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SCATTERING AMPLITUDES: FROM COLLIDER PHYSICS TO GEOMETRY
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� = 22.5 + 4.7 � 3.4 + 6.6 � 5.5 fb (data)
NLO QCD + EW (theory) 140 EPJC 83 (2023) 496

� = 0.55 ± 0.14 + 0.15 � 0.13 pb (data)
Sherpa 2.2.2 (theory) 79.8 PLB 798 (2019) 134913

� = 0.82 ± 0.01 ± 0.08 pb (data)
NLO QCD (theory) 139 PRL 129 (2022) 061803

� = 176 + 52 � 48 ± 24 fb (data)
HELAC-NLO (theory) 20.3 JHEP 11, 172 (2015)

� = 860 ± 40 ± 40 fb (data)
NLO + NNLL (theory) 140 ATLAS-CONF-2023-065

� = 369 + 86 � 79 ± 44 fb (data)
MCFM (theory) 20.3 JHEP 11, 172 (2015)

� = 890 ± 50 ± 70 fb (data)
NNLOQCD + NLOEW (theory) 140 ATLAS-CONF-2023-019

� = 4.8 ± 0.8 + 1.6 � 1.3 pb (data)
NLO+NNL (theory) 20.3 PLB 756 (2016) 228-246

� = 8.2 ± 0.6 + 3.4 � 2.8 pb (data)
NLO+NNL (theory) 140 JHEP 06 (2023) 191

� = 6.7 ± 0.7 + 0.5 � 0.4 pb (data)
NNLO (theory) 4.6 JHEP 03, 128 (2013)

PLB 735 (2014) 311

� = 7.3 ± 0.4 + 0.4 � 0.3 pb (data)
NNLO (theory) 20.3 JHEP 01, 099 (2017)

� = 17.3 ± 0.6 ± 0.8 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 PRD 97 (2018) 032005

� = 16.9 ± 0.7 ± 0.7 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory) 29.0 ATLAS-CONF-2023-062

� = 19 + 1.4 � 1.3 ± 1 pb (data)
MATRIX (NNLO) (theory) 4.6 EPJC 72 (2012) 2173

� = 24.3 ± 0.6 ± 0.9 pb (data)
MATRIX (NNLO) (theory) 20.3 PRD 93, 092004 (2016)

� = 51 ± 0.8 ± 2.3 pb (data)
MATRIX (NNLO) (theory) 36.1 EPJC 79 (2019) 535

� = 51.9 ± 2 ± 4.4 pb (data)
NNLO (theory) 4.6 PRD 87 (2013) 112001

PRL 113 (2014) 212001

� = 68.2 ± 1.2 ± 4.6 pb (data)
NNLO (theory) 20.3 PLB 763, 114 (2016)

� = 130.04 ± 1.7 ± 10.6 pb (data)
NNLO (theory) 36.1 EPJC 79 (2019) 884

� = 22.1 + 6.7 � 5.3 + 3.3 � 2.7 pb (data)
LHC-HXSWG YR4 (theory) 4.5 EPJC 76 (2016) 6

� = 27.7 ± 3 + 2.3 � 1.9 pb (data)
LHC-HXSWG YR4 (theory) 20.3 EPJC 76 (2016) 6

� = 55.5 ± 3.2 + 2.4 � 2.2 pb (data)
LHC-HXSWG YR4 (theory) 139 JHEP 05 (2023) 028

� = 58.2 ± 7.5 ± 4.5 pb (data)
LHC-HXSWG YR4 (theory) 31.4 arXiv:2306.11379

� = 16.8 ± 2.9 ± 3.9 pb (data)
NLO+NLL (theory) 2.0 PLB 716, 142-159 (2012)

� = 23 ± 1.3 + 3.4 � 3.7 pb (data)
NLO+NLL (theory) 20.3 JHEP 01, 064 (2016)

� = 94 ± 10 + 28 � 23 pb (data)
NLO+NNLL (theory) 3.2 JHEP 01 (2018) 63

� = 27.1 + 4.4 � 4.1 + 4.4 � 3.7 pb (data)
MCFM (NNLO) (theory) 0.3 arXiv:2310.01518

� = 68 ± 2 ± 8 pb (data)
MCFM (NNLO) (theory) 4.6 PRD 90, 112006 (2014)

� = 89.6 ± 1.7 + 7.2 � 6.4 pb (data)
MCFM (NNLO) (theory) 20.3 EPJC 77 (2017) 531

� = 221 ± 1 ± 13 pb (data)
MCFM (NNLO) (theory) 140 ATLAS-CONF-2023-026

� = 67.5 ± 0.9 ± 2.6 pb (data)
top++ NNLO+NNLL (theory) 0.3 JHEP 06 (2023) 138

� = 182.9 ± 3.1 ± 6.4 pb (data)
top++ NNLO+NNLL (theory) 4.6 EPJC 74 (2014) 3109

� = 242.9 ± 1.7 ± 8.6 pb (data)
top++ NNLO+NNLL (theory) 20.2 EPJC 74 (2014) 3109

� = 829 ± 1 ± 15.4 pb (data)
top++ NNLO+NNLL (theory) 140 JHEP 07 (2023) 141

� = 850 ± 3 ± 27 pb (data)
top++ NNLO+NNLL (theory) 29.0 arXiv:2308.09529

� = 29.53 ± 0.03 ± 0.77 nb (data)
DYNNLO+CT14 NNLO (theory) 4.6 JHEP 02 (2017) 117

� = 34.24 ± 0.03 ± 0.92 nb (data)
DYNNLO+CT14 NNLO (theory) 20.2 JHEP 02 (2017) 117

� = 58.43 ± 0.03 ± 1.66 nb (data)
DYNNLO+CT14 NNLO (theory) 3.2 JHEP 02 (2017) 117

� = 61.65 ± 0.059 ± 2.91 nb (data)
NNLO(QCD)+NLO(EW) (theory) 1.2 ATLAS-CONF-2022-070

� = 98.71 ± 0.028 ± 2.191 nb (data)
DYNNLO + CT14NNLO (theory) 4.6 EPJC 77 (2017) 367

� = 112.69 ± 3.1 nb (data)
DYNNLO + CT14NNLO (theory) 20.2 EPJC 79 (2019) 760

� = 190.1 ± 0.2 ± 6.4 nb (data)
DYNNLO + CT14NNLO (theory) 0.081 PLB 759 (2016) 601

� = 95.35 ± 0.38 ± 1.3 mb (data)
COMPETE HPR1R2 (theory) 8⇥10�8 Nucl. Phys. B (2014) 486

� = 96.07 ± 0.18 ± 0.91 mb (data)
COMPETE HPR1R2 (theory) 50⇥10�8 PLB 761 (2016) 158

� = 104.7 ± 0.22 ± 1.07 mb (data)
COMPETE HPR1R2 (theory) 34⇥10�8 EPJC 83 (2023) 441
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Standard Model Total Production Cross Section Measurements

Status: October 2023

ATLAS Preliminary
p
s = 5,7,8,13,13.6 TeV

Figure 2: Summary of several Standard Model total production cross-section measurements, corrected for branching
fractions, compared to the corresponding theoretical expectations and ratio with respect to theory. The associated
references can also be found in Table 1(b).
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(a)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

tZj 13 139 � = 97 ± 13 ± 7 fb � = 102 + 5 � 2 fb (Madgraph5 + aMCNLO (NLO)) JHEP 07 (2020) 124
ts�chan 8 20.3 � = 4.8 ± 0.8 + 1.6 � 1.3 pb � = 5.61 ± 0.22 pb (NLO+NNL) PLB 756 (2016) 228-246
ts�chan 13 140 � = 8.2 ± 0.6 + 3.4 � 2.8 pb � = 10.32 + 0.4 � 0.36 pb (NLO+NNL) JHEP 06 (2023) 191
Wt 7 2.0 � = 16.8 ± 2.9 ± 3.9 pb � = 17.1 ± 0.8 pb (NLO+NLL) PLB 716, 142-159 (2012)
Wt 8 20.3 � = 23 ± 1.3 + 3.4 � 3.7 pb � = 24.4 + 1.1 � 1 pb (NLO+NLL) JHEP 01, 064 (2016)
Wt 13 3.2 � = 94 ± 10 + 28 � 23 pb � = 79.3 + 2.9 � 2.8 pb (NLO+NNLL) JHEP 01 (2018) 63
tt�chan 5 0.3 � = 27.1 + 4.4 � 4.1 + 4.4 � 3.7 pb � = 30.3 + 0.7 � 0.5 pb (MCFM (NNLO) ) arXiv:2310.01518
tt�chan 7 4.6 � = 68 ± 2 ± 8 pb � = 63.7 + 1.4 � 0.8 pb (MCFM (NNLO)) PRD 90, 112006 (2014)
tt�chan 8 20.3 � = 89.6 ± 1.7 + 7.2 � 6.4 pb � = 84.3 + 1.7 � 1.2 pb (MCFM (NNLO)) EPJC 77 (2017) 531
tt�chan 13 140 � = 221 ± 1 ± 13 pb � = 214.2 + 4.1 � 2.6 pb (MCFM (NNLO) ) ATLAS-CONF-2023-026
t̄t [njet � 8] 7 4.7 � = 0.0425 ± 0.004 ± 0.012 pb JHEP 01, 020 (2015)
t̄t [njet = 7] 7 4.7 � = 0.161 ± 0.007 ± 0.033 pb JHEP 01, 020 (2015)
t̄t [njet = 6] 7 4.7 � = 0.611 ± 0.024 ± 0.083 pb JHEP 01, 020 (2015)
t̄t [njet = 5] 7 4.7 � = 1.72 ± 0.04 ± 0.16 pb JHEP 01, 020 (2015)
t̄t [njet = 4] 7 4.7 � = 3.76 ± 0.05 ± 0.27 pb JHEP 01, 020 (2015)
t̄t 5 0.3 � = 67.5 ± 0.9 ± 2.6 pb � = 68.2 + 5.2 � 5.3 pb (top++ NNLO+NNLL) JHEP 06 (2023) 138
t̄t 7 4.6 � = 182.9 ± 3.1 ± 6.4 pb � = 177 + 10 � 11 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 8 20.2 � = 242.9 ± 1.7 ± 8.6 pb � = 252.9 + 13.3 � 14.5 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 13 140 � = 829 ± 1 ± 15.4 pb � = 832 + 46.4 � 50.9 pb (top++ NNLO+NNLL) JHEP 07 (2023) 141
t̄t 13.6 29.0 � = 850 ± 3 ± 27 pb � = 924 + 32 � 40 pb (top++ NNLO+NNLL) arXiv:2308.09529
Z [njet � 7] 7 4.6 � = 0.0062 ± 0.001456 ± 0.00214 pb JHEP 07, 032 (2013)
Z [njet � 6] 7 4.6 � = 0.0253 ± 0.00265 ± 0.00595 pb JHEP 07, 032 (2013)
Z [njet � 6] 13 139 � = 0.000338 ± 5.3e � 05 ± 5.5e � 05 pb� = 0.000511 + 0.00034 � 0.00019 pb (Sherpa (NLO QCD+ NLO EW corr)) ATLAS-CONF-2021-033
Z [njet � 5] 7 4.6 � = 0.135 ± 0.006 ± 0.027 pb JHEP 07, 032 (2013)
Z [njet = 5] 13 139 � = 0.00305 ± 0.00017 ± 0.00025 pb � = 0.00326 + 0.0022 � 0.0012 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 4] 7 4.6 � = 0.65 ± 0.01 ± 0.11 pb � = 0.646 ± 0.031 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 4] 13 139 � = 0.0226 ± 0.0004 ± 0.0015 pb � = 0.0234 + 0.015 � 0.0083 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 3] 7 4.6 � = 3.09 ± 0.03 ± 0.4 pb � = 3.1 ± 0.14 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 3] 13 139 � = 0.1995 ± 0.0013 ± 0.0096 pb � = 0.186 + 0.11 � 0.058 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 2] 7 4.6 � = 15.05 ± 0.06 ± 1.51 pb � = 14.9 ± 0.4 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 2] 13 139 � = 1.941 ± 0.004 ± 0.061 pb � = 1.807 + 0.69 � 0.39 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 1] 7 4.6 � = 68.84 ± 0.13 ± 5.15 pb � = 64.8 ± 3.1 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 1] 13 139 � = 11.74 ± 0.01 ± 0.33 pb � = 11.17 + 2.2 � 1.3 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
�fid(Z! ee, µµ) 5 0.025 � = 374.5 ± 3.4 ± 7.9 pb � = 356 + 9 � 10 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(Z! ee, µµ) 7 4.6 � = 451 ± 0.4 ± 8.8 pb � = 432 + 12.5 � 13.8 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 8 20.2 � = 506 ± 0.2 ± 11 pb � = 486 + 13.6 � 16 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13 3.2 � = 776 ± 1 ± 18 pb � = 744 + 22 � 28 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13.6 29.0 � = 744 ± 11 ± 11 pb � = 746 + 21 � 22 pb (DYNNLO+CT14 NNLO) arXiv:2308.09529
W [njet � 7] 7 4.6 � = 0.041 ± 0.0068 ± 0.031 pb EPJC 75 (2015) 82
W [njet � 7] 8 20.2 � = 0.041 ± 0.003 ± 0.032 pb � = 0.052 + 0.007 � 0.02 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 6] 7 4.6 � = 0.199 ± 0.019 ± 0.11 pb EPJC 75 (2015) 82
W [njet � 6] 8 20.2 � = 0.22 ± 0.006 ± 0.121 pb � = 0.239 + 0.03 � 0.084 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 5] 7 4.6 � = 0.877 ± 0.032 ± 0.301 pb � = 0.933 ± 0.027 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 5] 8 20.2 � = 1.107 ± 0.013 ± 0.423 pb � = 1.1 + 0.13 � 0.38 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 4] 7 4.6 � = 4.241 ± 0.056 ± 0.885 pb � = 4.67 ± 0.06 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 4] 8 20.2 � = 5.47 ± 0.03 ± 1.47 pb � = 5 + 0.5 � 1.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 3] 7 4.6 � = 21.82 ± 0.1 ± 3.23 pb � = 23.47 ± 0.22 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 3] 8 20.2 � = 26.38 ± 0.06 ± 5.34 pb � = 23.6 + 1.3 � 5 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 2] 7 4.6 � = 111.7 ± 0.2 ± 12.2 pb � = 111.98 ± 0.44 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 2] 8 20.2 � = 128.35 ± 0.12 ± 20.39 pb � = 126.5 + 2.1 � 14.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 1] 7 4.6 � = 493.8 ± 0.5 ± 45.1 pb � = 474.22 ± 0.84 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 1] 8 20.2 � = 564.71 ± 0.24 ± 72.13 pb � = 584 + 8 � 37 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
�fid(W! e⌫, µ⌫) 5 0.025 � = 3.667 ± 0.016 ± 0.084 nb � = 3.58 ± 0.11 nb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(W! e⌫, µ⌫) 7 4.6 � = 4.911 ± 0.001 ± 0.092 nb � = 4.777 + 0.12 � 0.14 nb (DYNNLO + CT14NNLO) EPJC 77 (2017) 367
�fid(W! e⌫, µ⌫) 8 20.2 � = 5247 ± 0.6 ± 111 pb � = 5120 ± 142 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 760
�fid(W! e⌫, µ⌫) 13 0.081 � = 8.03 ± 0.01 ± 0.23 nb � = 7.82 + 0.26 � 0.3 nb (DYNNLO + CT14NNLO) PLB 759 (2016) 601
� [njet � 3] 8 20.2 � = 8.7 ± 0.02 ± 0.8 pb � = 9.5 + 0.9 � 1.2 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 2] 8 20.2 � = 30.4 ± 0.04 ± 1.8 pb � = 29.2 + 2.8 � 2.7 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 8 20.2 � = 134 ± 0.1 ± 4 pb � = 128 + 11 � 9 pb (JETPHOX (NLO)) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 13 3.2 � = 300 ± 0.4 ± 12 pb � = 319 + 55 � 46 pb (SHERPA (NLO)) PLB 780 (2018) 578
� 7 4.6 � = 359 ± 3 + 22 � 16 pb � = 308 ± 40 pb (JETPHOX (NLO)) PRD 89 (2014) 052004
� 8 20.2 � = 56.8 ± 0.1 + 5.8 � 5.6 nb � = 52.2 ± 7 nb (PETER (NLO+N3LL)) JHEP 06 (2016) 005
� 13 3.2 � = 399 ± 0.4 ± 16 pb � = 352 + 36 � 30 pb (JETPHOX+MMHT2014 (NLO)) PLB 2017 04 072
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 7 4.5 � = 86.87 ± 0.26 + 7.56 � 7.2 nb � = 86.9 + 4.7 � 12.4 nb (NLOJet++, CT10) JHEP 05 (2014) 059
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 13 3.2 � = 321 ± 0.8 + 18.6 � 19 nb � = 340 + 17 � 54 nb (NLOJet++, CT14) JHEP 05 (2018) 195
Incl. jet R=0.4, |y| < 3.0 7 4.5 � = 563.9 ± 1.5 + 55.4 � 51.4 nb � = 569.8 + 29.5 � 46.3 nb (NLOJet++, CT10) JHEP 02 (2015) 153
Incl. jet R=0.4, |y| < 3.0 8 20.2 � = 726.4 ± 1.1 + 42.7 � 41.8 nb � = 800 + 59 � 100 nb (NLOJet++, CT14) JHEP 09 (2017) 020
Incl. jet R=0.4, |y| < 3.0 13 3.2 � = 1845 ± 4 + 119 � 120 nb � = 1997 + 152 � 208 nb (NLOJet++, CT14) JHEP 05 (2018) 195
pp inelastic 7 8⇥10�8 � = 71.34 ± 0.36 ± 0.83 mb � = 71.5 + 20 � 2 mb (Schuler/Sjöstrand) Nucl. Phys. B (2014) 486
pp inelastic 8 50⇥10�8 � = 71.73 ± 0.15 ± 0.69 mb � = 73 ± 2 mb (Schuler/Sjöstrand) PLB 761 (2016) 158
pp inelastic 13 34⇥10�8 � = 77.41 ± 1.08 mb � = 78.4 ± 2 mb (Schuler/Sjöstrand) EPJC 83 (2023) 441
pp 7 8⇥10�8 � = 95.35 ± 0.38 ± 1.3 mb � = 97.26 ± 2.12 mb (COMPETE HPR1R2) Nucl. Phys. B (2014) 486
pp 8 50⇥10�8 � = 96.07 ± 0.18 ± 0.91 mb � = 99.55 ± 2.14 mb (COMPETE HPR1R2) PLB 761 (2016) 158
pp 13 34⇥10�8 � = 104.7 ± 0.22 ± 1.07 mb � = 100.3 ± 0.12 mb (COMPETE HPR1R2) EPJC 83 (2023) 441
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(b)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

�fid
(WZjj) EWK 8 20.3 � = 0.29 + 0.14 � 0.12 + 0.09 � 0.1 fb � = 0.13 ± 0.01 fb (VBFNLO) PRD 93 (2016) 092004

�fid
(WZjj) EWK 13 36.1 � = 0.57 + 0.14 � 0.13 + 0.07 � 0.05 fb � = 0.32 ± 0.03 fb (Sherpa 2.2.2) PLB 793 (92019) 469

�fid
(ZZjj) EWK 13 139 � = 0.82 ± 0.18 ± 0.11 fb � = 0.61 ± 0.03 fb (Sherpa 2.2.2) Nature Phys. 19 (2023) 237

�fid
(W

±
W
±
jj) EWK 8 20.3 � = 1.5 ± 0.5 ± 0.2 fb � = 0.95 ± 0.06 fb (PowhegBox) PRD 96, 012007 (2017)

�fid
(W

±
W
±
jj) EWK 13 139 � = 2.92 ± 0.22 ± 0.19 fb � = 2.53 + 0.22 � 0.19 fb (Madgraph5 + aMCNLO) Target journal JHEP

��!WW!eµX 8 20.2 � = 6.9 ± 2.2 ± 1.4 fb � = 4.4 ± 0.3 fb (HERWIG++) PRD 94 (2016) 032011
��!WW!eµX 13 139 � = 3.13 ± 0.31 ± 0.28 fb � = 3.5 ± 1 fb (MG5 aMCNLO+Pythia8 ⇥ Surv. Fact (0.82)) PLB 816 (2021) 136190
Z�jj EWK 8 20.3 � = 1.1 ± 0.5 ± 0.4 fb � = 0.94 ± 0.09 fb (VBFNLO) JHEP 07 (2017) 107
Z�jj EWK 13 140 � = 3.6 ± 0.5 ± 0.5 fb � = 3.5 ± 0.2 fb (Madgraph5 + aMCNLO) PLB 846 (2023) 138222
WWW 13 139 � = 0.82 ± 0.01 ± 0.08 pb � = 0.511 ± 0.018 pb (NLO QCD ) PRL 129 (2022) 061803
WWZ 13 79.8 � = 0.55 ± 0.14 + 0.15 � 0.13 pb � = 0.358 ± 0.036 pb (Sherpa 2.2.2) PLB 798 (2019) 134913
�fid

