

Angular dependence of the critical current of high performance HTS tapes from various manufacturers

December 12th, 2024

Romain Babouche, Damien Zurmuehle, Carmine Senatore Department of Quantum Matter Physics, University of Geneva, Switzerland

Tatsunori Okada, Yuji Tsuchiya, Satoshi Awaji High Field Laboratory for Superconducting Materials, University of Tohoku, Japan

Outline

- 1. Context
- 2. Measurement and samples overview
- 3. Comparison of the performances with angular dependence from various manufacturers
- 4. Next steps and conclusions

1 – Context

Anisotropy of tape design \Leftrightarrow tape orientation with respect to \vec{B}

Ly need for a comprehensive dataset of $I_c(B, T, \theta)$ for manufacturers, magnet designers and simulation inputs

Pinning (intrinsic and/or artificial) is a way to improve tape performances.

Nowadays, magnet designs are based on the worst $B(\theta)$ configuration near coil ends

All following measurements using this convention 90° 0° 0° B Sc layer

 I_c performances of current HTS (especially \vec{B} //) ask for setup and/or sample adaptations

, microbridge fabrication

[1] V. Selvamanickam et al, IEEE TAS **21** (2011) 3 10.1109/TASC.2011.2107310

1 – Context

Anisotropy of tape design \Leftrightarrow tape orientation with respect to \overrightarrow{B}

by need for a comprehensive dataset of $I_c(B, T, \theta)$ for manufacturers, magnet designers and simulation inputs

Pinning (intrinsic and/or artificial) is a way to improve tape performances.

Nowadays, magnet designs are based on the worst $B(\theta)$ configuration near coil ends

All following measurements using this convention 90° В Sc layer virgin tape @77k s.f 1.0 - SuperOx #3155 Normalized critical current 60 90 80 80 Fuiikura FESC-SCH02 SuperPower SCS4050-HM $I_C \propto W_{bridge}$ 0.0 0.0 0,2 0,4 0.6 0,8 1,0 Normalized bridge width

1. Context

2. Measurement and samples overview

3. Comparison of the performances with angular dependence from various manufacturers

4. Next steps and conclusions

2 experimental campaigns conducted in 2024

In Geneva: $I_c(B, \theta, T)$ at specific angles

- ~6+ hours of measurement per sample
- 1 magnet used: 21T (measurements limited at 19T)
- At 3 temperatures (40K, 20K, 4.2K)
- Current up to 2000 A

In Sendai: full $I_c(B, \theta, T)$ over -20°; 115°

- ~15+ hours of measurement per sample
- 2 magnets used: 15T CSM and 25T CSM (measurements limited at 24T)
- At 6 temperatures (77K, 55K, 40K, 20K, 10K, 5K)
- Current up to 20 A

- + High input current
- + Fixed angle
- New sample length at each angle

- + Same sample length along the measurement
- + Wide range of temperatures and fields
- Low input current

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

In Geneva $I_c(B, \theta, T)$ measured at specific angles with dedicated adaptors **∕ 2000 A ∕** 40 K **∕** 19 T A 45 to 150 mm long sample (w=2 to 12 mm) → 0°, 5°, 7.5°, 10°, 15°, 30°, 80°, 90° $I_c(B, \theta, T)$ measured on samples w/ and w/o bridges

30° 15 80° 90°

7.'

0°

10°

C.Barth et al, IEEE TAS **28** (2018) 4 <u>10.1109/TASC.2018.2794199</u>

> FACULTÉ DES SCIENCES Department of Quantum Matter Physics

DE GENÈVE

 $I_c(B, \theta, T)$ continuously measured at desired angle and step \nearrow 20 A \Rightarrow 77 K \Rightarrow 15 T/24 T \Rightarrow 12 mm long sample (w=2 to 4 mm) \Rightarrow 20 angles over -20°; 115° \Rightarrow on patterned tapes

Tohoku University, HFLSM. 25T CSM, 15T CSM superconducting magnets

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

Bridges manufactured in Sendai by Yuji Tsuchiya using laser ablation method

Following I_c are expressed in I_c /width

Samples procured for Muon Collider collaboration Characterizations on other samples published in [1]

