Special low-energy runs at FCC-ee: e^+e^- at $\sqrt{s} = 20-80$ GeV

198th FCC-ee Accelerator Design Meeting CERN, 27th Nov. 2024

QCD physics studies with low- $\sqrt{s} e^+e^-$ collisions at FCC-ee

(in preparation) Andrii Verbytskyi^{*}, David d'Enterria[†], Peter Skands[‡], Pier F. Monni[§]

* MPP, Munich, [†] CERN, EP-FCC, Geneva , [‡] Monash Univ., [§] CERN, TH, Geneva

FCC

QCD studies in ee(20-80 GeV) runs

- FCC-ee will enable ultra-precise QCD studies with 10¹², 10⁸, 10⁶ hadronic Z,W Higgs, top decays, covering total hadronic (jet) energies: ≈80–365 (40–180) GeV
- Many QCD studies would benefit from having e⁺e⁻ collisions with hard scale between Q = m_Y ≈ 10 GeV and Q = m_{W,Z} ≈ 80 GeV:
 - Dialing relative size of hard (pQCD), shower (resummation), non-pQCD contribs.:

 $d\sigma \sim Hard(Q_H, Q, m_Q) + Resum(Q_H/Q, Q/m_Q, Q/\Lambda_{QCD}) + NonPert(\Lambda_{QCD}/Q, m_Q/Q)$

- High-precision QCD coupling $\alpha_s(Q)$ extractions over $Q \approx 10-80$ GeV via: R-ratio, event shapes, jet rates, FFs evolution,...
- Multiple new precise QCD observables proposed in the last years to be studied with much better FCC-ee detectors: *Event shapes variables: EE correlators, thrust/sphericity families, angularities,... Jet substructure, Lund Plane: tagging of parton flavour, spin, charge,... Non-pQCD models: Color reconnection, final-state interactions,...*

Limited existing e^+e^- data sets with $\mathcal{O}(10^5)$ evts between B factories and LEP-I:

- Fixed CM energy $\sqrt{s} \approx 12-64$ GeV:
- ISR events at LEP \sqrt{s} \approx 30–85 GeV.

Accelerator	Energy range, GeV	Luminosity, pb^{-1}	Good multihadron
			events, $ imes 10^3$
TRISTAN	50 - 64	900 [<mark>16</mark>]	pprox 110 [15]
PETRA	12 - 47	760 [14]	pprox 200 [14, 17]
PEP	29	315 [18]	144 [18]

QCD studies in ee(20-80 GeV) runs

- FCC-ee will enable ultra-precise QCD studies with 10¹², 10⁸, 10⁶ hadronic Z,W Higgs, top decays, covering total hadronic (jet) energies: ≈80–365 (40–180) GeV
- Many QCD studies would benefit from having e⁺e⁻ collisions with hard scale between Q = m_Y ≈ 10 GeV and Q = m_{W,Z} ≈ 80 GeV:

Limited existing e^+e^- data sets with $\mathcal{O}(10^5)$ evts between B factories and LEP-I:

– Fixed CM energy $\sqrt{s} \approx 12-64$ GeV:

– ISR events at LEP \sqrt{s} \approx 30–85 GeV.

Accelerator	Energy range, GeV	Luminosity, pb^{-1}	Good multihadron
			events, $ imes 10^3$
TRISTAN	50 - 64	900 [<mark>16</mark>]	≈ 110 [15]
PETRA	12 - 47	760 [14]	pprox 200 [14, 17]
PEP	29	315 [18]	144 [18]

FUTURE

CIRCULAR COLLIDER

Achieving ee(20–80 GeV) at FCC-ee

There are two non-exclusive means to obtain low- \sqrt{s} hadronic data at FCC-ee:

1) Run at fixed CM energies (above 40-GeV booster injection energy) over $\sqrt{s} = 40-80$ GeV (assuming simple/plausible Z-pole setup plus $\mathcal{L} \propto \sqrt{s}$ scaling):

Table 2: Time needed to collect 10^9 hadronic events in dedicated runs at given CM energy assuming instant luminosity \mathscr{L} is the same as at Z peak and is equal to $4.6 \text{ pb}^{-1} s^{-1}$ and assuming scaling $\mathscr{L} \propto E$ [13].