(WZ� ! e⌫µ⌫�) 13 140 � = 2.01 ± 0.3 ± 0.16 fb � = 1.5 ± 0.06 fb (Sherpa2.2.11 (NLO)) arXiv:2305.16994
�fid

(WW� ! e⌫µ⌫�) 8 20.2 � = 1.5 ± 0.9 ± 0.5 fb � = 2 ± 0.1 fb (VBFNLO+CT14 (NLO)) EPJC 77 (2017) 646
�fid

(W�� ! `⌫��) 8 20.3 � = 6.1 + 1.1 � 1 ± 1.2 fb � = 2.9 ± 0.16 fb (MCFM NLO) PRL 115, 031802 (2015)
�fid

(W�� ! `⌫��) 13 140 � = 12.2 ± 1 + 1.9 � 1.8 fb � = 12 + 2.15 � 1.46 fb (Sherpa 2.2.10 NLO) arXiv:2308.03041
�fid

(Z�� ! ``��) 8 20.3 � = 5.07 + 0.73 � 0.68 + 0.42 � 0.39 fb � = 3.7 + 0.21 � 0.11 fb (MCFM NLO) PRD 93, 112002 (2016)
�fid

(Z�� ! ``��) 13 139 � = 2.45 ± 0.2 ± 0.22 fb � = 2.26 + 0.36 � 0.28 fb (Sherpa 2.2.10 NLO) EPJC 83 (2023) 539
t̄tt̄t 13 140 � = 22.5 + 4.7 � 3.4 + 6.6 � 5.5 fb � = 13.4 + 1 � 1.8 fb (NLO QCD + EW) EPJC 83 (2023) 496
�fid

(���) 8 20.2 � = 72.6 ± 6.5 ± 9.2 fb � = 67.5 + 7.5 � 5.7 fb (NNLO) PLB 781 (2018) 55,
Zjj EWK 8 20.3 � = 10.7 ± 0.9 ± 1.9 fb � = 9.38 + 0.3 � 0.4 fb (PowhegBox (NLO)) JHEP 04, 031 (2014)
Zjj EWK 13 139 � = 37.4 ± 3.5 ± 5.5 fb � = 39.5 ± 3.6 fb (Herwig7+VBFNLO ) EPJC 81 (2021) 163
Wjj EWK (mjj > 500 GeV) 7 4.7 � = 144 ± 23 ± 26 fb � = 144 ± 11 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
Wjj EWK (mjj > 500 GeV) 8 20.2 � = 159 ± 10 ± 26 fb � = 198 ± 12 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
t̄t� 7 4.6 � = 63 ± 8 + 17 � 13 fb � = 48 ± 10 fb (Whizard+NLO) PRD 91 (2015) 072007
t̄t� 8 20.2 � = 139 ± 7 ± 17 fb � = 151 ± 25 fb (MadGraph+PRD 83 (2011) 074013) JHEP 11 (2017) 086
t̄t� 13 36.1 � = 521 ± 9 ± 41 fb � = 495 ± 99 fb (PRD 83 (2011) 074013) EPJC 79 (2019) 382
t̄tH(H ! yy) 13 139 � = 1.24 + 0.32 � 0.35 + 0.08 � 0.11 fb � = 1.33 ± 0.12 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tH 8 20.3 � = 220 ± 100 ± 70 fb � = 133 + 8 � 13 fb (LHCHXSWG NLO QCD + NLO EW) PLB 784 (2018) 173
t̄tH 13 139 � = 560 ± 80 + 70 � 80 fb � = 580 ± 50 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tZ 8 20.3 � = 176 + 52 � 48 ± 24 fb � = 215 ± 30 fb (HELAC-NLO) JHEP 11, 172 (2015)
t̄tZ 13 140 � = 860 ± 40 ± 40 fb � = 860 + 80 � 90 fb (NLO + NNLL) ATLAS-CONF-2023-065
t̄tW 8 20.3 � = 369 + 86 � 79 ± 44 fb � = 232 ± 32 fb (MCFM) JHEP 11, 172 (2015)
t̄tW 13 140 � = 890 ± 50 ± 70 fb � = 745 ± 52 fb (NNLOQCD + NLOEW ) ATLAS-CONF-2023-019
�fid

(W� ! `⌫�) 7 4.6 � = 2.77 ± 0.03 ± 0.36 pb � = 2.658 ± 0.11 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 7 4.6 � = 1.31 ± 0.02 ± 0.12 pb � = 1.327 + 0.026 � 0.037 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 8 20.3 � = 1.507 ± 0.01 + 0.083 � 0.078 pb � = 1.483 + 0.019 � 0.037 pb (NNLO) PRD 93, 112002 (2016), arXiv:1407.1618
�fid

(Z� ! ``�) 13 36.1 � = 533.7 ± 2.1 ± 15.4 fb � = 515 + 20 � 19 fb (Matrix NNLO QCD + NLO EW) JHEP 03 (2020) 054
VH(��), |yH| < 2.5 13 139 � = 6 + 1.3 � 1.4 + 0.4 � 0.5 fb � = 4.53 + 0.13 � 0.14 fb (Powheg Box NLO(QCD)) Nature 607, pages 52-59 (2022)
VH(bb̄), |yH| < 2.5 13 139 � = 1190 ± 130 + 160 � 140 fb � = 1162 + 31 � 29 fb (Powheg Box NLO(QCD)) ATLAS-CONF-2020-027
VH 8 20.3 � = 1.03 + 0.37 � 0.36 + 0.26 � 0.21 pb � = 1.12 ± 0.03 pb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VH 13 36.1 � = 2719 + 947 � 810 fb � = 2255 ± 44 fb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VBF H ! ��, |yH| < 2.5 13 139 � = 11.7 ± 1.6 + 1.1 � 1.4 fb � = 7.97 + 0.21 � 0.22 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! ⌧⌧, |yH| < 2.5 13 139 � = 197 ± 28 + 32 � 26 fb � = 220 ± 5 fb (NNLO QCD and NLO EW ) JHEP 08 (2022) 175
VBF H ! ZZ

⇤, |yH| < 2.5 13 139 � = 120 + 40 � 50 ± 10 fb � = 92.8 + 2.3 � 2.4 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! WW

⇤ 8 20.3 � = 0.51 + 0.17 � 0.15 + 0.13 � 0.08 pb � = 0.35 ± 0.02 pb (LHC-HXSWG) PRD 92 (2015) 012006
VBF H ! WW

⇤ 13 139 � = 0.79 + 0.11 � 0.1 + 0.16 � 0.12 pb � = 0.81 ± 0.02 pb (NNLO QCD and NLO EW ) PRD 108 (2023) 032005
H VBF 8 20.3 � = 2.43 + 0.5 � 0.49 + 0.33 � 0.26 pb � = 1.6 ± 0.04 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H VBF, |yH| < 2.5 13 139 � = 4 ± 0.3 + 0.3 � 0.4 pb � = 3.51 ± 0.07 pb (LHC-HXSWG) Nature 607, pages 52-59 (2022)
�fid

(H ! ZZ ! 4`) 8 20.3 � = 2.11 + 0.53 � 0.47 ± 0.1 fb � = 1.29 ± 0.13 fb (LHC-HXSWG) JHEP 10 (2017) 132
�fid

(H ! ZZ ! 4`) 13 139 � = 3.28 ± 0.3 ± 0.11 fb � = 3.41 ± 0.18 fb (N3LO) EPJC 80 (2020) 941
�fid

(H ! ZZ ! 4`) 13.6 29.0 � = 2.8 ± 0.7 ± 0.21 fb � = 3.67 ± 0.19 fb (N3LO) ATLAS-CONF-2023-032
�fid

(H!��) 8 20.3 � = 42.5 ± 9.8 + 3.1 � 3 fb � = 31 ± 3.2 fb (LHC-HXSWG) ATLAS-CONF-2015-060
�fid

(H!��) 13 139 � = 65.2 ± 4.5 ± 5.6 fb � = 63.6 ± 3.3 fb (LHC-HXSWG) JHEP 08 (2022) 027
�fid

(H!��) 13.6 31.4 � = 76 ± 11 + 9 � 7 fb � = 67.6 ± 3.7 fb (LHC-HXSWG) arXiv:2306.11379
�fid

(H ! ⌧⌧) 8 20.3 � = 2.1 ± 0.4 + 0.5 � 0.4 pb � = 1.39 ± 0.14 pb (LHC-HXSWG) JHEP 04 117 (2015)
�fid

(H ! ⌧⌧) 13 139 � = 2.94 ± 0.21 + 0.37 � 0.32 pb � = 3.17 ± 0.09 pb (LHCHiggsXSWG ) JHEP 08 (2022) 175
gg ! H ! WW

⇤ 8 20.3 � = 4.6 ± 0.9 + 0.8 � 0.7 pb � = 4.2 ± 0.5 pb (LHC-HXSWG) PRD 92 (2015) 012006
gg ! H ! WW

⇤ 13 139 � = 12.4 ± 0.6 ± 1.5 pb � = 10.4 ± 0.6 pb (N3LO (LHC-HXSWG)) PRD 108 (2023) 032005
H 8 20.3 � = 27.7 ± 3 + 2.3 � 1.9 pb � = 24.5 + 1.3 � 1.8 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H 13 139 � = 55.5 ± 3.2 + 2.4 � 2.2 pb � = 55.6 ± 2.5 pb (LHC-HXSWG YR4 ) JHEP 05 (2023) 028
H 13.6 31.4 � = 58.2 ± 7.5 ± 4.5 pb � = 59.9 ± 2.6 pb (LHC-HXSWG YR4 ) arXiv:2306.11379
�fid

(��)[�R�� > 0.4] 7 4.9 � = 44 + 3.2 � 4.2 pb � = 44 ± 6 pb (2�NNLO) JHEP 01, 086 (2013)
�fid

(��)[�R�� > 0.4] 8 20.2 � = 16.82 ± 0.07 + 0.75 � 0.78 pb � = 14.2 + 1.25 � 0.91 pb (2�NNLO + CT10) PRD 95 (2017) 112005
�fid

(��)[�R�� > 0.4] 13 139 � = 31.4 ± 0.1 ± 2.4 pb � = 29.7 + 2.4 � 2 pb (NNLOjet (NNLO) ) JHEP 11 (2021) 169
ZZ 7 4.6 � = 6.7 ± 0.7 + 0.5 � 0.4 pb � = 6.735 + 0.195 � 0.155 pb (NNLO) JHEP 03, 128 (2013), PLB 735 (2014) 311
ZZ 8 20.3 � = 7.3 ± 0.4 + 0.4 � 0.3 pb � = 8.284 + 0.249 � 0.191 pb (NNLO) JHEP 01, 099 (2017)
ZZ 13 36.1 � = 17.3 ± 0.6 ± 0.8 pb � = 16.9 + 0.6 � 0.5 pb (Matrix (NNLO) & Sherpa (NLO)) PRD 97 (2018) 032005
ZZ 13.6 29.0 � = 16.9 ± 0.7 ± 0.7 pb � = 16.7 ± 0.4 pb (Matrix (NNLO) & Sherpa (NLO)) ATLAS-CONF-2023-062
WZ 7 4.6 � = 19 + 1.4 � 1.3 ± 1 pb � = 19.34 + 0.3 � 0.4 pb (MATRIX (NNLO)) EPJC 72 (2012) 2173
WZ 8 20.3 � = 24.3 ± 0.6 ± 0.9 pb � = 23.92 ± 0.4 pb (MATRIX (NNLO)) PRD 93, 092004 (2016)
WZ 13 36.1 � = 51 ± 0.8 ± 2.3 pb � = 49.1 + 1.1 � 1 pb (MATRIX (NNLO)) EPJC 79 (2019) 535
WW 7 4.6 � = 51.9 ± 2 ± 4.4 pb � = 49.04 + 1.03 � 0.88 pb (NNLO) PRD 87 (2013) 112001, PRL 113 (2014) 212001
WW 8 20.3 � = 68.2 ± 1.2 ± 4.6 pb � = 65 + 1.2 � 1.1 pb (NNLO) PLB 763, 114 (2016)
WW 13 36.1 � = 130.04 ± 1.7 ± 10.6 pb � = 128.4 + 3.2 � 2.9 pb (NNLO) EPJC 79 (2019) 884

Standard Model Production Cross Section Measurements

Status: October 2023

ATLAS Preliminary
p
s = 7, 8, 13, 13.6 TeV

(c)

Figure 3: Summary of several Standard Model total and fiducial production cross-section measurements (a) with
associated references (b) and (c). Where total cross sections are reported, the measurements are corrected for
branching fractions and compared to the corresponding theoretical expectations. In some cases, the fiducial selection
is di�erent between measurements in the same final state for di�erent centre-of-mass energies

p
B, resulting in lower

cross section values at higher
p
B.
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THE LHC HAS BECOME A PRECISION MACHINE

After its discovery in 2012, a lot (but not only) 
revolving around Higgs boson’s properties



THE HIGGS BOSON: THE LAST MISSING PIECEThe Higgs boson

�3

Higgs field “holds SM together” 
2
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FIG. 1: The Higgs boson as the keystone of the Standard Model is connected to numerous fundamental questions that can be
investigated by studying it in detail.

References 40

I. ABSTRACT

A future Higgs Factory will provide improved precision on measurements of Higgs couplings beyond those obtained
by the LHC, and will enable a broad range of investigations across the fields of fundamental physics, including
the mechanism of electroweak symmetry breaking, the origin of the masses and mixing of fundamental particles, the
predominance of matter over antimatter, and the nature of dark matter. Future colliders will measure Higgs couplings
to a few per cent, giving a window to beyond the Standard Model (BSM) physics in the 1-10 TeV range. In addition,
they will make precise measurements of the Higgs width, and characterize the Higgs self-coupling.

II. WHY THE HIGGS IS THE MOST IMPORTANT PARTICLE

Over the past decade, the LHC has fundamentally changed the landscape of high energy particle physics through
the discovery of the Higgs boson and the first measurements of many of its properties. As a result of this, and no
discovery of new particles or new interactions at the LHC, the questions surrounding the Higgs have only become
sharper and more pressing for planning the future of particle physics.

The Standard Model (SM) is an extremely successful description of nature, with a basic structure dictated by
symmetry. However, symmetry alone is not su�cient to fully describe the microscopic world we explore: even after
specifying the gauge and space-time symmetries, and number of generations, there are 19 parameters undetermined by
the SM (not including neutrino masses). Out of these parameters 4 are intrinsic to the gauge theory description, the
gauge couplings and the QCD theta angle. The other 15 parameters are intrinsic to the coupling of SM particles to the
Higgs sector, illustrating its paramount importance in the SM. In particular, the masses of all fundamental particles,
their mixing, CP violation, and the basic vacuum structure are all undetermined and derived from experimental
data. As simply a test of the validity of the SM, all these couplings must be measured experimentally. However, the
centrality of the Higgs boson goes far beyond just dictating the parameters of the SM.

The Higgs boson is connected to some of our most fundamental questions about the Universe. Its most basic
role in the SM is to provide a source of Electroweak Symmetry Breaking (EWSB). While the Higgs can describe
EWSB, it is merely put in by hand in the Higgs potential. Explaining why EWSB occurs is outside the realm of
the Higgs boson, and yet at the same time by studying it we may finally understand its origin. There are a variety
of connected questions and observables tied to the origin of EWSB for the Higgs boson. For example, is the Higgs
mechanism actually due to dynamical symmetry breaking as observed elsewhere in nature? Is the Higgs boson itself
a fundamental particle or a composite of some other strongly coupled sector? The answers to these questions have a
number of ramifications beyond the origin of EWSB.

If the Higgs boson is a fundamental particle, it represents the first fundamental scalar particle discovered in nature.

[Snowmass 2022 arXiv:2209.0751]
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LHC has opened a window for us to 
peak at Higgs’ interactions

Hints to answer these questions hidden in the details of Higgs interactions to SM particles

HIGGS INTERACTIONS AT THE LHC
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Figure 3: The expected and observed four-lepton invariant mass distribution for the selected Higgs boson candidates
with a constrained Z boson mass, shown for an integrated luminosity of 36.1 fb�1 and at

p
s = 13 TeV assuming the

SM Higgs boson signal with a mass mH = 125.09 GeV.

Table 6: The expected and observed numbers of signal and background events in the four-lepton decay channels
for an integrated luminosity of 36.1 fb�1 and at

p
s = 13 TeV, assuming the SM Higgs boson signal with a mass

mH = 125.09 GeV. The second column shows the expected number of signal events for the full mass range while the
subsequent columns correspond to the mass range of 118 < m4` < 129 GeV. In addition to the Z Z

⇤ background, the
contribution of other backgrounds is shown, comprising the data-driven estimate from Table 4 and the simulation-
based estimate of contributions from rare triboson and tt̄V processes. Statistical and systematic uncertainties are
added in quadrature.

Decay Signal Signal Z Z
⇤ Other Total Observed

channel (full mass range) background backgrounds expected
4µ 21.0 ± 1.7 19.7 ± 1.6 7.5 ± 0.6 1.00 ± 0.21 28.1 ± 1.7 32

2e2µ 15.0 ± 1.2 13.5 ± 1.0 5.4 ± 0.4 0.78 ± 0.17 19.7 ± 1.1 30
2µ2e 11.4 ± 1.1 10.4 ± 1.0 3.57 ± 0.35 1.09 ± 0.19 15.1 ± 1.0 18
4e 11.3 ± 1.1 9.9 ± 1.0 3.35 ± 0.32 1.01 ± 0.17 14.3 ± 1.0 15

Total 59 ± 5 54 ± 4 19.7 ± 1.5 3.9 ± 0.5 77 ± 4 95
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Higgs discovery through its couplings to gauge sector

Anomalous couplings? 

HIGGS INTERACTIONS THE GAUGE SECTOR
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Figure 6: Reduced coupling strength modifiers and their uncertainties per particle type with e�ective photon,
`$ and gluon couplings. The horizontal bars on each point denote the 68% confidence interval. The scenario
where ⌫inv. = ⌫u. = 0 is assumed is shown as solid lines with circle markers. The ?-value for compatibility with the
SM prediction is 61% in this case. The scenario where ⌫inv. and ⌫u. are allowed to contribute to the total Higgs
boson decay width while assuming that ^+  1 and ⌫u. � 0 is shown as dashed lines with square markers. The lower
panel shows the 95% CL upper limits on ⌫inv. and ⌫u..

of SM Higgs boson production processes into a set of regions defined by the specific kinematic properties
of the Higgs boson and, where relevant, of the associated jets, , bosons, or / bosons, as described in
Methods. The regions are defined so as to provide experimental sensitivity to deviations from the SM
predictions, to avoid large theory uncertainties in these predictions, and to minimize the model-dependence
of their extrapolations to the experimentally accessible signal regions. Signal cross sections measured
in each of the introduced kinematic regions are compared with those predicted when assuming that the
branching fractions and kinematic properties of the Higgs boson decay are described by the SM.

The results of the simultaneous measurement in 36 kinematic regions are presented in Figure 7. Compared
to previous results with a smaller dataset [22] a much larger number of regions are probed, particularly at
high Higgs boson transverse momenta where in many cases the sensitivity to new phenomena beyond the
SM is expected to be enhanced. All measurements are consistent with the SM predictions.
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Introduction

• Since the discovery of the Higgs bosons, its 
interactions have been studied 

• In the SM Higgs field couples to fermions 
through a Yukawa interaction

• Coupling strength proportional to the mass of 
the interacting particles

• Run 2 has been very productive measuring the 
interaction of the H to fermions:
• Observation of Higgs couplings to all third-

generation charged fermions
• Evidence of H coupling to 𝜇
• Ongoing measurements to c quarks (second 

generation)
• Measurements of the CP properties of the 

Higgs Boson. In general parametrized as:

2

CMS-PHO-GEN-2020-002HIGGS INTERACTIONS THE YUKAWA SECTOR
Run 2 direct observation of H coupling to third family fermions

Run 3 and HL potential: 

1. Precision measurements for third family 

2. Discovery couplings to second family ( )μ & c
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We have seen the Higgs but 
   

is a “toy model”!  

1. more minima? 
2. more Higges? 
3. microscopic model of SSB? 
4. …

V(ϕ) = − μ2ϕ2 + λ
4! ϕ4

Higgs self coupling extremely difficult to 
measure.  