	Sample width	REBCO + pinning centers	REBCO thickness	Hastelloy thickness	Cu stabilizer (per side)	Nom. bridge width	Nom. bridge length	<i>I_c</i> (77K,s.f.)
Fujikura FESC SCH04	4mm	EuBCO + BHO nanocolumns	2.5 µm	50 µm	10 µm	30 µm	1 <i>mm</i>	585 A/cm
Faraday / SuperOx #3155	4mm	YBCO + Y_2O_3 particles	2.5 μm	38 µm	5 μm	30 µm	1 <i>mm</i>	420 A/cm
SuperPower SCS4050 HM	4mm	YBCO + BZO nanocolumns	1.6 µm	50 µm	$10~\mu m$	30 µm	1 <i>mm</i>	148 A/cm
Shanghai Superconductor Technology YP-506	4 mm	EuBCO + BHO nanocolumns	2 µm	50 µm	10 µm	30 µm	1 <i>mm</i>	428 A/cm

[1] C. Senatore et al, SuST 37 (2024) 115013

10.1088/1361-6668/ad7f95

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

Samples procured for Muon Collider collaboration Characterizations on other samples published in [1]

	Sample width	REBCO + pinning centers	REBCO thickness	Hastelloy thickness	Cu stabilizer (per side)	Nom. bridge width	Nom. bridge length	<i>I_c</i> (77K,s.f.)
Fujikura FESC SCH04	4 <i>mm</i>	EuBCO + BHO nanocolumns	2.5 μm	50 µm	10 µm	30 µm	1 <i>mm</i>	585 A/cm
Faraday / SuperOx #3155	4 mm	YBCO + Y_2O_3 particles	2.5 μm	38 µm	5 μm	30 µm	1 <i>mm</i>	420 A/cm
SuperPower SCS4050 HM	4 mm	YBCO + BZO nanocolumns	1.6 µm	50 µm	10 µm	30 µm	1 <i>mm</i>	148 A/cm
Shanghai Superconductor Technology YP-506	4 mm	EuBCO + BHO nanocolumns	2 µm	50 µm	10 µm	30 µm	1 <i>mm</i>	428 A/cm

[1] C. Senatore et al, SuST **37** (2024) 115013

10.1088/1361-6668/ad7f95

Samples procured for Muon Collider collaboration Characterizations on other samples published in [1]

	Sample width	REBCO + pinning centers	REBCO thickness	Hastelloy thickness	Cu stabilizer (per side)	Nom. bridge width	Nom. bridge length	<i>I_c</i> (77K,s.f.)
Fujikura FESC SCH04	4 <i>mm</i>	EuBCO + BHO nanocolumns	2.5 μm	50 µm	10 µm	30 µm	1 <i>mm</i>	585 A/cm
Ferredey /			various	pinning cente	ers			
SuperOx #3155	4 <i>mm</i>	YBCO + Y ₂ O ₃ particles	2.5 μm	38 µm	5 µm	30 µm	1 <i>mm</i>	420 A/cm
					Or	otimized for HI	- applications	
SuperPower SCS4050 HM	4 mm	YBCO + BZO nanocolumns	1.6 µm	50 µm	$10 \ \mu m$	30 µm	1 mm	148 A/cm
Shanghai Superconductor Technology YP-506	4 <i>mm</i>	EuBCO + BHO nanocolumns	2 µm	$50\mu m$	10 µm	30 µm	1 <i>mm</i>	428 A/cm

[1] C. Senatore et al, SuST **37** (2024) 115013

10.1088/1361-6668/ad7f95

Samples procured for Muon Collider collaboration Characterizations on other samples published in [1]

