix)
 - Potentially cheaper than REBCO
 - One WP in HFM

The challenge of hysteresis losses

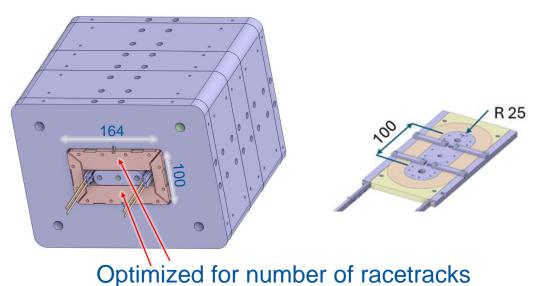
- The larger temperature margin and lower *j* at low field, allows stability with very large filaments in one direction (up to 12 mm)
- Hysteretic losses, that are today critical for the FCC-hh (target of 5 kJ/m is given), can be a showstopper in this case $\sqrt{2 \cdot C \cdot (T T)}$

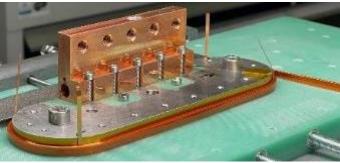

$$\frac{d}{2} < \frac{1}{j_c} \sqrt{\frac{3\gamma C_p \left(T_c - T\right)}{\mu_0}}$$

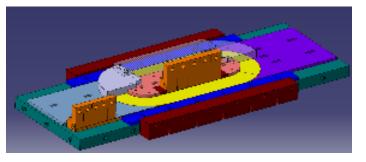
• In case of HTS insert, both common coil and $\cos\theta$ have the cables perpendicular to the field: the ideal is the block, where they are parallel

• Feather magnet tested in 2017, REBCO, block aligned: it reached 4.5 T, but did not prove all accelerator features

[L. Rossi, et al, Instruments 5 (2021)]


• Is REBCO tape a viable conductor for HEP main dipole magnets ? Question still open today




HTS news

- Production line in KIT commissioned (B. Holzapfel et al.) in March 2024
- At CERN, racetrack wound with dielectric insulated (DI) REBCO and went through preliminary tested at 77 K
 - A research line of MI (metal insulated) is also active in HFM (CEA)
 - Remember that all magnets for fusion are NI (non insulated) not good for us
- Then a test at 4.5 K 20 K will be done

[A. Ballarino, et al., HFM TE day https://indico.cern.ch/event/1425262/]

Never forget the specificity of accelerator magnets

- <u>First</u>: An accelerator dipole is not a solenoid !!
 - Field is not parallel to the wire, forces are not perpendicular to the wire, stresses are 50% larger than magnet pressure
- <u>Second</u>: Overall current densities of ~500 A/mm² are a peculiar feature/challenge for accelerator magnets
 - One order of magnitude above HEP detector magnets or fusion magnets

	Overall current density (A/mm ²)	Superconductor current density (A/mm ²)	Ramp	Field in conductor (T)
Tevatron dipole	360	1550	slow	4.7
LHC dipole	360/440	1260/1820	slow	8.6
ATLAS BCT	30	950	very slow	3.9
ITER (TF & CS)	20 to 40	150	very fast	5 to 13
HL-LHC SC link	17	1450	slow	Self field (<1 T)

• <u>Third</u>: magnet operational range is not a single point, but a whole set of currents (from injection to high field)

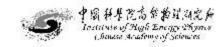
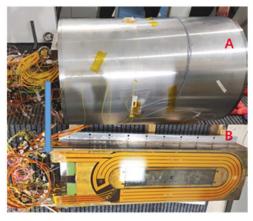

HIGH Field Magnets Programme

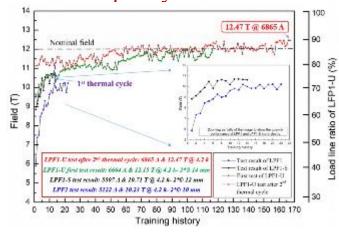
Table of contents

- Guidelines for the program
- Status and results of Nb₃Sn
- HTS hopes and challenges
- News from US and China