With 2018 estimates 4  ATLAS+CMSσ

HIGGS SELF INTERACTIONS THE MOST MYSTERIOUS?
HL-LHC first to see the triple-H coupling
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Higgs potential — huge energy densities — yet to be experimentaly confirmed
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PROBING THE GAUGE SECTOR
Multiboson final states as probe of electroweak sector of SM
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p
s = 5,7,8,13,13.6 TeV

(a)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

tZj 13 139 � = 97 ± 13 ± 7 fb � = 102 + 5 � 2 fb (Madgraph5 + aMCNLO (NLO)) JHEP 07 (2020) 124
ts�chan 8 20.3 � = 4.8 ± 0.8 + 1.6 � 1.3 pb � = 5.61 ± 0.22 pb (NLO+NNL) PLB 756 (2016) 228-246
ts�chan 13 140 � = 8.2 ± 0.6 + 3.4 � 2.8 pb � = 10.32 + 0.4 � 0.36 pb (NLO+NNL) JHEP 06 (2023) 191
Wt 7 2.0 � = 16.8 ± 2.9 ± 3.9 pb � = 17.1 ± 0.8 pb (NLO+NLL) PLB 716, 142-159 (2012)
Wt 8 20.3 � = 23 ± 1.3 + 3.4 � 3.7 pb � = 24.4 + 1.1 � 1 pb (NLO+NLL) JHEP 01, 064 (2016)
Wt 13 3.2 � = 94 ± 10 + 28 � 23 pb � = 79.3 + 2.9 � 2.8 pb (NLO+NNLL) JHEP 01 (2018) 63
tt�chan 5 0.3 � = 27.1 + 4.4 � 4.1 + 4.4 � 3.7 pb � = 30.3 + 0.7 � 0.5 pb (MCFM (NNLO) ) arXiv:2310.01518
tt�chan 7 4.6 � = 68 ± 2 ± 8 pb � = 63.7 + 1.4 � 0.8 pb (MCFM (NNLO)) PRD 90, 112006 (2014)
tt�chan 8 20.3 � = 89.6 ± 1.7 + 7.2 � 6.4 pb � = 84.3 + 1.7 � 1.2 pb (MCFM (NNLO)) EPJC 77 (2017) 531
tt�chan 13 140 � = 221 ± 1 ± 13 pb � = 214.2 + 4.1 � 2.6 pb (MCFM (NNLO) ) ATLAS-CONF-2023-026
t̄t [njet � 8] 7 4.7 � = 0.0425 ± 0.004 ± 0.012 pb JHEP 01, 020 (2015)
t̄t [njet = 7] 7 4.7 � = 0.161 ± 0.007 ± 0.033 pb JHEP 01, 020 (2015)
t̄t [njet = 6] 7 4.7 � = 0.611 ± 0.024 ± 0.083 pb JHEP 01, 020 (2015)
t̄t [njet = 5] 7 4.7 � = 1.72 ± 0.04 ± 0.16 pb JHEP 01, 020 (2015)
t̄t [njet = 4] 7 4.7 � = 3.76 ± 0.05 ± 0.27 pb JHEP 01, 020 (2015)
t̄t 5 0.3 � = 67.5 ± 0.9 ± 2.6 pb � = 68.2 + 5.2 � 5.3 pb (top++ NNLO+NNLL) JHEP 06 (2023) 138
t̄t 7 4.6 � = 182.9 ± 3.1 ± 6.4 pb � = 177 + 10 � 11 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 8 20.2 � = 242.9 ± 1.7 ± 8.6 pb � = 252.9 + 13.3 � 14.5 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 13 140 � = 829 ± 1 ± 15.4 pb � = 832 + 46.4 � 50.9 pb (top++ NNLO+NNLL) JHEP 07 (2023) 141
t̄t 13.6 29.0 � = 850 ± 3 ± 27 pb � = 924 + 32 � 40 pb (top++ NNLO+NNLL) arXiv:2308.09529
Z [njet � 7] 7 4.6 � = 0.0062 ± 0.001456 ± 0.00214 pb JHEP 07, 032 (2013)
Z [njet � 6] 7 4.6 � = 0.0253 ± 0.00265 ± 0.00595 pb JHEP 07, 032 (2013)
Z [njet � 6] 13 139 � = 0.000338 ± 5.3e � 05 ± 5.5e � 05 pb� = 0.000511 + 0.00034 � 0.00019 pb (Sherpa (NLO QCD+ NLO EW corr)) ATLAS-CONF-2021-033
Z [njet � 5] 7 4.6 � = 0.135 ± 0.006 ± 0.027 pb JHEP 07, 032 (2013)
Z [njet = 5] 13 139 � = 0.00305 ± 0.00017 ± 0.00025 pb � = 0.00326 + 0.0022 � 0.0012 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 4] 7 4.6 � = 0.65 ± 0.01 ± 0.11 pb � = 0.646 ± 0.031 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 4] 13 139 � = 0.0226 ± 0.0004 ± 0.0015 pb � = 0.0234 + 0.015 � 0.0083 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 3] 7 4.6 � = 3.09 ± 0.03 ± 0.4 pb � = 3.1 ± 0.14 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 3] 13 139 � = 0.1995 ± 0.0013 ± 0.0096 pb � = 0.186 + 0.11 � 0.058 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 2] 7 4.6 � = 15.05 ± 0.06 ± 1.51 pb � = 14.9 ± 0.4 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 2] 13 139 � = 1.941 ± 0.004 ± 0.061 pb � = 1.807 + 0.69 � 0.39 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 1] 7 4.6 � = 68.84 ± 0.13 ± 5.15 pb � = 64.8 ± 3.1 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 1] 13 139 � = 11.74 ± 0.01 ± 0.33 pb � = 11.17 + 2.2 � 1.3 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
�fid(Z! ee, µµ) 5 0.025 � = 374.5 ± 3.4 ± 7.9 pb � = 356 + 9 � 10 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(Z! ee, µµ) 7 4.6 � = 451 ± 0.4 ± 8.8 pb � = 432 + 12.5 � 13.8 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 8 20.2 � = 506 ± 0.2 ± 11 pb � = 486 + 13.6 � 16 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13 3.2 � = 776 ± 1 ± 18 pb � = 744 + 22 � 28 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13.6 29.0 � = 744 ± 11 ± 11 pb � = 746 + 21 � 22 pb (DYNNLO+CT14 NNLO) arXiv:2308.09529
W [njet � 7] 7 4.6 � = 0.041 ± 0.0068 ± 0.031 pb EPJC 75 (2015) 82
W [njet � 7] 8 20.2 � = 0.041 ± 0.003 ± 0.032 pb � = 0.052 + 0.007 � 0.02 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 6] 7 4.6 � = 0.199 ± 0.019 ± 0.11 pb EPJC 75 (2015) 82
W [njet � 6] 8 20.2 � = 0.22 ± 0.006 ± 0.121 pb � = 0.239 + 0.03 � 0.084 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 5] 7 4.6 � = 0.877 ± 0.032 ± 0.301 pb � = 0.933 ± 0.027 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 5] 8 20.2 � = 1.107 ± 0.013 ± 0.423 pb � = 1.1 + 0.13 � 0.38 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 4] 7 4.6 � = 4.241 ± 0.056 ± 0.885 pb � = 4.67 ± 0.06 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 4] 8 20.2 � = 5.47 ± 0.03 ± 1.47 pb � = 5 + 0.5 � 1.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 3] 7 4.6 � = 21.82 ± 0.1 ± 3.23 pb � = 23.47 ± 0.22 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 3] 8 20.2 � = 26.38 ± 0.06 ± 5.34 pb � = 23.6 + 1.3 � 5 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 2] 7 4.6 � = 111.7 ± 0.2 ± 12.2 pb � = 111.98 ± 0.44 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 2] 8 20.2 � = 128.35 ± 0.12 ± 20.39 pb � = 126.5 + 2.1 � 14.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 1] 7 4.6 � = 493.8 ± 0.5 ± 45.1 pb � = 474.22 ± 0.84 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 1] 8 20.2 � = 564.71 ± 0.24 ± 72.13 pb � = 584 + 8 � 37 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
�fid(W! e⌫, µ⌫) 5 0.025 � = 3.667 ± 0.016 ± 0.084 nb � = 3.58 ± 0.11 nb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(W! e⌫, µ⌫) 7 4.6 � = 4.911 ± 0.001 ± 0.092 nb � = 4.777 + 0.12 � 0.14 nb (DYNNLO + CT14NNLO) EPJC 77 (2017) 367
�fid(W! e⌫, µ⌫) 8 20.2 � = 5247 ± 0.6 ± 111 pb � = 5120 ± 142 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 760
�fid(W! e⌫, µ⌫) 13 0.081 � = 8.03 ± 0.01 ± 0.23 nb � = 7.82 + 0.26 � 0.3 nb (DYNNLO + CT14NNLO) PLB 759 (2016) 601
� [njet � 3] 8 20.2 � = 8.7 ± 0.02 ± 0.8 pb � = 9.5 + 0.9 � 1.2 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 2] 8 20.2 � = 30.4 ± 0.04 ± 1.8 pb � = 29.2 + 2.8 � 2.7 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 8 20.2 � = 134 ± 0.1 ± 4 pb � = 128 + 11 � 9 pb (JETPHOX (NLO)) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 13 3.2 � = 300 ± 0.4 ± 12 pb � = 319 + 55 � 46 pb (SHERPA (NLO)) PLB 780 (2018) 578
� 7 4.6 � = 359 ± 3 + 22 � 16 pb � = 308 ± 40 pb (JETPHOX (NLO)) PRD 89 (2014) 052004
� 8 20.2 � = 56.8 ± 0.1 + 5.8 � 5.6 nb � = 52.2 ± 7 nb (PETER (NLO+N3LL)) JHEP 06 (2016) 005
� 13 3.2 � = 399 ± 0.4 ± 16 pb � = 352 + 36 � 30 pb (JETPHOX+MMHT2014 (NLO)) PLB 2017 04 072
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 7 4.5 � = 86.87 ± 0.26 + 7.56 � 7.2 nb � = 86.9 + 4.7 � 12.4 nb (NLOJet++, CT10) JHEP 05 (2014) 059
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 13 3.2 � = 321 ± 0.8 + 18.6 � 19 nb � = 340 + 17 � 54 nb (NLOJet++, CT14) JHEP 05 (2018) 195
Incl. jet R=0.4, |y| < 3.0 7 4.5 � = 563.9 ± 1.5 + 55.4 � 51.4 nb � = 569.8 + 29.5 � 46.3 nb (NLOJet++, CT10) JHEP 02 (2015) 153
Incl. jet R=0.4, |y| < 3.0 8 20.2 � = 726.4 ± 1.1 + 42.7 � 41.8 nb � = 800 + 59 � 100 nb (NLOJet++, CT14) JHEP 09 (2017) 020
Incl. jet R=0.4, |y| < 3.0 13 3.2 � = 1845 ± 4 + 119 � 120 nb � = 1997 + 152 � 208 nb (NLOJet++, CT14) JHEP 05 (2018) 195
pp inelastic 7 8⇥10�8 � = 71.34 ± 0.36 ± 0.83 mb � = 71.5 + 20 � 2 mb (Schuler/Sjöstrand) Nucl. Phys. B (2014) 486
pp inelastic 8 50⇥10�8 � = 71.73 ± 0.15 ± 0.69 mb � = 73 ± 2 mb (Schuler/Sjöstrand) PLB 761 (2016) 158
pp inelastic 13 34⇥10�8 � = 77.41 ± 1.08 mb � = 78.4 ± 2 mb (Schuler/Sjöstrand) EPJC 83 (2023) 441
pp 7 8⇥10�8 � = 95.35 ± 0.38 ± 1.3 mb � = 97.26 ± 2.12 mb (COMPETE HPR1R2) Nucl. Phys. B (2014) 486
pp 8 50⇥10�8 � = 96.07 ± 0.18 ± 0.91 mb � = 99.55 ± 2.14 mb (COMPETE HPR1R2) PLB 761 (2016) 158
pp 13 34⇥10�8 � = 104.7 ± 0.22 ± 1.07 mb � = 100.3 ± 0.12 mb (COMPETE HPR1R2) EPJC 83 (2023) 441
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(b)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

�fid
(WZjj) EWK 8 20.3 � = 0.29 + 0.14 � 0.12 + 0.09 � 0.1 fb � = 0.13 ± 0.01 fb (VBFNLO) PRD 93 (2016) 092004

�fid
(WZjj) EWK 13 36.1 � = 0.57 + 0.14 � 0.13 + 0.07 � 0.05 fb � = 0.32 ± 0.03 fb (Sherpa 2.2.2) PLB 793 (92019) 469

�fid
(ZZjj) EWK 13 139 � = 0.82 ± 0.18 ± 0.11 fb � = 0.61 ± 0.03 fb (Sherpa 2.2.2) Nature Phys. 19 (2023) 237

�fid
(W

±
W
±
jj) EWK 8 20.3 � = 1.5 ± 0.5 ± 0.2 fb � = 0.95 ± 0.06 fb (PowhegBox) PRD 96, 012007 (2017)

�fid
(W

±
W
±
jj) EWK 13 139 � = 2.92 ± 0.22 ± 0.19 fb � = 2.53 + 0.22 � 0.19 fb (Madgraph5 + aMCNLO) Target journal JHEP

��!WW!eµX 8 20.2 � = 6.9 ± 2.2 ± 1.4 fb � = 4.4 ± 0.3 fb (HERWIG++) PRD 94 (2016) 032011
��!WW!eµX 13 139 � = 3.13 ± 0.31 ± 0.28 fb � = 3.5 ± 1 fb (MG5 aMCNLO+Pythia8 ⇥ Surv. Fact (0.82)) PLB 816 (2021) 136190
Z�jj EWK 8 20.3 � = 1.1 ± 0.5 ± 0.4 fb � = 0.94 ± 0.09 fb (VBFNLO) JHEP 07 (2017) 107
Z�jj EWK 13 140 � = 3.6 ± 0.5 ± 0.5 fb � = 3.5 ± 0.2 fb (Madgraph5 + aMCNLO) PLB 846 (2023) 138222
WWW 13 139 � = 0.82 ± 0.01 ± 0.08 pb � = 0.511 ± 0.018 pb (NLO QCD ) PRL 129 (2022) 061803
WWZ 13 79.8 � = 0.55 ± 0.14 + 0.15 � 0.13 pb � = 0.358 ± 0.036 pb (Sherpa 2.2.2) PLB 798 (2019) 134913
�fid

(WZ� ! e⌫µ⌫�) 13 140 � = 2.01 ± 0.3 ± 0.16 fb � = 1.5 ± 0.06 fb (Sherpa2.2.11 (NLO)) arXiv:2305.16994
�fid

(WW� ! e⌫µ⌫�) 8 20.2 � = 1.5 ± 0.9 ± 0.5 fb � = 2 ± 0.1 fb (VBFNLO+CT14 (NLO)) EPJC 77 (2017) 646
�fid

(W�� ! `⌫��) 8 20.3 � = 6.1 + 1.1 � 1 ± 1.2 fb � = 2.9 ± 0.16 fb (MCFM NLO) PRL 115, 031802 (2015)
�fid

(W�� ! `⌫��) 13 140 � = 12.2 ± 1 + 1.9 � 1.8 fb � = 12 + 2.15 � 1.46 fb (Sherpa 2.2.10 NLO) arXiv:2308.03041
�fid

(Z�� ! ``��) 8 20.3 � = 5.07 + 0.73 � 0.68 + 0.42 � 0.39 fb � = 3.7 + 0.21 � 0.11 fb (MCFM NLO) PRD 93, 112002 (2016)
�fid

(Z�� ! ``��) 13 139 � = 2.45 ± 0.2 ± 0.22 fb � = 2.26 + 0.36 � 0.28 fb (Sherpa 2.2.10 NLO) EPJC 83 (2023) 539
t̄tt̄t 13 140 � = 22.5 + 4.7 � 3.4 + 6.6 � 5.5 fb � = 13.4 + 1 � 1.8 fb (NLO QCD + EW) EPJC 83 (2023) 496
�fid

(���) 8 20.2 � = 72.6 ± 6.5 ± 9.2 fb � = 67.5 + 7.5 � 5.7 fb (NNLO) PLB 781 (2018) 55,
Zjj EWK 8 20.3 � = 10.7 ± 0.9 ± 1.9 fb � = 9.38 + 0.3 � 0.4 fb (PowhegBox (NLO)) JHEP 04, 031 (2014)
Zjj EWK 13 139 � = 37.4 ± 3.5 ± 5.5 fb � = 39.5 ± 3.6 fb (Herwig7+VBFNLO ) EPJC 81 (2021) 163
Wjj EWK (mjj > 500 GeV) 7 4.7 � = 144 ± 23 ± 26 fb � = 144 ± 11 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
Wjj EWK (mjj > 500 GeV) 8 20.2 � = 159 ± 10 ± 26 fb � = 198 ± 12 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
t̄t� 7 4.6 � = 63 ± 8 + 17 � 13 fb � = 48 ± 10 fb (Whizard+NLO) PRD 91 (2015) 072007
t̄t� 8 20.2 � = 139 ± 7 ± 17 fb � = 151 ± 25 fb (MadGraph+PRD 83 (2011) 074013) JHEP 11 (2017) 086
t̄t� 13 36.1 � = 521 ± 9 ± 41 fb � = 495 ± 99 fb (PRD 83 (2011) 074013) EPJC 79 (2019) 382
t̄tH(H ! yy) 13 139 � = 1.24 + 0.32 � 0.35 + 0.08 � 0.11 fb � = 1.33 ± 0.12 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tH 8 20.3 � = 220 ± 100 ± 70 fb � = 133 + 8 � 13 fb (LHCHXSWG NLO QCD + NLO EW) PLB 784 (2018) 173
t̄tH 13 139 � = 560 ± 80 + 70 � 80 fb � = 580 ± 50 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tZ 8 20.3 � = 176 + 52 � 48 ± 24 fb � = 215 ± 30 fb (HELAC-NLO) JHEP 11, 172 (2015)
t̄tZ 13 140 � = 860 ± 40 ± 40 fb � = 860 + 80 � 90 fb (NLO + NNLL) ATLAS-CONF-2023-065
t̄tW 8 20.3 � = 369 + 86 � 79 ± 44 fb � = 232 ± 32 fb (MCFM) JHEP 11, 172 (2015)
t̄tW 13 140 � = 890 ± 50 ± 70 fb � = 745 ± 52 fb (NNLOQCD + NLOEW ) ATLAS-CONF-2023-019
�fid

(W� ! `⌫�) 7 4.6 � = 2.77 ± 0.03 ± 0.36 pb � = 2.658 ± 0.11 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 7 4.6 � = 1.31 ± 0.02 ± 0.12 pb � = 1.327 + 0.026 � 0.037 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 8 20.3 � = 1.507 ± 0.01 + 0.083 � 0.078 pb � = 1.483 + 0.019 � 0.037 pb (NNLO) PRD 93, 112002 (2016), arXiv:1407.1618
�fid

(Z� ! ``�) 13 36.1 � = 533.7 ± 2.1 ± 15.4 fb � = 515 + 20 � 19 fb (Matrix NNLO QCD + NLO EW) JHEP 03 (2020) 054
VH(��), |yH| < 2.5 13 139 � = 6 + 1.3 � 1.4 + 0.4 � 0.5 fb � = 4.53 + 0.13 � 0.14 fb (Powheg Box NLO(QCD)) Nature 607, pages 52-59 (2022)
VH(bb̄), |yH| < 2.5 13 139 � = 1190 ± 130 + 160 � 140 fb � = 1162 + 31 � 29 fb (Powheg Box NLO(QCD)) ATLAS-CONF-2020-027
VH 8 20.3 � = 1.03 + 0.37 � 0.36 + 0.26 � 0.21 pb � = 1.12 ± 0.03 pb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VH 13 36.1 � = 2719 + 947 � 810 fb � = 2255 ± 44 fb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VBF H ! ��, |yH| < 2.5 13 139 � = 11.7 ± 1.6 + 1.1 � 1.4 fb � = 7.97 + 0.21 � 0.22 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! ⌧⌧, |yH| < 2.5 13 139 � = 197 ± 28 + 32 � 26 fb � = 220 ± 5 fb (NNLO QCD and NLO EW ) JHEP 08 (2022) 175
VBF H ! ZZ

⇤, |yH| < 2.5 13 139 � = 120 + 40 � 50 ± 10 fb � = 92.8 + 2.3 � 2.4 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! WW

⇤ 8 20.3 � = 0.51 + 0.17 � 0.15 + 0.13 � 0.08 pb � = 0.35 ± 0.02 pb (LHC-HXSWG) PRD 92 (2015) 012006
VBF H ! WW

⇤ 13 139 � = 0.79 + 0.11 � 0.1 + 0.16 � 0.12 pb � = 0.81 ± 0.02 pb (NNLO QCD and NLO EW ) PRD 108 (2023) 032005
H VBF 8 20.3 � = 2.43 + 0.5 � 0.49 + 0.33 � 0.26 pb � = 1.6 ± 0.04 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
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Standard Model Production Cross Section Measurements
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Figure 3: Summary of several Standard Model total and fiducial production cross-section measurements (a) with
associated references (b) and (c). Where total cross sections are reported, the measurements are corrected for
branching fractions and compared to the corresponding theoretical expectations. In some cases, the fiducial selection
is di�erent between measurements in the same final state for di�erent centre-of-mass energies

p
B, resulting in lower

cross section values at higher
p
B.
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● Observation of WWγ: 5.6σ (4.7σ) obs. (exp.) & search for Hγ
○ Hγ fit on ∆Rll [0.5, 1.8, 2.0, 2.3) and mT

WW [0, 10, 40, 70, 110, ∞) [initiated by light quarks]

arXiv:2310.05164, Phys. Rev. Lett. 132 (2024) 121901

5

two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].