	Sample width	REBCO + pinning centers	REBCO thickness	Hastelloy thickness	Cu stabilizer (per side)	Nom. bridge width	Nom. bridge length	I _c (77K,s.f.)
Fujikura FESC SCH04	4 <i>mm</i>	EuBCO + BHO nanocolumns	2.5 µm	50 µm	10 µm	30 µm	1 <i>mm</i>	585 A/cm
Faraday / SuperOx #3155	4 <i>mm</i>	YBCO + Y ₂ O ₃ particles	2.5 μm	38 µm	5 μm	30 µm	1 <i>mm</i>	420 A/cm
SuperPower SCS4050 HM	4 <i>mm</i>	YBCO + BZO nanocolumns	1.6 μm	50 μm	10 μm	30 µm	1 <i>mm</i>	148 A/cm
Shanghai Superconductor Technology YP-506	4 mm	EuBCO + BHO nanocolumns	2 µm	50 µm	10 µm	30 µm	1 mm	428 A/cm

[1] C. Senatore et al, SuST 37 (2024) 115013

10.1088/1361-6668/ad7f95

Angular dependence measured over -20°; 115° in

		T = 77K	T = 55K	Т = 40К	T = 20K	T = 10K	T = 5K
24 T CSM magnet	Fujikura FESC SCH04			1 T	ET	7 T	
	Shanghai Superconductor Technology YP-506	1 T 5 T 10 T	1 T 1 T 5 T 10 T 10 T 16 T	5 T 10 T 12 T 16 T 19 T	10 T 10 T 12 T 12 T 16 T 16 T 19 T 19 T 24 T 24 T	10 T 12 T 16 T 19 T	
	SuperPower SCS4050 HM					24 T	24 1
15 T CSM magnet	Faraday / SuperOx #3155	1 T 5 T 10 T	1 T 5 T 10 T 15 T	1 T 5 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T

Angular dependence measured over -20°; 115° in

40K, 20K, 5K at UNIGE up to 19 T

		T = 77K	T = 55K	Т = 40К	Т = 20К	T = 10K	T = 5K
24 T CSM magnet	Fujikura FESC SCH04 Shanghai Superconductor Technology YP-506	1 T 5 T 10 T	1 T 1 T 5 T 5 T 10 T 10 T 12 T 16 T		5 T 10 T 12 T 16 T 19 T	7 T 10 T 12 T 16 T 19 T	10 T 12 T 16 T 19 T 24 T
	SuperPower SCS4050 HM			19 T	24 T	24 T	
15 T CSM magnet	Faraday / SuperOx #3155	1 T 5 T 10 T	1 T 5 T 10 T 15 T	1 T 5 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T

Angular dependence measured over -20°; 115° in

Focus on 40K, 20K, 5K

		T = 77K	T = 55K	Т = 40К	T = 20K	T = 10K	T = 5K
24 T CSM magnet	Fujikura FESC SCH04			1 T		7 T	
	Shanghai Superconductor Technology YP-506	1 T 5 T 10 T	1 T 5 T 10 T 12 T 16 T	5 T 10 T 12 T 16 T	10 T 12 T 16 T 19 T	10 T 12 T 16 T 19 T	10 T 12 T 16 T 19 T
	SuperPower SCS4050 HM			19 T	24 T	24 T	24 1
15 T CSM magnet	Faraday / SuperOx #3155	1 T 5 T 10 T	1 T 5 T 10 T 15 T	1 T 5 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T	5 T 8 T 10 T 12 T 15 T

1. Context

2. Measurement and samples overview

3. Comparison of the performances with angular dependence from various manufacturers

4. Next steps and conclusions

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

Full angular dependence over -20°; 115° measured in Sendai

FACULTÉ DES SCIENCES **Department of Quantum Matter Physics**

17

N^o

Angle with ab plane [°deg]

FACULTÉ DES SCIENCES **Department of Quantum Matter Physics**

Angle with ab plane [°deg]

Angle with ab plane [°deg]

N^o

Full angular dependence over -20°; 115° measured in Sendai

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

В

B

Full angular dependence over -20°; 115° measured in Sendai

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

В

B

Comparison of the angular dependence measured from fixed angles and in-field rotating angles

Example: $oldsymbol{ heta}=\mathbf{0}^\circ$ setup configurations in

vs in

Good agreement between I_c measured in Geneva and Sendai

Seems to validate

 \rightarrow the microbridge approach

 \rightarrow the benefic crosscheck between fixed and in-field rotating angles

SuperPower SCS4050 HM

SuperPower'