SPPC


- Comparison between FCC-hh and SPPC
 - As FCC-hh, SPPC went through a modification of parameters
 - Today it relies on 20 T magnet, with 100 km tunnel, and 125 TeV c.o.m.
 - The 20 T are given by 13 T in Nb_3Sn and 7 T in HTS

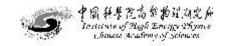
FCC-hh parameters	CDR 2019	2024- Nb ₃ Sn	2024- HTS	SPPC parameters	Nb ₃ Sn (2019)	HTS (2019)	Nb ₃ Sn/HTS (2023)
Dipole field (T)	16.0	14.0	16-20	Dipole field (T)	12.0	20-24	20 (13+7)
Tunnel length (km)	100	90.7	90.7	Tunnel length (km)	100	100	100
Arc length (km)	82.0	76.9	76.9	Arc length (km)	81.8	81.8	81.8
Arc filling factor (adim)	0.80	0.87	0.85	Arc filling factor	0.79	0.79	0.79
Energy c.o.m (TeV)	100	90	100-125	(adim)			
Loadline margin	86%	80%	TBD	Energy c.o.m (TeV)	75	125-150	125



SPPC magnets

- IHEP has selected the common coil design
 - Steps aiming at 20 T increasing field and aperture
 - 2018-2023: LFP1 Nb₃Sn magnet reached 12.5 T in 14 mm aperture
 - Configuration based on flat racetrack, without field quality

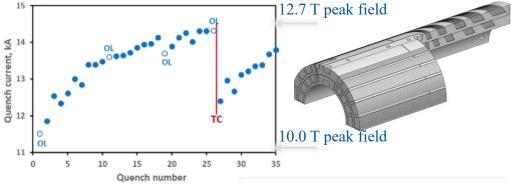
LFP3 magnet [J. Shi, Q. Xu, et al., IEEE TAS 34 (2024) 4701405]

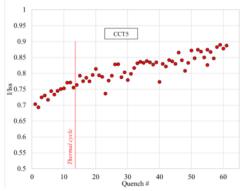

LPF1 training [C. Wang, et al., SUST 36 (2023) 065006]

- LFP3 construction ongoing since two years, aiming at 13 T with Nb₃Sn plus 3 T with HTS
 - Nb₃Sn coils limited at 11 T, HTS reached 3 T, then two coils lost during tests
 - New set of coils being manufactured, test at the end of 2024

SPPC magnets

- The common coil shall contain a part (7 T) in HTS
 - China is investing on IBS since many years solenoids successfully built
 - Considerable progress in the past years, but still far from target
 - HFM also has a WP on IBS development WP2.16, A. Malagoli from CNR SPIN)


Improvement in IBS [see talk by Q. Xu, in Marseille, 2024 https://indico.in2p3.fr/event/20053/]

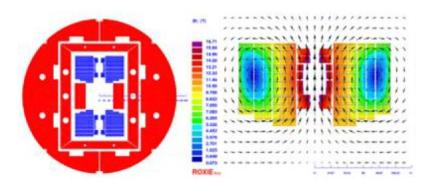


US magnet development program (MDP)

- MDP aims at reaching 20 T with an hybrid magnet
 - To reach 20 T the stress management is mandatory
 - Two paths: CCT and $Cos\theta$

- $\cos\theta$ from FNAL: 12.7 T but in mirror
- CCT from LBNL: 8.5 T in 90 mm aperture

- PSI within the HFM: 10.1 T in 66 mm aperture
 - This path abandoned in favour of a stress managed common coil



Hybrid or all HTS ?

- All-HTS coil open the possibility of 20 K operation, which could consume less energy
 - Beware of drawing « easy » conclusions on sustainability ... it is a very complex computation that is not intuitive
- «Hybrid» makes use of HTS in higher field regions, and of cheaper Nb_3Sn up to 13-15 T
 - This option is being developed in the US by MDP, and in China by IHEP
- HFM has not yet taken any decision on this

Hybrid design for 20 T magnet [P. Ferracin, et al, IEEE TAS 33 (2023) 4002007 and 4LOr1B-01]

Hybrid design for 20 T magnet [Q. Xu, et al, CEPC design report, pg 749]

24th September 2024