In summary, this Letter reports the first observation of WWg production in proton-proton

3

simulated using MADGRAPH5 aMC@NLO or POWHEG v2.0 [43–48] at NLO in QCD interfaced
with PYTHIA8 for hadronization and fragmentation in a manner similar to that for the WWg
signal sample. The background due to events containing nonprompt leptons and photons, in-
cluding those from instrumental mismeasurements and genuine leptons or photons within jets,
is estimated from data using a method similar to that of Ref. [49–51]. The relative contribution
of events with well-isolated, high-quality leptons to less-isolated, lower-quality leptons is mea-
sured in a dijet control region (CR) in data as a function of the lepton |h| and pT, and corrected
for prompt leptons and prompt photon conversions based on simulated samples. A similar
procedure is applied for photons, based on a W+jets CR that excludes the signal region (SR).
In the nonprompt-photon case, a fit to the width of the photon ECAL shower is used to deter-
mine the nonprompt-photon fraction in the well-isolated, high-quality category, as described
in Ref. [52]. Based on the matching to the generator level, the two procedures are combined to
avoid double counting [49]. The SM contributions from other Higgs-related processes [53] are
negligible.

Experimentally, we select W+W�g ! e+neµ�nµ g and µ+nµe�neg events, which pass the
level-1 [54] and high-level [55] triggers that require an isolated muon and/or electron. We
require the isolated electron and muon to satisfy additional identification criteria [26, 27], a sin-
gle reconstructed photon [26] must be present in the event, and the p

miss
T must exceed 20 GeV.

The photon must satisfy high performance identification requirements that correspond to a
signal efficiency > 80% [26]. Off-line kinematic requirements on the selected objects, based on
the detector acceptance and the trigger thresholds, are p

g
T > 20 GeV, |hg | < 2.5, |he(µ)| < 2.5

(2.4) and p
e(µ)
T > 25 (20) GeV. To reduce backgrounds from WZg and relevant top quark pro-

cesses, events are rejected that contain at least one b jet or an additional muon or electron with
pT > 10 GeV passing looser criteria than those of the primary leptons. Moreover, it is required
that DR =

p
(Dh)2 + (Df)2 > 0.5, where Df and Dh are the spatial separations in the azimuthal

angle f and h between leptons and photon. We further suppress background contributions by
requiring the dilepton mass (m`` ) > 10 GeV, the transverse momentum (p

``
T ) > 15 GeV, and the

transverse mass, m
WW
T =

q
2p

``
T p

miss
T [1 � cos Df(~p``T ,~p miss

T )] > 10 GeV.

A CR with charged leptons of the same sign, SSWWg, is constructed to validate the nonprompt
lepton background modeling. Another Topg CR, dominated by events corresponding to top
quark production, is used to validate the modeling of both nonprompt-lepton and nonprompt-
photon backgrounds. These two CRs are included in the simultaneous maximum likelihood fit
to constrain the estimates of these process rates. The selection for the SSWWg CR is the same
as for the SR, except that the m

WW
T requirement is removed and the two leptons are required to

have the same sign. The definition of the Topg CR also follows closely that of the SR, except that
at least one b-tagged jet with pT > 20 GeV is required and the m

WW
T requirement is removed.

The observed distributions in the SR of the invariant mass of the dilepton-photon system (m``g )
and m

WW
T are compared with the expected distributions before the fit in Fig. 2. The experimen-

tal data agree with the prediction within the uncertainties.

Various sources of systematic uncertainty are included in the fit as nuisance parameters and
subject to log-normal constraints. Theoretical sources of systematic uncertainty include the
choice of the renormalization and factorization scales, PDFs, and parton shower modeling.
The two scales are varied by factors of 2 and 0.5 independently. The envelope of these varia-
tions, excluding the two extreme (2, 0.5) and (0.5, 2) cases, is assumed as the uncertainty. The
systematic uncertainty due to PDFs is calculated using the PDF4LHC15 nnlo 30 pdfas PDF
replicas, following the PDF4LHC group prescription [56–59]. Parton shower modeling uncer-
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two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].

In summary, this Letter reports the first observation of WWg production in proton-proton
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two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].

In summary, this Letter reports the first observation of WWg production in proton-proton

5

two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].
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○ Hγ fit on ∆Rll [0.5, 1.8, 2.0, 2.3) and mT

WW [0, 10, 40, 70, 110, ∞) [initiated by light quarks]
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two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].

In summary, this Letter reports the first observation of WWg production in proton-proton
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simulated using MADGRAPH5 aMC@NLO or POWHEG v2.0 [43–48] at NLO in QCD interfaced
with PYTHIA8 for hadronization and fragmentation in a manner similar to that for the WWg
signal sample. The background due to events containing nonprompt leptons and photons, in-
cluding those from instrumental mismeasurements and genuine leptons or photons within jets,
is estimated from data using a method similar to that of Ref. [49–51]. The relative contribution
of events with well-isolated, high-quality leptons to less-isolated, lower-quality leptons is mea-
sured in a dijet control region (CR) in data as a function of the lepton |h| and pT, and corrected
for prompt leptons and prompt photon conversions based on simulated samples. A similar
procedure is applied for photons, based on a W+jets CR that excludes the signal region (SR).
In the nonprompt-photon case, a fit to the width of the photon ECAL shower is used to deter-
mine the nonprompt-photon fraction in the well-isolated, high-quality category, as described
in Ref. [52]. Based on the matching to the generator level, the two procedures are combined to
avoid double counting [49]. The SM contributions from other Higgs-related processes [53] are
negligible.

Experimentally, we select W+W�g ! e+neµ�nµ g and µ+nµe�neg events, which pass the
level-1 [54] and high-level [55] triggers that require an isolated muon and/or electron. We
require the isolated electron and muon to satisfy additional identification criteria [26, 27], a sin-
gle reconstructed photon [26] must be present in the event, and the p

miss
T must exceed 20 GeV.

The photon must satisfy high performance identification requirements that correspond to a
signal efficiency > 80% [26]. Off-line kinematic requirements on the selected objects, based on
the detector acceptance and the trigger thresholds, are p

g
T > 20 GeV, |hg | < 2.5, |he(µ)| < 2.5

(2.4) and p
e(µ)
T > 25 (20) GeV. To reduce backgrounds from WZg and relevant top quark pro-

cesses, events are rejected that contain at least one b jet or an additional muon or electron with
pT > 10 GeV passing looser criteria than those of the primary leptons. Moreover, it is required
that DR =

p
(Dh)2 + (Df)2 > 0.5, where Df and Dh are the spatial separations in the azimuthal

angle f and h between leptons and photon. We further suppress background contributions by
requiring the dilepton mass (m`` ) > 10 GeV, the transverse momentum (p

``
T ) > 15 GeV, and the

transverse mass, m
WW
T =

q
2p

``
T p

miss
T [1 � cos Df(~p``T ,~p miss

T )] > 10 GeV.

A CR with charged leptons of the same sign, SSWWg, is constructed to validate the nonprompt
lepton background modeling. Another Topg CR, dominated by events corresponding to top
quark production, is used to validate the modeling of both nonprompt-lepton and nonprompt-
photon backgrounds. These two CRs are included in the simultaneous maximum likelihood fit
to constrain the estimates of these process rates. The selection for the SSWWg CR is the same
as for the SR, except that the m

WW
T requirement is removed and the two leptons are required to

have the same sign. The definition of the Topg CR also follows closely that of the SR, except that
at least one b-tagged jet with pT > 20 GeV is required and the m

WW
T requirement is removed.

The observed distributions in the SR of the invariant mass of the dilepton-photon system (m``g )
and m

WW
T are compared with the expected distributions before the fit in Fig. 2. The experimen-

tal data agree with the prediction within the uncertainties.

Various sources of systematic uncertainty are included in the fit as nuisance parameters and
subject to log-normal constraints. Theoretical sources of systematic uncertainty include the
choice of the renormalization and factorization scales, PDFs, and parton shower modeling.
The two scales are varied by factors of 2 and 0.5 independently. The envelope of these varia-
tions, excluding the two extreme (2, 0.5) and (0.5, 2) cases, is assumed as the uncertainty. The
systematic uncertainty due to PDFs is calculated using the PDF4LHC15 nnlo 30 pdfas PDF
replicas, following the PDF4LHC group prescription [56–59]. Parton shower modeling uncer-
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two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].

In summary, this Letter reports the first observation of WWg production in proton-proton
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two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].

In summary, this Letter reports the first observation of WWg production in proton-proton
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two categories based on jet multiplicity: 0 jet and �1 jet. The number of events in data and pre-
dictions after the fit to the data are listed in Table 1. The observed (expected) signal significance
from the fit is 5.6 (5.1) standard deviations, corresponding to the observed distributions after
the fit to the data shown in Fig. 3. The observed signal strength, µobs. = 1.11 ± 0.16 (stat) ±
0.15 (syst) ± 0.13 (modeling), is extracted in a fiducial region defined by applying the signal
selection at particle level, without the requirements on b jets and additional leptons. The the-
oretical prediction for the WWg fiducial cross section is 5.33 ± 0.34 (scale) ± 0.05 (PDF) fb at
NLO QCD as evaluated by MADGRAPH5 aMC@NLO. The WWg measured cross section from
the simultaneous fit with the uncertainties divided into statistical, experimental, and theoreti-
cal modeling components is s = 5.9 ± 0.8 (stat) ± 0.8 (syst) ± 0.7 (modeling) fb = 5.9 ± 1.3 fb.
The theoretical modeling uncertainties include the renormalization and factorization of QCD
scales, PDFs, and parton shower modeling from all simulations.
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Figure 3: The unrolled two-dimensional m
WW
T -m``g distributions in category 0 jet (left) and �1

jet (right) after the fit to data. The data are compared with the sum of the signal and expected
background. The black points with error bars represent the data and their statistical uncertain-
ties, whereas the hatched bands represent the total uncertainties in the predictions.

We also search for the Hg production mechanism shown in Fig. 1 with modified Higgs bo-
son couplings to light quarks, which have different p

g
T spectra and equivalently Hg invariant

mass compared with other anomalous HZg coupling processes as described in Ref. [14]. The
selection for this search is similar to the EW WWg signal selection but targets the Higgs boson
characteristics by requiring Df`` < 2.5, DR`` < 2.3, and DR`g > 0.8, since the two oppositely
charged W bosons from the Higgs boson decay tend to have opposite spin orientation and the
leptons from W bosons are likely to travel in the same direction [63]. Now the observed WWg
is regarded as a background whose normalization floats and is constrained by incorporating
the remaining WWg events and all CRs in the simultaneous fit. Since the DR`` observable has
good discrimination power [64], the profile likelihood ratio test statistic [65] is built separately
for four processes in bins of DR`` and m

WW
T , where DR`` and m

WW
T are divided into bins of [0.5,

1.8, 2.0, 2.3) and [0, 10, 40, 70, 110, •), respectively. The upper limits on the Hg cross sections
at 95% C.L. are shown in Table 2. The results can be interpreted as limits on the Higgs boson
to light quarks Yukawa couplings kq [10], assuming that the light quark and the Higgs boson
interaction vertex in Fig. 1 is the only parameter that does not behave according to the SM. The
normalized light Yukawa couplings kq are also provided, which rescales kq into units of y

SM

b
evaluated at scale µ = 125 GeV as described in Ref. [66].

In summary, this Letter reports the first observation of WWg production in proton-proton
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See talk by P. Govoni, June 7

A light Higgs boson prevents cross-
section of VBS processes from 
becoming unphysical (diverging)

VBS measurements test the 
consistency of the SM and is 
sensitive to New Physics

…

Figure 2: The cross-sections for longitudinal gauge-boson scattering resulting from subsets of
the tree-level diagrams: (a) diagrams involving only three-gauge-boson couplings, (b) diagram
involving only four-gauge-boson couplings, (c) diagrams involving Higgs bosons.

Figure 3: The integrated lowest-order cross-sections for various polarizations.
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Complementary probe to direct Higgs measurements

Triple Gauge 
Couplings

Quartic Gauge 
Couplings

Higgs 

exchange

Gauge structure of SM EWSB

 productionVV & VVV

 jets productionV & VV +

 (vector boson fusion)VBF



b-associated production
• b-associated production (via b-fusion and 

gluon fusion with gluon➔bb splitting ) studied 
in final states with leptons (WW, ττ)


• Obs (exp) upper limit: 3.7 (6.1) x SM
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p
s = 5,7,8,13,13.6 TeV

(a)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

tZj 13 139 � = 97 ± 13 ± 7 fb � = 102 + 5 � 2 fb (Madgraph5 + aMCNLO (NLO)) JHEP 07 (2020) 124
ts�chan 8 20.3 � = 4.8 ± 0.8 + 1.6 � 1.3 pb � = 5.61 ± 0.22 pb (NLO+NNL) PLB 756 (2016) 228-246
ts�chan 13 140 � = 8.2 ± 0.6 + 3.4 � 2.8 pb � = 10.32 + 0.4 � 0.36 pb (NLO+NNL) JHEP 06 (2023) 191
Wt 7 2.0 � = 16.8 ± 2.9 ± 3.9 pb � = 17.1 ± 0.8 pb (NLO+NLL) PLB 716, 142-159 (2012)
Wt 8 20.3 � = 23 ± 1.3 + 3.4 � 3.7 pb � = 24.4 + 1.1 � 1 pb (NLO+NLL) JHEP 01, 064 (2016)
Wt 13 3.2 � = 94 ± 10 + 28 � 23 pb � = 79.3 + 2.9 � 2.8 pb (NLO+NNLL) JHEP 01 (2018) 63
tt�chan 5 0.3 � = 27.1 + 4.4 � 4.1 + 4.4 � 3.7 pb � = 30.3 + 0.7 � 0.5 pb (MCFM (NNLO) ) arXiv:2310.01518
tt�chan 7 4.6 � = 68 ± 2 ± 8 pb � = 63.7 + 1.4 � 0.8 pb (MCFM (NNLO)) PRD 90, 112006 (2014)
tt�chan 8 20.3 � = 89.6 ± 1.7 + 7.2 � 6.4 pb � = 84.3 + 1.7 � 1.2 pb (MCFM (NNLO)) EPJC 77 (2017) 531
tt�chan 13 140 � = 221 ± 1 ± 13 pb � = 214.2 + 4.1 � 2.6 pb (MCFM (NNLO) ) ATLAS-CONF-2023-026
t̄t [njet � 8] 7 4.7 � = 0.0425 ± 0.004 ± 0.012 pb JHEP 01, 020 (2015)
t̄t [njet = 7] 7 4.7 � = 0.161 ± 0.007 ± 0.033 pb JHEP 01, 020 (2015)
t̄t [njet = 6] 7 4.7 � = 0.611 ± 0.024 ± 0.083 pb JHEP 01, 020 (2015)
t̄t [njet = 5] 7 4.7 � = 1.72 ± 0.04 ± 0.16 pb JHEP 01, 020 (2015)
t̄t [njet = 4] 7 4.7 � = 3.76 ± 0.05 ± 0.27 pb JHEP 01, 020 (2015)
t̄t 5 0.3 � = 67.5 ± 0.9 ± 2.6 pb � = 68.2 + 5.2 � 5.3 pb (top++ NNLO+NNLL) JHEP 06 (2023) 138
t̄t 7 4.6 � = 182.9 ± 3.1 ± 6.4 pb � = 177 + 10 � 11 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 8 20.2 � = 242.9 ± 1.7 ± 8.6 pb � = 252.9 + 13.3 � 14.5 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 13 140 � = 829 ± 1 ± 15.4 pb � = 832 + 46.4 � 50.9 pb (top++ NNLO+NNLL) JHEP 07 (2023) 141
t̄t 13.6 29.0 � = 850 ± 3 ± 27 pb � = 924 + 32 � 40 pb (top++ NNLO+NNLL) arXiv:2308.09529
Z [njet � 7] 7 4.6 � = 0.0062 ± 0.001456 ± 0.00214 pb JHEP 07, 032 (2013)
Z [njet � 6] 7 4.6 � = 0.0253 ± 0.00265 ± 0.00595 pb JHEP 07, 032 (2013)
Z [njet � 6] 13 139 � = 0.000338 ± 5.3e � 05 ± 5.5e � 05 pb� = 0.000511 + 0.00034 � 0.00019 pb (Sherpa (NLO QCD+ NLO EW corr)) ATLAS-CONF-2021-033
Z [njet � 5] 7 4.6 � = 0.135 ± 0.006 ± 0.027 pb JHEP 07, 032 (2013)
Z [njet = 5] 13 139 � = 0.00305 ± 0.00017 ± 0.00025 pb � = 0.00326 + 0.0022 � 0.0012 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 4] 7 4.6 � = 0.65 ± 0.01 ± 0.11 pb � = 0.646 ± 0.031 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 4] 13 139 � = 0.0226 ± 0.0004 ± 0.0015 pb � = 0.0234 + 0.015 � 0.0083 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 3] 7 4.6 � = 3.09 ± 0.03 ± 0.4 pb � = 3.1 ± 0.14 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 3] 13 139 � = 0.1995 ± 0.0013 ± 0.0096 pb � = 0.186 + 0.11 � 0.058 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 2] 7 4.6 � = 15.05 ± 0.06 ± 1.51 pb � = 14.9 ± 0.4 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 2] 13 139 � = 1.941 ± 0.004 ± 0.061 pb � = 1.807 + 0.69 � 0.39 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 1] 7 4.6 � = 68.84 ± 0.13 ± 5.15 pb � = 64.8 ± 3.1 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 1] 13 139 � = 11.74 ± 0.01 ± 0.33 pb � = 11.17 + 2.2 � 1.3 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
�fid(Z! ee, µµ) 5 0.025 � = 374.5 ± 3.4 ± 7.9 pb � = 356 + 9 � 10 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(Z! ee, µµ) 7 4.6 � = 451 ± 0.4 ± 8.8 pb � = 432 + 12.5 � 13.8 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 8 20.2 � = 506 ± 0.2 ± 11 pb � = 486 + 13.6 � 16 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13 3.2 � = 776 ± 1 ± 18 pb � = 744 + 22 � 28 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13.6 29.0 � = 744 ± 11 ± 11 pb � = 746 + 21 � 22 pb (DYNNLO+CT14 NNLO) arXiv:2308.09529
W [njet � 7] 7 4.6 � = 0.041 ± 0.0068 ± 0.031 pb EPJC 75 (2015) 82
W [njet � 7] 8 20.2 � = 0.041 ± 0.003 ± 0.032 pb � = 0.052 + 0.007 � 0.02 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 6] 7 4.6 � = 0.199 ± 0.019 ± 0.11 pb EPJC 75 (2015) 82
W [njet � 6] 8 20.2 � = 0.22 ± 0.006 ± 0.121 pb � = 0.239 + 0.03 � 0.084 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 5] 7 4.6 � = 0.877 ± 0.032 ± 0.301 pb � = 0.933 ± 0.027 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 5] 8 20.2 � = 1.107 ± 0.013 ± 0.423 pb � = 1.1 + 0.13 � 0.38 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 4] 7 4.6 � = 4.241 ± 0.056 ± 0.885 pb � = 4.67 ± 0.06 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 4] 8 20.2 � = 5.47 ± 0.03 ± 1.47 pb � = 5 + 0.5 � 1.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 3] 7 4.6 � = 21.82 ± 0.1 ± 3.23 pb � = 23.47 ± 0.22 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 3] 8 20.2 � = 26.38 ± 0.06 ± 5.34 pb � = 23.6 + 1.3 � 5 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 2] 7 4.6 � = 111.7 ± 0.2 ± 12.2 pb � = 111.98 ± 0.44 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 2] 8 20.2 � = 128.35 ± 0.12 ± 20.39 pb � = 126.5 + 2.1 � 14.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 1] 7 4.6 � = 493.8 ± 0.5 ± 45.1 pb � = 474.22 ± 0.84 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 1] 8 20.2 � = 564.71 ± 0.24 ± 72.13 pb � = 584 + 8 � 37 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
�fid(W! e⌫, µ⌫) 5 0.025 � = 3.667 ± 0.016 ± 0.084 nb � = 3.58 ± 0.11 nb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(W! e⌫, µ⌫) 7 4.6 � = 4.911 ± 0.001 ± 0.092 nb � = 4.777 + 0.12 � 0.14 nb (DYNNLO + CT14NNLO) EPJC 77 (2017) 367
�fid(W! e⌫, µ⌫) 8 20.2 � = 5247 ± 0.6 ± 111 pb � = 5120 ± 142 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 760
�fid(W! e⌫, µ⌫) 13 0.081 � = 8.03 ± 0.01 ± 0.23 nb � = 7.82 + 0.26 � 0.3 nb (DYNNLO + CT14NNLO) PLB 759 (2016) 601
� [njet � 3] 8 20.2 � = 8.7 ± 0.02 ± 0.8 pb � = 9.5 + 0.9 � 1.2 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 2] 8 20.2 � = 30.4 ± 0.04 ± 1.8 pb � = 29.2 + 2.8 � 2.7 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 8 20.2 � = 134 ± 0.1 ± 4 pb � = 128 + 11 � 9 pb (JETPHOX (NLO)) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 13 3.2 � = 300 ± 0.4 ± 12 pb � = 319 + 55 � 46 pb (SHERPA (NLO)) PLB 780 (2018) 578
� 7 4.6 � = 359 ± 3 + 22 � 16 pb � = 308 ± 40 pb (JETPHOX (NLO)) PRD 89 (2014) 052004
� 8 20.2 � = 56.8 ± 0.1 + 5.8 � 5.6 nb � = 52.2 ± 7 nb (PETER (NLO+N3LL)) JHEP 06 (2016) 005
� 13 3.2 � = 399 ± 0.4 ± 16 pb � = 352 + 36 � 30 pb (JETPHOX+MMHT2014 (NLO)) PLB 2017 04 072
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 7 4.5 � = 86.87 ± 0.26 + 7.56 � 7.2 nb � = 86.9 + 4.7 � 12.4 nb (NLOJet++, CT10) JHEP 05 (2014) 059
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 13 3.2 � = 321 ± 0.8 + 18.6 � 19 nb � = 340 + 17 � 54 nb (NLOJet++, CT14) JHEP 05 (2018) 195
Incl. jet R=0.4, |y| < 3.0 7 4.5 � = 563.9 ± 1.5 + 55.4 � 51.4 nb � = 569.8 + 29.5 � 46.3 nb (NLOJet++, CT10) JHEP 02 (2015) 153
Incl. jet R=0.4, |y| < 3.0 8 20.2 � = 726.4 ± 1.1 + 42.7 � 41.8 nb � = 800 + 59 � 100 nb (NLOJet++, CT14) JHEP 09 (2017) 020
Incl. jet R=0.4, |y| < 3.0 13 3.2 � = 1845 ± 4 + 119 � 120 nb � = 1997 + 152 � 208 nb (NLOJet++, CT14) JHEP 05 (2018) 195
pp inelastic 7 8⇥10�8 � = 71.34 ± 0.36 ± 0.83 mb � = 71.5 + 20 � 2 mb (Schuler/Sjöstrand) Nucl. Phys. B (2014) 486
pp inelastic 8 50⇥10�8 � = 71.73 ± 0.15 ± 0.69 mb � = 73 ± 2 mb (Schuler/Sjöstrand) PLB 761 (2016) 158
pp inelastic 13 34⇥10�8 � = 77.41 ± 1.08 mb � = 78.4 ± 2 mb (Schuler/Sjöstrand) EPJC 83 (2023) 441
pp 7 8⇥10�8 � = 95.35 ± 0.38 ± 1.3 mb � = 97.26 ± 2.12 mb (COMPETE HPR1R2) Nucl. Phys. B (2014) 486
pp 8 50⇥10�8 � = 96.07 ± 0.18 ± 0.91 mb � = 99.55 ± 2.14 mb (COMPETE HPR1R2) PLB 761 (2016) 158
pp 13 34⇥10�8 � = 104.7 ± 0.22 ± 1.07 mb � = 100.3 ± 0.12 mb (COMPETE HPR1R2) EPJC 83 (2023) 441
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(b)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