Comparison of the angular dependence measured from fixed angles and in-field rotating angles

Example: $oldsymbol{ heta} = \mathbf{0}^\circ$ setup configurations in

Discrepancies between I_c measured in Geneva and Sendai

Raise questions about

 \rightarrow measurements on full width tapes vs patterned tapes

Differences exist and may be related to I_c distribution across tape width (SuperPower and SuperOx)

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

3 – Challenges

Some limitations and challenges remain with the current methods

- Only specific angles in Geneva
- Sample magnetization \rightarrow angle uncertainty in Sendai
- Current limited to 20 A in Sendai
 - \rightarrow micro-bridges fabrication ${\sim}30~\mu m$ \rightarrow tape delamination
- Slit location from 12 mm to 4 mm

SuperOX FARADAY FACTORY #3155 Critical delamination: (10K, 15T) – (5K, 15T)

Fujikura FESC SCH04 Critical delamination: (20K, 19T) – (10K, 12T)

FACULTÉ DES SCIENCES

Department of Quantum Matter Physics

How much $I_c(B, \theta, T)$ varies accross the tape width ?

FACULTÉ DES SCIENCES **Department of Quantum Matter Physics**

Anisotropy factor is defined as $\Gamma = I_c^{\prime\prime}/I_c^{\perp}$ [1]

[1] C. Senatore et al, SuST 37 (2024) 115013 10.1088/1361-6668/ad7f95

-20

1000

100

-40

l_c/width [A/cm]

FACULTÉ DES SCIENCES **Department of Quantum Matter Physics**

DE GENÈVE

3 – Pinning force

The pinning force is defined as

$$F_{p}(B,T) = I_{c}(B,T) \times B$$

and fitted using Dew-Hughes scaling [2]

$$F_{p}(B,T) \propto \left(\frac{B}{B_{peak}}\right)^{p} \left(1 - \frac{B}{B_{peak}}\right)^{q}$$

Various B_{peak} values at a given $T \Leftrightarrow$ various pinning landscapes

The observed scaling behavior (when $B \perp$) of the pinning force implies that there is an analytical description of $I_c(B,T)$ holding over a wide range of temperatures and fields [1]

[1] C. Senatore et al, SuST **37** (2024) 115013 <u>10.1088/1361-6668/ad7f95</u> [2] Dew-Hughes, Phil Mag 30 (1974) 293-305 <u>10.1080/14786439808206556</u>

3 – Comparison of the performance: non-Cu J_c

1. Context

- 2. Measurement and samples overview
- 3. Comparison of the performances with angular dependence from various manufacturers

4. Next steps and conclusions

4 – New $I_c(B, \theta, T)$ probe development

Objective: combine the best of current setups

combine fixed and in-field rotating angles measurements

Block schematic of the probe:

 \rightarrow Easy mounting w/o soldering \rightarrow Hall probe sensor for calibration

Rotator, sample

4 – Conclusion

- Strong performance variations over the -20°; 115° range between the different manufacturers.
 → Is it possible to link these variations to the pinning landscape ?
- These measurements may offer a valuable dataset of $I_c(B, \theta, T)$ from various high performance HTS for magnet designers and manufacturers.
- Relevancy of measuring $I_c(B, \theta, T)$ with different setups and methods
 - \rightarrow However, how much $I_c(B, \theta, T)$ varies across the tape width ?
 - \rightarrow How to mitigate delamination ?
- New $I_c(B, \theta, T)$ probe under development at the University of Geneva to measure patterned HTS tapes up to 200 A with sample width from 2 to 4 mm.

DOONP Department of Quantum Matter Physics

Thank you for your attention

Appendix

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

Angle with ab plane [°deg]

-20

0 20 40 60 80 100

-40

120 140

160

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

0 20 40 60 80 100

Angle with ab plane [°deg]

100

-40 -20

Angle with ab plane [°deg]

120 140 160

-40 -20

0 20 40 60 80 100

120 140

3 – Angular dependence

On the 25 T CSM magnet

On the 15 T CSM magnet

FACULTÉ DES SCIENCES Department of Quantum Matter Physics

IINIVERSITÉ

DE GENÈVE