		\sqrt{s} (GeV) Time (days) to collect 10 ⁹ hadronic			
Beam energy	$\sqrt{3}$ (GeV)	$\mathscr{L} = \mathscr{L}(91 \text{ GeV})$	$\mathcal{L} \propto E$		
accuracy/precision	80	6	7		
	70	13	17		
within $\mathcal{O}(0.1 \text{ GeV})$	60	15	22		
should be enough	50	12	22		
	40	8	18		

Max. ~1 month? needed (incl. ~1 week? setup time) to collect $\mathcal{O}(10^9)$ hadronic evts. per \sqrt{s}

2) Analyse ISR events over $\sqrt{s} \approx 20-80$ GeV profiting from huge \mathcal{L}_{int} at Z-pole run:

Table 1: Properties of the hadronic data samples collected from ISR/FSR by the L3 experiment [10] and estimated number of events that could be similarly obtained at FCC-ee with the expected 100 ab⁻¹ at the Z pole.

Туре	$\sqrt{s'}$ (GeV)	$\langle \sqrt{s}' angle$ (GeV)	Lumi (pb $^{-1}$)	Selection Eff. (%)	Purity (%)	# Sel. Evts	FCC-ee, estimation
Reduced	30–50	41.4	142.4	48.3	68.4	1247	$0.9 imes 10^9$
Centre-	50–60	55.3	142.4	41.0	78.0	1047	$0.7 imes 10^{9}$
of-	60–70	65.4	142.4	35.2	86.0	1575	1.1×10^{9}
Mass	70–80	75.7	142.4	29.9	89.0	2938	$2.1 imes 10^{9}$
Energy	80–84	82.3	142.4	27.4	90.5	2091	$1.5 imes 10^{9}$
	84–86	85.1	142.4	27.5	87.0	1607	$1.1 imes 10^9$
Z pole	91.2	91.2	8.3	98.5	99.8	248 100	3.1×10^{12}

O(10⁹) ISR events per √s' (scaling from LEP studies)

FUTURE

ISR events at the Z-pole run

- Selection methods of hadronic final-state (HFS) events in ISR $e^+e^- \rightarrow q\overline{q}(\gamma)$
 - a) Wide-angle high-E γ emitted from SR/ISR evts. Reconstruct HFS kinematics.
 - b) Collinear ISR γ lost inside beampipe. Reconstruct \sqrt{s} from vis. HFS kinematics.
 - c) $Z \rightarrow q \overline{q}$ with misreconstructed m_{vis} .
- Distributions of visible HFS mass for events passing the 3 selections (Sherpa 3.0.1 events with IDEA detector DELPHES card):

FUTURE

CIRCULAR COLLIDER

Summary: low-energy FCC-ee runs

Summary:

- There are unique and interesting QCD physics opportunities at FCC-ee with $\mathcal{O}(10^9)$ hadronic events over $\sqrt{s} = 20-80$ GeV.
- Dedicated runs with $\sqrt{s} = 40-80$ GeV could take ~1 month per \sqrt{s} point, but require real accelerator studies:

Do you see any showstopper from the FCC-ee machine point-of-view for such runs? Is the $\mathcal{L} \propto \sqrt{s}$ scaling reasonable? Is it improvable? Is the 1-month (incl. beam setup) time reasonable? Can one "easily" define accelerator parameters for such collisions? ...?

- Studies are being developed to quantify what fraction of the physics accessible with such low- \sqrt{s} runs can be realized exploiting ISR events from the high-luminosity Z-pole run (which would automatically scan the whole hadronic mass range: $\sqrt{s} = 20-60$ GeV).
- PS: We plan to submit a EU Strategy Particle Phys. Update document.

Backup slides