�fid
(WZjj) EWK 8 20.3 � = 0.29 + 0.14 � 0.12 + 0.09 � 0.1 fb � = 0.13 ± 0.01 fb (VBFNLO) PRD 93 (2016) 092004

�fid
(WZjj) EWK 13 36.1 � = 0.57 + 0.14 � 0.13 + 0.07 � 0.05 fb � = 0.32 ± 0.03 fb (Sherpa 2.2.2) PLB 793 (92019) 469

�fid
(ZZjj) EWK 13 139 � = 0.82 ± 0.18 ± 0.11 fb � = 0.61 ± 0.03 fb (Sherpa 2.2.2) Nature Phys. 19 (2023) 237

�fid
(W

±
W
±
jj) EWK 8 20.3 � = 1.5 ± 0.5 ± 0.2 fb � = 0.95 ± 0.06 fb (PowhegBox) PRD 96, 012007 (2017)

�fid
(W

±
W
±
jj) EWK 13 139 � = 2.92 ± 0.22 ± 0.19 fb � = 2.53 + 0.22 � 0.19 fb (Madgraph5 + aMCNLO) Target journal JHEP

��!WW!eµX 8 20.2 � = 6.9 ± 2.2 ± 1.4 fb � = 4.4 ± 0.3 fb (HERWIG++) PRD 94 (2016) 032011
��!WW!eµX 13 139 � = 3.13 ± 0.31 ± 0.28 fb � = 3.5 ± 1 fb (MG5 aMCNLO+Pythia8 ⇥ Surv. Fact (0.82)) PLB 816 (2021) 136190
Z�jj EWK 8 20.3 � = 1.1 ± 0.5 ± 0.4 fb � = 0.94 ± 0.09 fb (VBFNLO) JHEP 07 (2017) 107
Z�jj EWK 13 140 � = 3.6 ± 0.5 ± 0.5 fb � = 3.5 ± 0.2 fb (Madgraph5 + aMCNLO) PLB 846 (2023) 138222
WWW 13 139 � = 0.82 ± 0.01 ± 0.08 pb � = 0.511 ± 0.018 pb (NLO QCD ) PRL 129 (2022) 061803
WWZ 13 79.8 � = 0.55 ± 0.14 + 0.15 � 0.13 pb � = 0.358 ± 0.036 pb (Sherpa 2.2.2) PLB 798 (2019) 134913
�fid

(WZ� ! e⌫µ⌫�) 13 140 � = 2.01 ± 0.3 ± 0.16 fb � = 1.5 ± 0.06 fb (Sherpa2.2.11 (NLO)) arXiv:2305.16994
�fid

(WW� ! e⌫µ⌫�) 8 20.2 � = 1.5 ± 0.9 ± 0.5 fb � = 2 ± 0.1 fb (VBFNLO+CT14 (NLO)) EPJC 77 (2017) 646
�fid

(W�� ! `⌫��) 8 20.3 � = 6.1 + 1.1 � 1 ± 1.2 fb � = 2.9 ± 0.16 fb (MCFM NLO) PRL 115, 031802 (2015)
�fid

(W�� ! `⌫��) 13 140 � = 12.2 ± 1 + 1.9 � 1.8 fb � = 12 + 2.15 � 1.46 fb (Sherpa 2.2.10 NLO) arXiv:2308.03041
�fid

(Z�� ! ``��) 8 20.3 � = 5.07 + 0.73 � 0.68 + 0.42 � 0.39 fb � = 3.7 + 0.21 � 0.11 fb (MCFM NLO) PRD 93, 112002 (2016)
�fid

(Z�� ! ``��) 13 139 � = 2.45 ± 0.2 ± 0.22 fb � = 2.26 + 0.36 � 0.28 fb (Sherpa 2.2.10 NLO) EPJC 83 (2023) 539
t̄tt̄t 13 140 � = 22.5 + 4.7 � 3.4 + 6.6 � 5.5 fb � = 13.4 + 1 � 1.8 fb (NLO QCD + EW) EPJC 83 (2023) 496
�fid

(���) 8 20.2 � = 72.6 ± 6.5 ± 9.2 fb � = 67.5 + 7.5 � 5.7 fb (NNLO) PLB 781 (2018) 55,
Zjj EWK 8 20.3 � = 10.7 ± 0.9 ± 1.9 fb � = 9.38 + 0.3 � 0.4 fb (PowhegBox (NLO)) JHEP 04, 031 (2014)
Zjj EWK 13 139 � = 37.4 ± 3.5 ± 5.5 fb � = 39.5 ± 3.6 fb (Herwig7+VBFNLO ) EPJC 81 (2021) 163
Wjj EWK (mjj > 500 GeV) 7 4.7 � = 144 ± 23 ± 26 fb � = 144 ± 11 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
Wjj EWK (mjj > 500 GeV) 8 20.2 � = 159 ± 10 ± 26 fb � = 198 ± 12 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
t̄t� 7 4.6 � = 63 ± 8 + 17 � 13 fb � = 48 ± 10 fb (Whizard+NLO) PRD 91 (2015) 072007
t̄t� 8 20.2 � = 139 ± 7 ± 17 fb � = 151 ± 25 fb (MadGraph+PRD 83 (2011) 074013) JHEP 11 (2017) 086
t̄t� 13 36.1 � = 521 ± 9 ± 41 fb � = 495 ± 99 fb (PRD 83 (2011) 074013) EPJC 79 (2019) 382
t̄tH(H ! yy) 13 139 � = 1.24 + 0.32 � 0.35 + 0.08 � 0.11 fb � = 1.33 ± 0.12 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tH 8 20.3 � = 220 ± 100 ± 70 fb � = 133 + 8 � 13 fb (LHCHXSWG NLO QCD + NLO EW) PLB 784 (2018) 173
t̄tH 13 139 � = 560 ± 80 + 70 � 80 fb � = 580 ± 50 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tZ 8 20.3 � = 176 + 52 � 48 ± 24 fb � = 215 ± 30 fb (HELAC-NLO) JHEP 11, 172 (2015)
t̄tZ 13 140 � = 860 ± 40 ± 40 fb � = 860 + 80 � 90 fb (NLO + NNLL) ATLAS-CONF-2023-065
t̄tW 8 20.3 � = 369 + 86 � 79 ± 44 fb � = 232 ± 32 fb (MCFM) JHEP 11, 172 (2015)
t̄tW 13 140 � = 890 ± 50 ± 70 fb � = 745 ± 52 fb (NNLOQCD + NLOEW ) ATLAS-CONF-2023-019
�fid

(W� ! `⌫�) 7 4.6 � = 2.77 ± 0.03 ± 0.36 pb � = 2.658 ± 0.11 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 7 4.6 � = 1.31 ± 0.02 ± 0.12 pb � = 1.327 + 0.026 � 0.037 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 8 20.3 � = 1.507 ± 0.01 + 0.083 � 0.078 pb � = 1.483 + 0.019 � 0.037 pb (NNLO) PRD 93, 112002 (2016), arXiv:1407.1618
�fid

(Z� ! ``�) 13 36.1 � = 533.7 ± 2.1 ± 15.4 fb � = 515 + 20 � 19 fb (Matrix NNLO QCD + NLO EW) JHEP 03 (2020) 054
VH(��), |yH| < 2.5 13 139 � = 6 + 1.3 � 1.4 + 0.4 � 0.5 fb � = 4.53 + 0.13 � 0.14 fb (Powheg Box NLO(QCD)) Nature 607, pages 52-59 (2022)
VH(bb̄), |yH| < 2.5 13 139 � = 1190 ± 130 + 160 � 140 fb � = 1162 + 31 � 29 fb (Powheg Box NLO(QCD)) ATLAS-CONF-2020-027
VH 8 20.3 � = 1.03 + 0.37 � 0.36 + 0.26 � 0.21 pb � = 1.12 ± 0.03 pb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VH 13 36.1 � = 2719 + 947 � 810 fb � = 2255 ± 44 fb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VBF H ! ��, |yH| < 2.5 13 139 � = 11.7 ± 1.6 + 1.1 � 1.4 fb � = 7.97 + 0.21 � 0.22 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! ⌧⌧, |yH| < 2.5 13 139 � = 197 ± 28 + 32 � 26 fb � = 220 ± 5 fb (NNLO QCD and NLO EW ) JHEP 08 (2022) 175
VBF H ! ZZ

⇤, |yH| < 2.5 13 139 � = 120 + 40 � 50 ± 10 fb � = 92.8 + 2.3 � 2.4 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! WW

⇤ 8 20.3 � = 0.51 + 0.17 � 0.15 + 0.13 � 0.08 pb � = 0.35 ± 0.02 pb (LHC-HXSWG) PRD 92 (2015) 012006
VBF H ! WW

⇤ 13 139 � = 0.79 + 0.11 � 0.1 + 0.16 � 0.12 pb � = 0.81 ± 0.02 pb (NNLO QCD and NLO EW ) PRD 108 (2023) 032005
H VBF 8 20.3 � = 2.43 + 0.5 � 0.49 + 0.33 � 0.26 pb � = 1.6 ± 0.04 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H VBF, |yH| < 2.5 13 139 � = 4 ± 0.3 + 0.3 � 0.4 pb � = 3.51 ± 0.07 pb (LHC-HXSWG) Nature 607, pages 52-59 (2022)
�fid

(H ! ZZ ! 4`) 8 20.3 � = 2.11 + 0.53 � 0.47 ± 0.1 fb � = 1.29 ± 0.13 fb (LHC-HXSWG) JHEP 10 (2017) 132
�fid

(H ! ZZ ! 4`) 13 139 � = 3.28 ± 0.3 ± 0.11 fb � = 3.41 ± 0.18 fb (N3LO) EPJC 80 (2020) 941
�fid

(H ! ZZ ! 4`) 13.6 29.0 � = 2.8 ± 0.7 ± 0.21 fb � = 3.67 ± 0.19 fb (N3LO) ATLAS-CONF-2023-032
�fid

(H!��) 8 20.3 � = 42.5 ± 9.8 + 3.1 � 3 fb � = 31 ± 3.2 fb (LHC-HXSWG) ATLAS-CONF-2015-060
�fid

(H!��) 13 139 � = 65.2 ± 4.5 ± 5.6 fb � = 63.6 ± 3.3 fb (LHC-HXSWG) JHEP 08 (2022) 027
�fid

(H!��) 13.6 31.4 � = 76 ± 11 + 9 � 7 fb � = 67.6 ± 3.7 fb (LHC-HXSWG) arXiv:2306.11379
�fid

(H ! ⌧⌧) 8 20.3 � = 2.1 ± 0.4 + 0.5 � 0.4 pb � = 1.39 ± 0.14 pb (LHC-HXSWG) JHEP 04 117 (2015)
�fid

(H ! ⌧⌧) 13 139 � = 2.94 ± 0.21 + 0.37 � 0.32 pb � = 3.17 ± 0.09 pb (LHCHiggsXSWG ) JHEP 08 (2022) 175
gg ! H ! WW

⇤ 8 20.3 � = 4.6 ± 0.9 + 0.8 � 0.7 pb � = 4.2 ± 0.5 pb (LHC-HXSWG) PRD 92 (2015) 012006
gg ! H ! WW

⇤ 13 139 � = 12.4 ± 0.6 ± 1.5 pb � = 10.4 ± 0.6 pb (N3LO (LHC-HXSWG)) PRD 108 (2023) 032005
H 8 20.3 � = 27.7 ± 3 + 2.3 � 1.9 pb � = 24.5 + 1.3 � 1.8 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H 13 139 � = 55.5 ± 3.2 + 2.4 � 2.2 pb � = 55.6 ± 2.5 pb (LHC-HXSWG YR4 ) JHEP 05 (2023) 028
H 13.6 31.4 � = 58.2 ± 7.5 ± 4.5 pb � = 59.9 ± 2.6 pb (LHC-HXSWG YR4 ) arXiv:2306.11379
�fid

(��)[�R�� > 0.4] 7 4.9 � = 44 + 3.2 � 4.2 pb � = 44 ± 6 pb (2�NNLO) JHEP 01, 086 (2013)
�fid

(��)[�R�� > 0.4] 8 20.2 � = 16.82 ± 0.07 + 0.75 � 0.78 pb � = 14.2 + 1.25 � 0.91 pb (2�NNLO + CT10) PRD 95 (2017) 112005
�fid

(��)[�R�� > 0.4] 13 139 � = 31.4 ± 0.1 ± 2.4 pb � = 29.7 + 2.4 � 2 pb (NNLOjet (NNLO) ) JHEP 11 (2021) 169
ZZ 7 4.6 � = 6.7 ± 0.7 + 0.5 � 0.4 pb � = 6.735 + 0.195 � 0.155 pb (NNLO) JHEP 03, 128 (2013), PLB 735 (2014) 311
ZZ 8 20.3 � = 7.3 ± 0.4 + 0.4 � 0.3 pb � = 8.284 + 0.249 � 0.191 pb (NNLO) JHEP 01, 099 (2017)
ZZ 13 36.1 � = 17.3 ± 0.6 ± 0.8 pb � = 16.9 + 0.6 � 0.5 pb (Matrix (NNLO) & Sherpa (NLO)) PRD 97 (2018) 032005
ZZ 13.6 29.0 � = 16.9 ± 0.7 ± 0.7 pb � = 16.7 ± 0.4 pb (Matrix (NNLO) & Sherpa (NLO)) ATLAS-CONF-2023-062
WZ 7 4.6 � = 19 + 1.4 � 1.3 ± 1 pb � = 19.34 + 0.3 � 0.4 pb (MATRIX (NNLO)) EPJC 72 (2012) 2173
WZ 8 20.3 � = 24.3 ± 0.6 ± 0.9 pb � = 23.92 ± 0.4 pb (MATRIX (NNLO)) PRD 93, 092004 (2016)
WZ 13 36.1 � = 51 ± 0.8 ± 2.3 pb � = 49.1 + 1.1 � 1 pb (MATRIX (NNLO)) EPJC 79 (2019) 535
WW 7 4.6 � = 51.9 ± 2 ± 4.4 pb � = 49.04 + 1.03 � 0.88 pb (NNLO) PRD 87 (2013) 112001, PRL 113 (2014) 212001
WW 8 20.3 � = 68.2 ± 1.2 ± 4.6 pb � = 65 + 1.2 � 1.1 pb (NNLO) PLB 763, 114 (2016)
WW 13 36.1 � = 130.04 ± 1.7 ± 10.6 pb � = 128.4 + 3.2 � 2.9 pb (NNLO) EPJC 79 (2019) 884

Standard Model Production Cross Section Measurements
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ATLAS Preliminary
p
s = 7, 8, 13, 13.6 TeV

(c)

Figure 3: Summary of several Standard Model total and fiducial production cross-section measurements (a) with
associated references (b) and (c). Where total cross sections are reported, the measurements are corrected for
branching fractions and compared to the corresponding theoretical expectations. In some cases, the fiducial selection
is di�erent between measurements in the same final state for di�erent centre-of-mass energies

p
B, resulting in lower

cross section values at higher
p
B.
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b-associated production
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The Higgs self-coupling
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• Single-Higgs production 
modes indirectly sensitive to 
the self-coupling through 
electro-weak effects


• Precision theory predictions 
absolutely crucial  

De Grassi et al 1607.04251

Bizon et al 1610.05771 


Maltoni et al 1709.08649  


Indirect sensitivity through precision studies!bb̄ττ + bb̄γγ + bb̄bb̄

PROBING H SELF INTERACTION THE MOST CHALLENGING?
Direct sensitivity in HH production:  Progress, but extremely hard to measure even at (HL-)LHC
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(a)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

tZj 13 139 � = 97 ± 13 ± 7 fb � = 102 + 5 � 2 fb (Madgraph5 + aMCNLO (NLO)) JHEP 07 (2020) 124
ts�chan 8 20.3 � = 4.8 ± 0.8 + 1.6 � 1.3 pb � = 5.61 ± 0.22 pb (NLO+NNL) PLB 756 (2016) 228-246
ts�chan 13 140 � = 8.2 ± 0.6 + 3.4 � 2.8 pb � = 10.32 + 0.4 � 0.36 pb (NLO+NNL) JHEP 06 (2023) 191
Wt 7 2.0 � = 16.8 ± 2.9 ± 3.9 pb � = 17.1 ± 0.8 pb (NLO+NLL) PLB 716, 142-159 (2012)
Wt 8 20.3 � = 23 ± 1.3 + 3.4 � 3.7 pb � = 24.4 + 1.1 � 1 pb (NLO+NLL) JHEP 01, 064 (2016)
Wt 13 3.2 � = 94 ± 10 + 28 � 23 pb � = 79.3 + 2.9 � 2.8 pb (NLO+NNLL) JHEP 01 (2018) 63
tt�chan 5 0.3 � = 27.1 + 4.4 � 4.1 + 4.4 � 3.7 pb � = 30.3 + 0.7 � 0.5 pb (MCFM (NNLO) ) arXiv:2310.01518
tt�chan 7 4.6 � = 68 ± 2 ± 8 pb � = 63.7 + 1.4 � 0.8 pb (MCFM (NNLO)) PRD 90, 112006 (2014)
tt�chan 8 20.3 � = 89.6 ± 1.7 + 7.2 � 6.4 pb � = 84.3 + 1.7 � 1.2 pb (MCFM (NNLO)) EPJC 77 (2017) 531
tt�chan 13 140 � = 221 ± 1 ± 13 pb � = 214.2 + 4.1 � 2.6 pb (MCFM (NNLO) ) ATLAS-CONF-2023-026
t̄t [njet � 8] 7 4.7 � = 0.0425 ± 0.004 ± 0.012 pb JHEP 01, 020 (2015)
t̄t [njet = 7] 7 4.7 � = 0.161 ± 0.007 ± 0.033 pb JHEP 01, 020 (2015)
t̄t [njet = 6] 7 4.7 � = 0.611 ± 0.024 ± 0.083 pb JHEP 01, 020 (2015)
t̄t [njet = 5] 7 4.7 � = 1.72 ± 0.04 ± 0.16 pb JHEP 01, 020 (2015)
t̄t [njet = 4] 7 4.7 � = 3.76 ± 0.05 ± 0.27 pb JHEP 01, 020 (2015)
t̄t 5 0.3 � = 67.5 ± 0.9 ± 2.6 pb � = 68.2 + 5.2 � 5.3 pb (top++ NNLO+NNLL) JHEP 06 (2023) 138
t̄t 7 4.6 � = 182.9 ± 3.1 ± 6.4 pb � = 177 + 10 � 11 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 8 20.2 � = 242.9 ± 1.7 ± 8.6 pb � = 252.9 + 13.3 � 14.5 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 13 140 � = 829 ± 1 ± 15.4 pb � = 832 + 46.4 � 50.9 pb (top++ NNLO+NNLL) JHEP 07 (2023) 141
t̄t 13.6 29.0 � = 850 ± 3 ± 27 pb � = 924 + 32 � 40 pb (top++ NNLO+NNLL) arXiv:2308.09529
Z [njet � 7] 7 4.6 � = 0.0062 ± 0.001456 ± 0.00214 pb JHEP 07, 032 (2013)
Z [njet � 6] 7 4.6 � = 0.0253 ± 0.00265 ± 0.00595 pb JHEP 07, 032 (2013)
Z [njet � 6] 13 139 � = 0.000338 ± 5.3e � 05 ± 5.5e � 05 pb� = 0.000511 + 0.00034 � 0.00019 pb (Sherpa (NLO QCD+ NLO EW corr)) ATLAS-CONF-2021-033
Z [njet � 5] 7 4.6 � = 0.135 ± 0.006 ± 0.027 pb JHEP 07, 032 (2013)
Z [njet = 5] 13 139 � = 0.00305 ± 0.00017 ± 0.00025 pb � = 0.00326 + 0.0022 � 0.0012 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 4] 7 4.6 � = 0.65 ± 0.01 ± 0.11 pb � = 0.646 ± 0.031 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 4] 13 139 � = 0.0226 ± 0.0004 ± 0.0015 pb � = 0.0234 + 0.015 � 0.0083 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 3] 7 4.6 � = 3.09 ± 0.03 ± 0.4 pb � = 3.1 ± 0.14 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 3] 13 139 � = 0.1995 ± 0.0013 ± 0.0096 pb � = 0.186 + 0.11 � 0.058 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 2] 7 4.6 � = 15.05 ± 0.06 ± 1.51 pb � = 14.9 ± 0.4 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 2] 13 139 � = 1.941 ± 0.004 ± 0.061 pb � = 1.807 + 0.69 � 0.39 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 1] 7 4.6 � = 68.84 ± 0.13 ± 5.15 pb � = 64.8 ± 3.1 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 1] 13 139 � = 11.74 ± 0.01 ± 0.33 pb � = 11.17 + 2.2 � 1.3 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
�fid(Z! ee, µµ) 5 0.025 � = 374.5 ± 3.4 ± 7.9 pb � = 356 + 9 � 10 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(Z! ee, µµ) 7 4.6 � = 451 ± 0.4 ± 8.8 pb � = 432 + 12.5 � 13.8 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 8 20.2 � = 506 ± 0.2 ± 11 pb � = 486 + 13.6 � 16 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13 3.2 � = 776 ± 1 ± 18 pb � = 744 + 22 � 28 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13.6 29.0 � = 744 ± 11 ± 11 pb � = 746 + 21 � 22 pb (DYNNLO+CT14 NNLO) arXiv:2308.09529
W [njet � 7] 7 4.6 � = 0.041 ± 0.0068 ± 0.031 pb EPJC 75 (2015) 82
W [njet � 7] 8 20.2 � = 0.041 ± 0.003 ± 0.032 pb � = 0.052 + 0.007 � 0.02 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 6] 7 4.6 � = 0.199 ± 0.019 ± 0.11 pb EPJC 75 (2015) 82
W [njet � 6] 8 20.2 � = 0.22 ± 0.006 ± 0.121 pb � = 0.239 + 0.03 � 0.084 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 5] 7 4.6 � = 0.877 ± 0.032 ± 0.301 pb � = 0.933 ± 0.027 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 5] 8 20.2 � = 1.107 ± 0.013 ± 0.423 pb � = 1.1 + 0.13 � 0.38 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 4] 7 4.6 � = 4.241 ± 0.056 ± 0.885 pb � = 4.67 ± 0.06 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 4] 8 20.2 � = 5.47 ± 0.03 ± 1.47 pb � = 5 + 0.5 � 1.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 3] 7 4.6 � = 21.82 ± 0.1 ± 3.23 pb � = 23.47 ± 0.22 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 3] 8 20.2 � = 26.38 ± 0.06 ± 5.34 pb � = 23.6 + 1.3 � 5 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 2] 7 4.6 � = 111.7 ± 0.2 ± 12.2 pb � = 111.98 ± 0.44 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 2] 8 20.2 � = 128.35 ± 0.12 ± 20.39 pb � = 126.5 + 2.1 � 14.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 1] 7 4.6 � = 493.8 ± 0.5 ± 45.1 pb � = 474.22 ± 0.84 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 1] 8 20.2 � = 564.71 ± 0.24 ± 72.13 pb � = 584 + 8 � 37 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
�fid(W! e⌫, µ⌫) 5 0.025 � = 3.667 ± 0.016 ± 0.084 nb � = 3.58 ± 0.11 nb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(W! e⌫, µ⌫) 7 4.6 � = 4.911 ± 0.001 ± 0.092 nb � = 4.777 + 0.12 � 0.14 nb (DYNNLO + CT14NNLO) EPJC 77 (2017) 367
�fid(W! e⌫, µ⌫) 8 20.2 � = 5247 ± 0.6 ± 111 pb � = 5120 ± 142 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 760
�fid(W! e⌫, µ⌫) 13 0.081 � = 8.03 ± 0.01 ± 0.23 nb � = 7.82 + 0.26 � 0.3 nb (DYNNLO + CT14NNLO) PLB 759 (2016) 601
� [njet � 3] 8 20.2 � = 8.7 ± 0.02 ± 0.8 pb � = 9.5 + 0.9 � 1.2 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 2] 8 20.2 � = 30.4 ± 0.04 ± 1.8 pb � = 29.2 + 2.8 � 2.7 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 8 20.2 � = 134 ± 0.1 ± 4 pb � = 128 + 11 � 9 pb (JETPHOX (NLO)) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 13 3.2 � = 300 ± 0.4 ± 12 pb � = 319 + 55 � 46 pb (SHERPA (NLO)) PLB 780 (2018) 578
� 7 4.6 � = 359 ± 3 + 22 � 16 pb � = 308 ± 40 pb (JETPHOX (NLO)) PRD 89 (2014) 052004
� 8 20.2 � = 56.8 ± 0.1 + 5.8 � 5.6 nb � = 52.2 ± 7 nb (PETER (NLO+N3LL)) JHEP 06 (2016) 005
� 13 3.2 � = 399 ± 0.4 ± 16 pb � = 352 + 36 � 30 pb (JETPHOX+MMHT2014 (NLO)) PLB 2017 04 072
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 7 4.5 � = 86.87 ± 0.26 + 7.56 � 7.2 nb � = 86.9 + 4.7 � 12.4 nb (NLOJet++, CT10) JHEP 05 (2014) 059
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 13 3.2 � = 321 ± 0.8 + 18.6 � 19 nb � = 340 + 17 � 54 nb (NLOJet++, CT14) JHEP 05 (2018) 195
Incl. jet R=0.4, |y| < 3.0 7 4.5 � = 563.9 ± 1.5 + 55.4 � 51.4 nb � = 569.8 + 29.5 � 46.3 nb (NLOJet++, CT10) JHEP 02 (2015) 153
Incl. jet R=0.4, |y| < 3.0 8 20.2 � = 726.4 ± 1.1 + 42.7 � 41.8 nb � = 800 + 59 � 100 nb (NLOJet++, CT14) JHEP 09 (2017) 020
Incl. jet R=0.4, |y| < 3.0 13 3.2 � = 1845 ± 4 + 119 � 120 nb � = 1997 + 152 � 208 nb (NLOJet++, CT14) JHEP 05 (2018) 195
pp inelastic 7 8⇥10�8 � = 71.34 ± 0.36 ± 0.83 mb � = 71.5 + 20 � 2 mb (Schuler/Sjöstrand) Nucl. Phys. B (2014) 486
pp inelastic 8 50⇥10�8 � = 71.73 ± 0.15 ± 0.69 mb � = 73 ± 2 mb (Schuler/Sjöstrand) PLB 761 (2016) 158
pp inelastic 13 34⇥10�8 � = 77.41 ± 1.08 mb � = 78.4 ± 2 mb (Schuler/Sjöstrand) EPJC 83 (2023) 441
pp 7 8⇥10�8 � = 95.35 ± 0.38 ± 1.3 mb � = 97.26 ± 2.12 mb (COMPETE HPR1R2) Nucl. Phys. B (2014) 486
pp 8 50⇥10�8 � = 96.07 ± 0.18 ± 0.91 mb � = 99.55 ± 2.14 mb (COMPETE HPR1R2) PLB 761 (2016) 158
pp 13 34⇥10�8 � = 104.7 ± 0.22 ± 1.07 mb � = 100.3 ± 0.12 mb (COMPETE HPR1R2) EPJC 83 (2023) 441
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(b)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

�fid
(WZjj) EWK 8 20.3 � = 0.29 + 0.14 � 0.12 + 0.09 � 0.1 fb � = 0.13 ± 0.01 fb (VBFNLO) PRD 93 (2016) 092004

�fid
(WZjj) EWK 13 36.1 � = 0.57 + 0.14 � 0.13 + 0.07 � 0.05 fb � = 0.32 ± 0.03 fb (Sherpa 2.2.2) PLB 793 (92019) 469

�fid
(ZZjj) EWK 13 139 � = 0.82 ± 0.18 ± 0.11 fb � = 0.61 ± 0.03 fb (Sherpa 2.2.2) Nature Phys. 19 (2023) 237

�fid
(W

±
W
±
jj) EWK 8 20.3 � = 1.5 ± 0.5 ± 0.2 fb � = 0.95 ± 0.06 fb (PowhegBox) PRD 96, 012007 (2017)

�fid
(W

±
W
±
jj) EWK 13 139 � = 2.92 ± 0.22 ± 0.19 fb � = 2.53 + 0.22 � 0.19 fb (Madgraph5 + aMCNLO) Target journal JHEP

��!WW!eµX 8 20.2 � = 6.9 ± 2.2 ± 1.4 fb � = 4.4 ± 0.3 fb (HERWIG++) PRD 94 (2016) 032011
��!WW!eµX 13 139 � = 3.13 ± 0.31 ± 0.28 fb � = 3.5 ± 1 fb (MG5 aMCNLO+Pythia8 ⇥ Surv. Fact (0.82)) PLB 816 (2021) 136190
Z�jj EWK 8 20.3 � = 1.1 ± 0.5 ± 0.4 fb � = 0.94 ± 0.09 fb (VBFNLO) JHEP 07 (2017) 107
Z�jj EWK 13 140 � = 3.6 ± 0.5 ± 0.5 fb � = 3.5 ± 0.2 fb (Madgraph5 + aMCNLO) PLB 846 (2023) 138222
WWW 13 139 � = 0.82 ± 0.01 ± 0.08 pb � = 0.511 ± 0.018 pb (NLO QCD ) PRL 129 (2022) 061803
WWZ 13 79.8 � = 0.55 ± 0.14 + 0.15 � 0.13 pb � = 0.358 ± 0.036 pb (Sherpa 2.2.2) PLB 798 (2019) 134913
�fid

(WZ� ! e⌫µ⌫�) 13 140 � = 2.01 ± 0.3 ± 0.16 fb � = 1.5 ± 0.06 fb (Sherpa2.2.11 (NLO)) arXiv:2305.16994
�fid

(WW� ! e⌫µ⌫�) 8 20.2 � = 1.5 ± 0.9 ± 0.5 fb � = 2 ± 0.1 fb (VBFNLO+CT14 (NLO)) EPJC 77 (2017) 646
�fid

(W�� ! `⌫��) 8 20.3 � = 6.1 + 1.1 � 1 ± 1.2 fb � = 2.9 ± 0.16 fb (MCFM NLO) PRL 115, 031802 (2015)
�fid

(W�� ! `⌫��) 13 140 � = 12.2 ± 1 + 1.9 � 1.8 fb � = 12 + 2.15 � 1.46 fb (Sherpa 2.2.10 NLO) arXiv:2308.03041
�fid

(Z�� ! ``��) 8 20.3 � = 5.07 + 0.73 � 0.68 + 0.42 � 0.39 fb � = 3.7 + 0.21 � 0.11 fb (MCFM NLO) PRD 93, 112002 (2016)
�fid

(Z�� ! ``��) 13 139 � = 2.45 ± 0.2 ± 0.22 fb � = 2.26 + 0.36 � 0.28 fb (Sherpa 2.2.10 NLO) EPJC 83 (2023) 539
t̄tt̄t 13 140 � = 22.5 + 4.7 � 3.4 + 6.6 � 5.5 fb � = 13.4 + 1 � 1.8 fb (NLO QCD + EW) EPJC 83 (2023) 496
�fid

(���) 8 20.2 � = 72.6 ± 6.5 ± 9.2 fb � = 67.5 + 7.5 � 5.7 fb (NNLO) PLB 781 (2018) 55,
Zjj EWK 8 20.3 � = 10.7 ± 0.9 ± 1.9 fb � = 9.38 + 0.3 � 0.4 fb (PowhegBox (NLO)) JHEP 04, 031 (2014)
Zjj EWK 13 139 � = 37.4 ± 3.5 ± 5.5 fb � = 39.5 ± 3.6 fb (Herwig7+VBFNLO ) EPJC 81 (2021) 163
Wjj EWK (mjj > 500 GeV) 7 4.7 � = 144 ± 23 ± 26 fb � = 144 ± 11 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
Wjj EWK (mjj > 500 GeV) 8 20.2 � = 159 ± 10 ± 26 fb � = 198 ± 12 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
t̄t� 7 4.6 � = 63 ± 8 + 17 � 13 fb � = 48 ± 10 fb (Whizard+NLO) PRD 91 (2015) 072007
t̄t� 8 20.2 � = 139 ± 7 ± 17 fb � = 151 ± 25 fb (MadGraph+PRD 83 (2011) 074013) JHEP 11 (2017) 086
t̄t� 13 36.1 � = 521 ± 9 ± 41 fb � = 495 ± 99 fb (PRD 83 (2011) 074013) EPJC 79 (2019) 382
t̄tH(H ! yy) 13 139 � = 1.24 + 0.32 � 0.35 + 0.08 � 0.11 fb � = 1.33 ± 0.12 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tH 8 20.3 � = 220 ± 100 ± 70 fb � = 133 + 8 � 13 fb (LHCHXSWG NLO QCD + NLO EW) PLB 784 (2018) 173
t̄tH 13 139 � = 560 ± 80 + 70 � 80 fb � = 580 ± 50 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tZ 8 20.3 � = 176 + 52 � 48 ± 24 fb � = 215 ± 30 fb (HELAC-NLO) JHEP 11, 172 (2015)
t̄tZ 13 140 � = 860 ± 40 ± 40 fb � = 860 + 80 � 90 fb (NLO + NNLL) ATLAS-CONF-2023-065
t̄tW 8 20.3 � = 369 + 86 � 79 ± 44 fb � = 232 ± 32 fb (MCFM) JHEP 11, 172 (2015)
t̄tW 13 140 � = 890 ± 50 ± 70 fb � = 745 ± 52 fb (NNLOQCD + NLOEW ) ATLAS-CONF-2023-019
�fid

(W� ! `⌫�) 7 4.6 � = 2.77 ± 0.03 ± 0.36 pb � = 2.658 ± 0.11 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 7 4.6 � = 1.31 ± 0.02 ± 0.12 pb � = 1.327 + 0.026 � 0.037 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 8 20.3 � = 1.507 ± 0.01 + 0.083 � 0.078 pb � = 1.483 + 0.019 � 0.037 pb (NNLO) PRD 93, 112002 (2016), arXiv:1407.1618
�fid

(Z� ! ``�) 13 36.1 � = 533.7 ± 2.1 ± 15.4 fb � = 515 + 20 � 19 fb (Matrix NNLO QCD + NLO EW) JHEP 03 (2020) 054
VH(��), |yH| < 2.5 13 139 � = 6 + 1.3 � 1.4 + 0.4 � 0.5 fb � = 4.53 + 0.13 � 0.14 fb (Powheg Box NLO(QCD)) Nature 607, pages 52-59 (2022)
VH(bb̄), |yH| < 2.5 13 139 � = 1190 ± 130 + 160 � 140 fb � = 1162 + 31 � 29 fb (Powheg Box NLO(QCD)) ATLAS-CONF-2020-027
VH 8 20.3 � = 1.03 + 0.37 � 0.36 + 0.26 � 0.21 pb � = 1.12 ± 0.03 pb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VH 13 36.1 � = 2719 + 947 � 810 fb � = 2255 ± 44 fb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VBF H ! ��, |yH| < 2.5 13 139 � = 11.7 ± 1.6 + 1.1 � 1.4 fb � = 7.97 + 0.21 � 0.22 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! ⌧⌧, |yH| < 2.5 13 139 � = 197 ± 28 + 32 � 26 fb � = 220 ± 5 fb (NNLO QCD and NLO EW ) JHEP 08 (2022) 175
VBF H ! ZZ

⇤, |yH| < 2.5 13 139 � = 120 + 40 � 50 ± 10 fb � = 92.8 + 2.3 � 2.4 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! WW

⇤ 8 20.3 � = 0.51 + 0.17 � 0.15 + 0.13 � 0.08 pb � = 0.35 ± 0.02 pb (LHC-HXSWG) PRD 92 (2015) 012006
VBF H ! WW

⇤ 13 139 � = 0.79 + 0.11 � 0.1 + 0.16 � 0.12 pb � = 0.81 ± 0.02 pb (NNLO QCD and NLO EW ) PRD 108 (2023) 032005
H VBF 8 20.3 � = 2.43 + 0.5 � 0.49 + 0.33 � 0.26 pb � = 1.6 ± 0.04 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H VBF, |yH| < 2.5 13 139 � = 4 ± 0.3 + 0.3 � 0.4 pb � = 3.51 ± 0.07 pb (LHC-HXSWG) Nature 607, pages 52-59 (2022)
�fid

(H ! ZZ ! 4`) 8 20.3 � = 2.11 + 0.53 � 0.47 ± 0.1 fb � = 1.29 ± 0.13 fb (LHC-HXSWG) JHEP 10 (2017) 132
�fid

(H ! ZZ ! 4`) 13 139 � = 3.28 ± 0.3 ± 0.11 fb � = 3.41 ± 0.18 fb (N3LO) EPJC 80 (2020) 941
�fid

(H ! ZZ ! 4`) 13.6 29.0 � = 2.8 ± 0.7 ± 0.21 fb � = 3.67 ± 0.19 fb (N3LO) ATLAS-CONF-2023-032
�fid

(H!��) 8 20.3 � = 42.5 ± 9.8 + 3.1 � 3 fb � = 31 ± 3.2 fb (LHC-HXSWG) ATLAS-CONF-2015-060
�fid

(H!��) 13 139 � = 65.2 ± 4.5 ± 5.6 fb � = 63.6 ± 3.3 fb (LHC-HXSWG) JHEP 08 (2022) 027
�fid

(H!��) 13.6 31.4 � = 76 ± 11 + 9 � 7 fb � = 67.6 ± 3.7 fb (LHC-HXSWG) arXiv:2306.11379
�fid

(H ! ⌧⌧) 8 20.3 � = 2.1 ± 0.4 + 0.5 � 0.4 pb � = 1.39 ± 0.14 pb (LHC-HXSWG) JHEP 04 117 (2015)
�fid

(H ! ⌧⌧) 13 139 � = 2.94 ± 0.21 + 0.37 � 0.32 pb � = 3.17 ± 0.09 pb (LHCHiggsXSWG ) JHEP 08 (2022) 175
gg ! H ! WW

⇤ 8 20.3 � = 4.6 ± 0.9 + 0.8 � 0.7 pb � = 4.2 ± 0.5 pb (LHC-HXSWG) PRD 92 (2015) 012006
gg ! H ! WW

⇤ 13 139 � = 12.4 ± 0.6 ± 1.5 pb � = 10.4 ± 0.6 pb (N3LO (LHC-HXSWG)) PRD 108 (2023) 032005
H 8 20.3 � = 27.7 ± 3 + 2.3 � 1.9 pb � = 24.5 + 1.3 � 1.8 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H 13 139 � = 55.5 ± 3.2 + 2.4 � 2.2 pb � = 55.6 ± 2.5 pb (LHC-HXSWG YR4 ) JHEP 05 (2023) 028
H 13.6 31.4 � = 58.2 ± 7.5 ± 4.5 pb � = 59.9 ± 2.6 pb (LHC-HXSWG YR4 ) arXiv:2306.11379
�fid

(��)[�R�� > 0.4] 7 4.9 � = 44 + 3.2 � 4.2 pb � = 44 ± 6 pb (2�NNLO) JHEP 01, 086 (2013)
�fid

(��)[�R�� > 0.4] 8 20.2 � = 16.82 ± 0.07 + 0.75 � 0.78 pb � = 14.2 + 1.25 � 0.91 pb (2�NNLO + CT10) PRD 95 (2017) 112005
�fid

(��)[�R�� > 0.4] 13 139 � = 31.4 ± 0.1 ± 2.4 pb � = 29.7 + 2.4 � 2 pb (NNLOjet (NNLO) ) JHEP 11 (2021) 169
ZZ 7 4.6 � = 6.7 ± 0.7 + 0.5 � 0.4 pb � = 6.735 + 0.195 � 0.155 pb (NNLO) JHEP 03, 128 (2013), PLB 735 (2014) 311
ZZ 8 20.3 � = 7.3 ± 0.4 + 0.4 � 0.3 pb � = 8.284 + 0.249 � 0.191 pb (NNLO) JHEP 01, 099 (2017)
ZZ 13 36.1 � = 17.3 ± 0.6 ± 0.8 pb � = 16.9 + 0.6 � 0.5 pb (Matrix (NNLO) & Sherpa (NLO)) PRD 97 (2018) 032005
ZZ 13.6 29.0 � = 16.9 ± 0.7 ± 0.7 pb � = 16.7 ± 0.4 pb (Matrix (NNLO) & Sherpa (NLO)) ATLAS-CONF-2023-062
WZ 7 4.6 � = 19 + 1.4 � 1.3 ± 1 pb � = 19.34 + 0.3 � 0.4 pb (MATRIX (NNLO)) EPJC 72 (2012) 2173
WZ 8 20.3 � = 24.3 ± 0.6 ± 0.9 pb � = 23.92 ± 0.4 pb (MATRIX (NNLO)) PRD 93, 092004 (2016)
WZ 13 36.1 � = 51 ± 0.8 ± 2.3 pb � = 49.1 + 1.1 � 1 pb (MATRIX (NNLO)) EPJC 79 (2019) 535
WW 7 4.6 � = 51.9 ± 2 ± 4.4 pb � = 49.04 + 1.03 � 0.88 pb (NNLO) PRD 87 (2013) 112001, PRL 113 (2014) 212001
WW 8 20.3 � = 68.2 ± 1.2 ± 4.6 pb � = 65 + 1.2 � 1.1 pb (NNLO) PLB 763, 114 (2016)
WW 13 36.1 � = 130.04 ± 1.7 ± 10.6 pb � = 128.4 + 3.2 � 2.9 pb (NNLO) EPJC 79 (2019) 884

Standard Model Production Cross Section Measurements

Status: October 2023

ATLAS Preliminary
p
s = 7, 8, 13, 13.6 TeV

(c)

Figure 3: Summary of several Standard Model total and fiducial production cross-section measurements (a) with
associated references (b) and (c). Where total cross sections are reported, the measurements are corrected for
branching fractions and compared to the corresponding theoretical expectations. In some cases, the fiducial selection
is di�erent between measurements in the same final state for di�erent centre-of-mass energies

p
B, resulting in lower

cross section values at higher
p
B.
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The Higgs self-coupling

34

• Double-Higgs production 
is directly sensitive to the 
self-coupling


• Sensitivity limited also  
because of destructive 
interference 

⇒ see e.g. talks of L. Skyboz, N. De Filippi … 

ATLAS-CONF-2022-050 (see also 2211.01216)



BEYOND THE HIGGS: PROBING QM AT THE HIGHEST ENERGIES

Investigate Quantum 
Field Theory at the 
highest energies!

jets of strongly 
interacting particles



BEYOND THE HIGGS: PROBING QM AT THE HIGHEST ENERGIES

Answering questions related to 
Quantum Gravity will require an 
entirely point of view. 

Testing limitations of QFT might 
suggest how to go beyond!

Big Bang? 

Black Holes?  

DM? 

DE? 

…?



Timeline of particle discoveries

2

Over the last 150 years, new particles have been continually discovered, 
marking a triumph for particle physics made possible by the increasing 
support and investment in collider machines

For the first time in decades, we might not expect new particles ahead…


Still, thanks to the % precision physics program at colliders, we have the chance to discover 
“new types of interactions”, and scrutinize quantum field theory to the highest precisions

PLENTY OF POTENTIAL FOR “DISCOVERY” AHEAD
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Vector Boson Scattering

10

See talk by P. Govoni, June 7

A light Higgs boson prevents cross-
section of VBS processes from 
becoming unphysical (diverging)

VBS measurements test the 
consistency of the SM and is 
sensitive to New Physics

…

Figure 2: The cross-sections for longitudinal gauge-boson scattering resulting from subsets of
the tree-level diagrams: (a) diagrams involving only three-gauge-boson couplings, (b) diagram
involving only four-gauge-boson couplings, (c) diagrams involving Higgs bosons.

Figure 3: The integrated lowest-order cross-sections for various polarizations.
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Denner, Hahn, Nucl.Phys.B525:27-50,1998

Introduction Theory Predictions Selection MC based Backgrounds Non-Prompt Charge MisID Systematics Fitting and cross section Summary and Open Items Summary

Motivation for this analysis

Motivation:
Gauge boson scattering includes
triple, quartic, and Higgs couplings

) Probe electroweak gauge theory in SM

Coupling to Higgs restores unitarity

) May give complementary insight in EWSB
wrt direct Higgs measurements

VBS channel with highest EW/QCD cross
section ratio

Previous Results:
ATLAS, 8 TeV: Evidence with 3.6 � (2.3 �)
observed (expected) [CERN-EP-2016-167]

CMS, 13 TeV: Observation with
5.5 � (5.7 �) observed (expected)
[CMS-PAS-SMP-17-004]
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Complementary probe to direct Higgs measurements

Triple Gauge 
Couplings

Quartic Gauge 
Couplings

Higgs 

exchange

Gauge structure of SM EWSB

PRECISION STUDIES “OPPORTUNITIES” ALL OVER

ttH production
• 1% of Higgs 

bosons


• Direct probe of top 
quark Yukawa 
coupling


• H➔bb: ML for S/B 
discrimination, CRs 
for backgrounds

10
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Same bin boundaries, grouped differently between ATLAS 
and CMS

CMS-PAS-HIG-19-011

JHEP 06 (2022) 97

μincl = 0.35 ± 0.20 (stat) ± 0.29 (syst)

b-associated production
• b-associated production (via b-fusion and 

gluon fusion with gluon➔bb splitting ) studied 
in final states with leptons (WW, ττ)


• Obs (exp) upper limit: 3.7 (6.1) x SM

11
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The Higgs self-coupling

34

• Double-Higgs production 
is directly sensitive to the 
self-coupling


• Sensitivity limited also  
because of destructive 
interference 

⇒ see e.g. talks of L. Skyboz, N. De Filippi … 

ATLAS-CONF-2022-050 (see also 2211.01216)

The Higgs self-coupling

35

• Single-Higgs production 
modes indirectly sensitive to 
the self-coupling through 
electro-weak effects


• Precision theory predictions 
absolutely crucial  

De Grassi et al 1607.04251

Bizon et al 1610.05771 


Maltoni et al 1709.08649  
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CMS ZZ+jets @ 13 TeV [138 fb-1]

7

● Better Njet description 
with nNNLO+PS

● Better description of 
m4l with EW-corrected 
nNNLO+PS, but 
negligible effect on 
other distributions

arXiv:2404.02711, submitted JHEP

60 < mZ1,Z2 < 120 GeV

nNNLO+PS: 
NNLO qq w/ MiNNLOPS + NLO ggF

Complexity scales badly with masses 
and external “legs”
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VBS measurements test the 
consistency of the SM and is 
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…

Figure 2: The cross-sections for longitudinal gauge-boson scattering resulting from subsets of
the tree-level diagrams: (a) diagrams involving only three-gauge-boson couplings, (b) diagram
involving only four-gauge-boson couplings, (c) diagrams involving Higgs bosons.

Figure 3: The integrated lowest-order cross-sections for various polarizations.

6

Denner, Hahn, Nucl.Phys.B525:27-50,1998
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Motivation for this analysis

Motivation:
Gauge boson scattering includes
triple, quartic, and Higgs couplings

) Probe electroweak gauge theory in SM

Coupling to Higgs restores unitarity

) May give complementary insight in EWSB
wrt direct Higgs measurements

VBS channel with highest EW/QCD cross
section ratio

Previous Results:
ATLAS, 8 TeV: Evidence with 3.6 � (2.3 �)
observed (expected) [CERN-EP-2016-167]

CMS, 13 TeV: Observation with
5.5 � (5.7 �) observed (expected)
[CMS-PAS-SMP-17-004]
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Complementary probe to direct Higgs measurements

Triple Gauge 
Couplings

Quartic Gauge 
Couplings

Higgs 

exchange

Gauge structure of SM EWSB

PRECISION STUDIES “OPPORTUNITIES” ALL OVER

ttH production
• 1% of Higgs 

bosons


• Direct probe of top 
quark Yukawa 
coupling


• H➔bb: ML for S/B 
discrimination, CRs 
for backgrounds
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μincl = 0.33 ± 0.17 (stat) ± 0.21 (syst)

Same bin boundaries, grouped differently between ATLAS 
and CMS

CMS-PAS-HIG-19-011

JHEP 06 (2022) 97

μincl = 0.35 ± 0.20 (stat) ± 0.29 (syst)

b-associated production
• b-associated production (via b-fusion and 

gluon fusion with gluon➔bb splitting ) studied 
in final states with leptons (WW, ττ)


• Obs (exp) upper limit: 3.7 (6.1) x SM

11
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Constraints in  plane, 
combining with 

non b-associated H➔ττ 
measurement  

κt, κb

~κt2

~κb2

~κb2

The Higgs self-coupling

34

• Double-Higgs production 
is directly sensitive to the 
self-coupling


• Sensitivity limited also  
because of destructive 
interference 

⇒ see e.g. talks of L. Skyboz, N. De Filippi … 

ATLAS-CONF-2022-050 (see also 2211.01216)

The Higgs self-coupling

35

• Single-Higgs production 
modes indirectly sensitive to 
the self-coupling through 
electro-weak effects


• Precision theory predictions 
absolutely crucial  

De Grassi et al 1607.04251

Bizon et al 1610.05771 


Maltoni et al 1709.08649  
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CMS ZZ+jets @ 13 TeV [138 fb-1]

7

● Better Njet description 
with nNNLO+PS

● Better description of 
m4l with EW-corrected 
nNNLO+PS, but 
negligible effect on 
other distributions

arXiv:2404.02711, submitted JHEP

60 < mZ1,Z2 < 120 GeV

nNNLO+PS: 
NNLO qq w/ MiNNLOPS + NLO ggF

Complexity scales badly with masses 
and external “legs”

pp Jets � W Z t̄t t

tot.

VV

tot.

H Hjj

VBF

VH t̄tV

tot.

t̄tH

t̄t�
WWV

Vjj

EWK

���

t̄tt̄t

tot.

V�� Z�jj
EWK
��!WW

VVjj

EWK

total (⇥2)

inelastic

pT > 100 GeV

pT >75 GeV
dijets

pT > 70 GeV

incl

pT >100 GeV

E
�
T >

125 GeV

E
�
T >

25 GeV

nj � 1

nj � 2

nj � 3

E
�
T >

100 GeV

nj � 0

pT >
30 GeV
nj � 1

nj � 2

nj � 3

nj � 4

nj � 5

nj � 6

nj � 7

pT >
100 GeV
nj = 1

nj = 2

nj = 3

nj = 4

nj = 5

nj � 6

nj � 0

pT >
30 GeV
nj � 1

nj � 2

nj � 3

nj � 4

nj � 5

nj � 6

nj � 7

total

pT > 25 GeV
nj � 4

nj � 5

nj � 6

nj � 7

nj � 8 tZj

t-chan

s-chan

Wt

ZZ ZZ

WZ

WW

Z�

��
(⇥0.01)

ZZ

WZ

WW

Z�

��
(⇥0.01)

ZZ

WZ

WW

Z�

W �

��
(⇥0.01)

total

H!WW
⇤

(ggF)

H ! ⌧⌧
(⇥0.25)

H ! ��

H ! 4`

total

H ! ��
(⇥0.5)

H!ZZ
⇤

H ! ⌧⌧
(⇥0.15)

H!bb̄

H!WW
⇤

(⇥0.5)

H!bb̄

(⇥0.5)

H ! ��

tt̄W
±

tt̄Z

H ! ��

WWW tot.

WWZ tot.
(⇥0.2)

WZ�

WW �

Wjj

Zjj

Z��
(⇥0.2)

W ��
total

ZZ

W
±
W
±

WZ
10�3

10�2

10�1

1

101

102

103

104

105

106

1011

�
[p

b] Theory

LHC pp
p
s = 13.6 TeV

Data 29.0 � 31.4 fb�1

LHC pp
p
s = 13 TeV

Data 3.2 � 140 fb�1

LHC pp
p
s = 8 TeV

Data 20.2 � 20.3 fb�1

LHC pp
p
s = 7 TeV

Data 4.5 � 4.9 fb�1

LHC pp
p
s = 5 TeV

Data 0.03 � 0.3 fb�1

Standard Model Production Cross Section Measurements
Status: October 2023

ATLAS Preliminary
p
s = 5,7,8,13,13.6 TeV

(a)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

tZj 13 139 � = 97 ± 13 ± 7 fb � = 102 + 5 � 2 fb (Madgraph5 + aMCNLO (NLO)) JHEP 07 (2020) 124
ts�chan 8 20.3 � = 4.8 ± 0.8 + 1.6 � 1.3 pb � = 5.61 ± 0.22 pb (NLO+NNL) PLB 756 (2016) 228-246
ts�chan 13 140 � = 8.2 ± 0.6 + 3.4 � 2.8 pb � = 10.32 + 0.4 � 0.36 pb (NLO+NNL) JHEP 06 (2023) 191
Wt 7 2.0 � = 16.8 ± 2.9 ± 3.9 pb � = 17.1 ± 0.8 pb (NLO+NLL) PLB 716, 142-159 (2012)
Wt 8 20.3 � = 23 ± 1.3 + 3.4 � 3.7 pb � = 24.4 + 1.1 � 1 pb (NLO+NLL) JHEP 01, 064 (2016)
Wt 13 3.2 � = 94 ± 10 + 28 � 23 pb � = 79.3 + 2.9 � 2.8 pb (NLO+NNLL) JHEP 01 (2018) 63
tt�chan 5 0.3 � = 27.1 + 4.4 � 4.1 + 4.4 � 3.7 pb � = 30.3 + 0.7 � 0.5 pb (MCFM (NNLO) ) arXiv:2310.01518
tt�chan 7 4.6 � = 68 ± 2 ± 8 pb � = 63.7 + 1.4 � 0.8 pb (MCFM (NNLO)) PRD 90, 112006 (2014)
tt�chan 8 20.3 � = 89.6 ± 1.7 + 7.2 � 6.4 pb � = 84.3 + 1.7 � 1.2 pb (MCFM (NNLO)) EPJC 77 (2017) 531
tt�chan 13 140 � = 221 ± 1 ± 13 pb � = 214.2 + 4.1 � 2.6 pb (MCFM (NNLO) ) ATLAS-CONF-2023-026
t̄t [njet � 8] 7 4.7 � = 0.0425 ± 0.004 ± 0.012 pb JHEP 01, 020 (2015)
t̄t [njet = 7] 7 4.7 � = 0.161 ± 0.007 ± 0.033 pb JHEP 01, 020 (2015)
t̄t [njet = 6] 7 4.7 � = 0.611 ± 0.024 ± 0.083 pb JHEP 01, 020 (2015)
t̄t [njet = 5] 7 4.7 � = 1.72 ± 0.04 ± 0.16 pb JHEP 01, 020 (2015)
t̄t [njet = 4] 7 4.7 � = 3.76 ± 0.05 ± 0.27 pb JHEP 01, 020 (2015)
t̄t 5 0.3 � = 67.5 ± 0.9 ± 2.6 pb � = 68.2 + 5.2 � 5.3 pb (top++ NNLO+NNLL) JHEP 06 (2023) 138
t̄t 7 4.6 � = 182.9 ± 3.1 ± 6.4 pb � = 177 + 10 � 11 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 8 20.2 � = 242.9 ± 1.7 ± 8.6 pb � = 252.9 + 13.3 � 14.5 pb (top++ NNLO+NNLL) EPJC 74 (2014) 3109
t̄t 13 140 � = 829 ± 1 ± 15.4 pb � = 832 + 46.4 � 50.9 pb (top++ NNLO+NNLL) JHEP 07 (2023) 141
t̄t 13.6 29.0 � = 850 ± 3 ± 27 pb � = 924 + 32 � 40 pb (top++ NNLO+NNLL) arXiv:2308.09529
Z [njet � 7] 7 4.6 � = 0.0062 ± 0.001456 ± 0.00214 pb JHEP 07, 032 (2013)
Z [njet � 6] 7 4.6 � = 0.0253 ± 0.00265 ± 0.00595 pb JHEP 07, 032 (2013)
Z [njet � 6] 13 139 � = 0.000338 ± 5.3e � 05 ± 5.5e � 05 pb� = 0.000511 + 0.00034 � 0.00019 pb (Sherpa (NLO QCD+ NLO EW corr)) ATLAS-CONF-2021-033
Z [njet � 5] 7 4.6 � = 0.135 ± 0.006 ± 0.027 pb JHEP 07, 032 (2013)
Z [njet = 5] 13 139 � = 0.00305 ± 0.00017 ± 0.00025 pb � = 0.00326 + 0.0022 � 0.0012 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 4] 7 4.6 � = 0.65 ± 0.01 ± 0.11 pb � = 0.646 ± 0.031 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 4] 13 139 � = 0.0226 ± 0.0004 ± 0.0015 pb � = 0.0234 + 0.015 � 0.0083 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 3] 7 4.6 � = 3.09 ± 0.03 ± 0.4 pb � = 3.1 ± 0.14 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 3] 13 139 � = 0.1995 ± 0.0013 ± 0.0096 pb � = 0.186 + 0.11 � 0.058 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 2] 7 4.6 � = 15.05 ± 0.06 ± 1.51 pb � = 14.9 ± 0.4 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 2] 13 139 � = 1.941 ± 0.004 ± 0.061 pb � = 1.807 + 0.69 � 0.39 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
Z [njet � 1] 7 4.6 � = 68.84 ± 0.13 ± 5.15 pb � = 64.8 ± 3.1 pb (Blackhat) JHEP 07, 032 (2013)
Z [njet = 1] 13 139 � = 11.74 ± 0.01 ± 0.33 pb � = 11.17 + 2.2 � 1.3 pb (Sherpa (NLO QCD+ NLO EW corr)) JHEP 06 (2023) 080
�fid(Z! ee, µµ) 5 0.025 � = 374.5 ± 3.4 ± 7.9 pb � = 356 + 9 � 10 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(Z! ee, µµ) 7 4.6 � = 451 ± 0.4 ± 8.8 pb � = 432 + 12.5 � 13.8 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 8 20.2 � = 506 ± 0.2 ± 11 pb � = 486 + 13.6 � 16 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13 3.2 � = 776 ± 1 ± 18 pb � = 744 + 22 � 28 pb (DYNNLO+CT14 NNLO) JHEP 02 (2017) 117
�fid(Z! ee, µµ) 13.6 29.0 � = 744 ± 11 ± 11 pb � = 746 + 21 � 22 pb (DYNNLO+CT14 NNLO) arXiv:2308.09529
W [njet � 7] 7 4.6 � = 0.041 ± 0.0068 ± 0.031 pb EPJC 75 (2015) 82
W [njet � 7] 8 20.2 � = 0.041 ± 0.003 ± 0.032 pb � = 0.052 + 0.007 � 0.02 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 6] 7 4.6 � = 0.199 ± 0.019 ± 0.11 pb EPJC 75 (2015) 82
W [njet � 6] 8 20.2 � = 0.22 ± 0.006 ± 0.121 pb � = 0.239 + 0.03 � 0.084 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 5] 7 4.6 � = 0.877 ± 0.032 ± 0.301 pb � = 0.933 ± 0.027 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 5] 8 20.2 � = 1.107 ± 0.013 ± 0.423 pb � = 1.1 + 0.13 � 0.38 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 4] 7 4.6 � = 4.241 ± 0.056 ± 0.885 pb � = 4.67 ± 0.06 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 4] 8 20.2 � = 5.47 ± 0.03 ± 1.47 pb � = 5 + 0.5 � 1.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 3] 7 4.6 � = 21.82 ± 0.1 ± 3.23 pb � = 23.47 ± 0.22 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 3] 8 20.2 � = 26.38 ± 0.06 ± 5.34 pb � = 23.6 + 1.3 � 5 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 2] 7 4.6 � = 111.7 ± 0.2 ± 12.2 pb � = 111.98 ± 0.44 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 2] 8 20.2 � = 128.35 ± 0.12 ± 20.39 pb � = 126.5 + 2.1 � 14.4 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
W [njet � 1] 7 4.6 � = 493.8 ± 0.5 ± 45.1 pb � = 474.22 ± 0.84 pb (Blackhat) EPJC 75 (2015) 82
W [njet � 1] 8 20.2 � = 564.71 ± 0.24 ± 72.13 pb � = 584 + 8 � 37 pb (Sherpa 2.2.1 NLO) JHEP 05 (2018) 077
�fid(W! e⌫, µ⌫) 5 0.025 � = 3.667 ± 0.016 ± 0.084 nb � = 3.58 ± 0.11 nb (DYNNLO + CT14NNLO) EPJC 79 (2019) 128
�fid(W! e⌫, µ⌫) 7 4.6 � = 4.911 ± 0.001 ± 0.092 nb � = 4.777 + 0.12 � 0.14 nb (DYNNLO + CT14NNLO) EPJC 77 (2017) 367
�fid(W! e⌫, µ⌫) 8 20.2 � = 5247 ± 0.6 ± 111 pb � = 5120 ± 142 pb (DYNNLO + CT14NNLO) EPJC 79 (2019) 760
�fid(W! e⌫, µ⌫) 13 0.081 � = 8.03 ± 0.01 ± 0.23 nb � = 7.82 + 0.26 � 0.3 nb (DYNNLO + CT14NNLO) PLB 759 (2016) 601
� [njet � 3] 8 20.2 � = 8.7 ± 0.02 ± 0.8 pb � = 9.5 + 0.9 � 1.2 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 2] 8 20.2 � = 30.4 ± 0.04 ± 1.8 pb � = 29.2 + 2.8 � 2.7 pb (NLOBlackhat+CT10) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 8 20.2 � = 134 ± 0.1 ± 4 pb � = 128 + 11 � 9 pb (JETPHOX (NLO)) Nucl. Phys. B, 918 (2017) 257
� [njet � 1] 13 3.2 � = 300 ± 0.4 ± 12 pb � = 319 + 55 � 46 pb (SHERPA (NLO)) PLB 780 (2018) 578
� 7 4.6 � = 359 ± 3 + 22 � 16 pb � = 308 ± 40 pb (JETPHOX (NLO)) PRD 89 (2014) 052004
� 8 20.2 � = 56.8 ± 0.1 + 5.8 � 5.6 nb � = 52.2 ± 7 nb (PETER (NLO+N3LL)) JHEP 06 (2016) 005
� 13 3.2 � = 399 ± 0.4 ± 16 pb � = 352 + 36 � 30 pb (JETPHOX+MMHT2014 (NLO)) PLB 2017 04 072
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 7 4.5 � = 86.87 ± 0.26 + 7.56 � 7.2 nb � = 86.9 + 4.7 � 12.4 nb (NLOJet++, CT10) JHEP 05 (2014) 059
Dijet R=0.4, |y| < 3.0, y⇤ < 3.0 13 3.2 � = 321 ± 0.8 + 18.6 � 19 nb � = 340 + 17 � 54 nb (NLOJet++, CT14) JHEP 05 (2018) 195
Incl. jet R=0.4, |y| < 3.0 7 4.5 � = 563.9 ± 1.5 + 55.4 � 51.4 nb � = 569.8 + 29.5 � 46.3 nb (NLOJet++, CT10) JHEP 02 (2015) 153
Incl. jet R=0.4, |y| < 3.0 8 20.2 � = 726.4 ± 1.1 + 42.7 � 41.8 nb � = 800 + 59 � 100 nb (NLOJet++, CT14) JHEP 09 (2017) 020
Incl. jet R=0.4, |y| < 3.0 13 3.2 � = 1845 ± 4 + 119 � 120 nb � = 1997 + 152 � 208 nb (NLOJet++, CT14) JHEP 05 (2018) 195
pp inelastic 7 8⇥10�8 � = 71.34 ± 0.36 ± 0.83 mb � = 71.5 + 20 � 2 mb (Schuler/Sjöstrand) Nucl. Phys. B (2014) 486
pp inelastic 8 50⇥10�8 � = 71.73 ± 0.15 ± 0.69 mb � = 73 ± 2 mb (Schuler/Sjöstrand) PLB 761 (2016) 158
pp inelastic 13 34⇥10�8 � = 77.41 ± 1.08 mb � = 78.4 ± 2 mb (Schuler/Sjöstrand) EPJC 83 (2023) 441
pp 7 8⇥10�8 � = 95.35 ± 0.38 ± 1.3 mb � = 97.26 ± 2.12 mb (COMPETE HPR1R2) Nucl. Phys. B (2014) 486
pp 8 50⇥10�8 � = 96.07 ± 0.18 ± 0.91 mb � = 99.55 ± 2.14 mb (COMPETE HPR1R2) PLB 761 (2016) 158
pp 13 34⇥10�8 � = 104.7 ± 0.22 ± 1.07 mb � = 100.3 ± 0.12 mb (COMPETE HPR1R2) EPJC 83 (2023) 441

Standard Model Production Cross Section Measurements

Status: October 2023

ATLAS Preliminary
p
s = 5, 7, 8, 13, 13.6 TeV

(b)

Model ECM [TeV]
R
L dt[fb

�1
] Measurement Theory Reference

�fid
(WZjj) EWK 8 20.3 � = 0.29 + 0.14 � 0.12 + 0.09 � 0.1 fb � = 0.13 ± 0.01 fb (VBFNLO) PRD 93 (2016) 092004

�fid
(WZjj) EWK 13 36.1 � = 0.57 + 0.14 � 0.13 + 0.07 � 0.05 fb � = 0.32 ± 0.03 fb (Sherpa 2.2.2) PLB 793 (92019) 469

�fid
(ZZjj) EWK 13 139 � = 0.82 ± 0.18 ± 0.11 fb � = 0.61 ± 0.03 fb (Sherpa 2.2.2) Nature Phys. 19 (2023) 237

�fid
(W

±
W
±
jj) EWK 8 20.3 � = 1.5 ± 0.5 ± 0.2 fb � = 0.95 ± 0.06 fb (PowhegBox) PRD 96, 012007 (2017)

�fid
(W

±
W
±
jj) EWK 13 139 � = 2.92 ± 0.22 ± 0.19 fb � = 2.53 + 0.22 � 0.19 fb (Madgraph5 + aMCNLO) Target journal JHEP

��!WW!eµX 8 20.2 � = 6.9 ± 2.2 ± 1.4 fb � = 4.4 ± 0.3 fb (HERWIG++) PRD 94 (2016) 032011
��!WW!eµX 13 139 � = 3.13 ± 0.31 ± 0.28 fb � = 3.5 ± 1 fb (MG5 aMCNLO+Pythia8 ⇥ Surv. Fact (0.82)) PLB 816 (2021) 136190
Z�jj EWK 8 20.3 � = 1.1 ± 0.5 ± 0.4 fb � = 0.94 ± 0.09 fb (VBFNLO) JHEP 07 (2017) 107
Z�jj EWK 13 140 � = 3.6 ± 0.5 ± 0.5 fb � = 3.5 ± 0.2 fb (Madgraph5 + aMCNLO) PLB 846 (2023) 138222
WWW 13 139 � = 0.82 ± 0.01 ± 0.08 pb � = 0.511 ± 0.018 pb (NLO QCD ) PRL 129 (2022) 061803
WWZ 13 79.8 � = 0.55 ± 0.14 + 0.15 � 0.13 pb � = 0.358 ± 0.036 pb (Sherpa 2.2.2) PLB 798 (2019) 134913
�fid

(WZ� ! e⌫µ⌫�) 13 140 � = 2.01 ± 0.3 ± 0.16 fb � = 1.5 ± 0.06 fb (Sherpa2.2.11 (NLO)) arXiv:2305.16994
�fid

(WW� ! e⌫µ⌫�) 8 20.2 � = 1.5 ± 0.9 ± 0.5 fb � = 2 ± 0.1 fb (VBFNLO+CT14 (NLO)) EPJC 77 (2017) 646
�fid

(W�� ! `⌫��) 8 20.3 � = 6.1 + 1.1 � 1 ± 1.2 fb � = 2.9 ± 0.16 fb (MCFM NLO) PRL 115, 031802 (2015)
�fid

(W�� ! `⌫��) 13 140 � = 12.2 ± 1 + 1.9 � 1.8 fb � = 12 + 2.15 � 1.46 fb (Sherpa 2.2.10 NLO) arXiv:2308.03041
�fid

(Z�� ! ``��) 8 20.3 � = 5.07 + 0.73 � 0.68 + 0.42 � 0.39 fb � = 3.7 + 0.21 � 0.11 fb (MCFM NLO) PRD 93, 112002 (2016)
�fid

(Z�� ! ``��) 13 139 � = 2.45 ± 0.2 ± 0.22 fb � = 2.26 + 0.36 � 0.28 fb (Sherpa 2.2.10 NLO) EPJC 83 (2023) 539
t̄tt̄t 13 140 � = 22.5 + 4.7 � 3.4 + 6.6 � 5.5 fb � = 13.4 + 1 � 1.8 fb (NLO QCD + EW) EPJC 83 (2023) 496
�fid

(���) 8 20.2 � = 72.6 ± 6.5 ± 9.2 fb � = 67.5 + 7.5 � 5.7 fb (NNLO) PLB 781 (2018) 55,
Zjj EWK 8 20.3 � = 10.7 ± 0.9 ± 1.9 fb � = 9.38 + 0.3 � 0.4 fb (PowhegBox (NLO)) JHEP 04, 031 (2014)
Zjj EWK 13 139 � = 37.4 ± 3.5 ± 5.5 fb � = 39.5 ± 3.6 fb (Herwig7+VBFNLO ) EPJC 81 (2021) 163
Wjj EWK (mjj > 500 GeV) 7 4.7 � = 144 ± 23 ± 26 fb � = 144 ± 11 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
Wjj EWK (mjj > 500 GeV) 8 20.2 � = 159 ± 10 ± 26 fb � = 198 ± 12 fb (Powheg+Pythia8 NLO) EPJC 77 (2017) 474
t̄t� 7 4.6 � = 63 ± 8 + 17 � 13 fb � = 48 ± 10 fb (Whizard+NLO) PRD 91 (2015) 072007
t̄t� 8 20.2 � = 139 ± 7 ± 17 fb � = 151 ± 25 fb (MadGraph+PRD 83 (2011) 074013) JHEP 11 (2017) 086
t̄t� 13 36.1 � = 521 ± 9 ± 41 fb � = 495 ± 99 fb (PRD 83 (2011) 074013) EPJC 79 (2019) 382
t̄tH(H ! yy) 13 139 � = 1.24 + 0.32 � 0.35 + 0.08 � 0.11 fb � = 1.33 ± 0.12 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tH 8 20.3 � = 220 ± 100 ± 70 fb � = 133 + 8 � 13 fb (LHCHXSWG NLO QCD + NLO EW) PLB 784 (2018) 173
t̄tH 13 139 � = 560 ± 80 + 70 � 80 fb � = 580 ± 50 fb (LHCHXSWG NLO QCD + NLO EW) Nature 607, pages 52-59 (2022)
t̄tZ 8 20.3 � = 176 + 52 � 48 ± 24 fb � = 215 ± 30 fb (HELAC-NLO) JHEP 11, 172 (2015)
t̄tZ 13 140 � = 860 ± 40 ± 40 fb � = 860 + 80 � 90 fb (NLO + NNLL) ATLAS-CONF-2023-065
t̄tW 8 20.3 � = 369 + 86 � 79 ± 44 fb � = 232 ± 32 fb (MCFM) JHEP 11, 172 (2015)
t̄tW 13 140 � = 890 ± 50 ± 70 fb � = 745 ± 52 fb (NNLOQCD + NLOEW ) ATLAS-CONF-2023-019
�fid

(W� ! `⌫�) 7 4.6 � = 2.77 ± 0.03 ± 0.36 pb � = 2.658 ± 0.11 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 7 4.6 � = 1.31 ± 0.02 ± 0.12 pb � = 1.327 + 0.026 � 0.037 pb (NNLO) PRD 87, 112003 (2013), arXiv:1407.1618
�fid

(Z� ! ``�) 8 20.3 � = 1.507 ± 0.01 + 0.083 � 0.078 pb � = 1.483 + 0.019 � 0.037 pb (NNLO) PRD 93, 112002 (2016), arXiv:1407.1618
�fid

(Z� ! ``�) 13 36.1 � = 533.7 ± 2.1 ± 15.4 fb � = 515 + 20 � 19 fb (Matrix NNLO QCD + NLO EW) JHEP 03 (2020) 054
VH(��), |yH| < 2.5 13 139 � = 6 + 1.3 � 1.4 + 0.4 � 0.5 fb � = 4.53 + 0.13 � 0.14 fb (Powheg Box NLO(QCD)) Nature 607, pages 52-59 (2022)
VH(bb̄), |yH| < 2.5 13 139 � = 1190 ± 130 + 160 � 140 fb � = 1162 + 31 � 29 fb (Powheg Box NLO(QCD)) ATLAS-CONF-2020-027
VH 8 20.3 � = 1.03 + 0.37 � 0.36 + 0.26 � 0.21 pb � = 1.12 ± 0.03 pb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VH 13 36.1 � = 2719 + 947 � 810 fb � = 2255 ± 44 fb (NNLO(QCD)+NLO(EW)) JHEP 12 (2017) 024
VBF H ! ��, |yH| < 2.5 13 139 � = 11.7 ± 1.6 + 1.1 � 1.4 fb � = 7.97 + 0.21 � 0.22 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! ⌧⌧, |yH| < 2.5 13 139 � = 197 ± 28 + 32 � 26 fb � = 220 ± 5 fb (NNLO QCD and NLO EW ) JHEP 08 (2022) 175
VBF H ! ZZ

⇤, |yH| < 2.5 13 139 � = 120 + 40 � 50 ± 10 fb � = 92.8 + 2.3 � 2.4 fb (NNLO QCD and NLO EW ) Nature 607, pages 52-59 (2022)
VBF H ! WW

⇤ 8 20.3 � = 0.51 + 0.17 � 0.15 + 0.13 � 0.08 pb � = 0.35 ± 0.02 pb (LHC-HXSWG) PRD 92 (2015) 012006
VBF H ! WW

⇤ 13 139 � = 0.79 + 0.11 � 0.1 + 0.16 � 0.12 pb � = 0.81 ± 0.02 pb (NNLO QCD and NLO EW ) PRD 108 (2023) 032005
H VBF 8 20.3 � = 2.43 + 0.5 � 0.49 + 0.33 � 0.26 pb � = 1.6 ± 0.04 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H VBF, |yH| < 2.5 13 139 � = 4 ± 0.3 + 0.3 � 0.4 pb � = 3.51 ± 0.07 pb (LHC-HXSWG) Nature 607, pages 52-59 (2022)
�fid

(H ! ZZ ! 4`) 8 20.3 � = 2.11 + 0.53 � 0.47 ± 0.1 fb � = 1.29 ± 0.13 fb (LHC-HXSWG) JHEP 10 (2017) 132
�fid

(H ! ZZ ! 4`) 13 139 � = 3.28 ± 0.3 ± 0.11 fb � = 3.41 ± 0.18 fb (N3LO) EPJC 80 (2020) 941
�fid

(H ! ZZ ! 4`) 13.6 29.0 � = 2.8 ± 0.7 ± 0.21 fb � = 3.67 ± 0.19 fb (N3LO) ATLAS-CONF-2023-032
�fid

(H!��) 8 20.3 � = 42.5 ± 9.8 + 3.1 � 3 fb � = 31 ± 3.2 fb (LHC-HXSWG) ATLAS-CONF-2015-060
�fid

(H!��) 13 139 � = 65.2 ± 4.5 ± 5.6 fb � = 63.6 ± 3.3 fb (LHC-HXSWG) JHEP 08 (2022) 027
�fid

(H!��) 13.6 31.4 � = 76 ± 11 + 9 � 7 fb � = 67.6 ± 3.7 fb (LHC-HXSWG) arXiv:2306.11379
�fid

(H ! ⌧⌧) 8 20.3 � = 2.1 ± 0.4 + 0.5 � 0.4 pb � = 1.39 ± 0.14 pb (LHC-HXSWG) JHEP 04 117 (2015)
�fid

(H ! ⌧⌧) 13 139 � = 2.94 ± 0.21 + 0.37 � 0.32 pb � = 3.17 ± 0.09 pb (LHCHiggsXSWG ) JHEP 08 (2022) 175
gg ! H ! WW

⇤ 8 20.3 � = 4.6 ± 0.9 + 0.8 � 0.7 pb � = 4.2 ± 0.5 pb (LHC-HXSWG) PRD 92 (2015) 012006
gg ! H ! WW

⇤ 13 139 � = 12.4 ± 0.6 ± 1.5 pb � = 10.4 ± 0.6 pb (N3LO (LHC-HXSWG)) PRD 108 (2023) 032005
H 8 20.3 � = 27.7 ± 3 + 2.3 � 1.9 pb � = 24.5 + 1.3 � 1.8 pb (LHC-HXSWG YR4) EPJC 76 (2016) 6
H 13 139 � = 55.5 ± 3.2 + 2.4 � 2.2 pb � = 55.6 ± 2.5 pb (LHC-HXSWG YR4 ) JHEP 05 (2023) 028
H 13.6 31.4 � = 58.2 ± 7.5 ± 4.5 pb � = 59.9 ± 2.6 pb (LHC-HXSWG YR4 ) arXiv:2306.11379
�fid

(��)[�R�� > 0.4] 7 4.9 � = 44 + 3.2 � 4.2 pb � = 44 ± 6 pb (2�NNLO) JHEP 01, 086 (2013)
�fid

(��)[�R�� > 0.4] 8 20.2 � = 16.82 ± 0.07 + 0.75 � 0.78 pb � = 14.2 + 1.25 � 0.91 pb (2�NNLO + CT10) PRD 95 (2017) 112005
�fid

(��)[�R�� > 0.4] 13 139 � = 31.4 ± 0.1 ± 2.4 pb � = 29.7 + 2.4 � 2 pb (NNLOjet (NNLO) ) JHEP 11 (2021) 169
ZZ 7 4.6 � = 6.7 ± 0.7 + 0.5 � 0.4 pb � = 6.735 + 0.195 � 0.155 pb (NNLO) JHEP 03, 128 (2013), PLB 735 (2014) 311
ZZ 8 20.3 � = 7.3 ± 0.4 + 0.4 � 0.3 pb � = 8.284 + 0.249 � 0.191 pb (NNLO) JHEP 01, 099 (2017)
ZZ 13 36.1 � = 17.3 ± 0.6 ± 0.8 pb � = 16.9 + 0.6 � 0.5 pb (Matrix (NNLO) & Sherpa (NLO)) PRD 97 (2018) 032005
ZZ 13.6 29.0 � = 16.9 ± 0.7 ± 0.7 pb � = 16.7 ± 0.4 pb (Matrix (NNLO) & Sherpa (NLO)) ATLAS-CONF-2023-062
WZ 7 4.6 � = 19 + 1.4 � 1.3 ± 1 pb � = 19.34 + 0.3 � 0.4 pb (MATRIX (NNLO)) EPJC 72 (2012) 2173
WZ 8 20.3 � = 24.3 ± 0.6 ± 0.9 pb � = 23.92 ± 0.4 pb (MATRIX (NNLO)) PRD 93, 092004 (2016)
WZ 13 36.1 � = 51 ± 0.8 ± 2.3 pb � = 49.1 + 1.1 � 1 pb (MATRIX (NNLO)) EPJC 79 (2019) 535
WW 7 4.6 � = 51.9 ± 2 ± 4.4 pb � = 49.04 + 1.03 � 0.88 pb (NNLO) PRD 87 (2013) 112001, PRL 113 (2014) 212001
WW 8 20.3 � = 68.2 ± 1.2 ± 4.6 pb � = 65 + 1.2 � 1.1 pb (NNLO) PLB 763, 114 (2016)
WW 13 36.1 � = 130.04 ± 1.7 ± 10.6 pb � = 128.4 + 3.2 � 2.9 pb (NNLO) EPJC 79 (2019) 884

Standard Model Production Cross Section Measurements

Status: October 2023

ATLAS Preliminary
p
s = 7, 8, 13, 13.6 TeV

(c)

Figure 3: Summary of several Standard Model total and fiducial production cross-section measurements (a) with
associated references (b) and (c). Where total cross sections are reported, the measurements are corrected for
branching fractions and compared to the corresponding theoretical expectations. In some cases, the fiducial selection
is di�erent between measurements in the same final state for di�erent centre-of-mass energies

p
B, resulting in lower

cross section values at higher
p
B.
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LHC has reached  level precision 
for some of these observables, and 

much is still to come with 95% more 
data set at HL-LHC!

%

And then another miracle occurs…
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 PRECISION, HOW DO WE GET THERE?%
(AND WHEN SHOULD WE STOP?)



FROM THEORY TO THEORY PREDICTIONS IT’S A LONG WAY!

9
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Fig. 3 Left pane: comparison of the exact NLO calculation and the soft-virtual approximation in the gg channel. Right pane:
complete NLO prediction, inclusive of all channels, compared to the corresponding soft-virtual approximation
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Fig. 4 Signal-background interference contribution to the
diphoton invariant mass distribution after Gaussian smearing.
Bands represent the envelope given by the scale variation.

The smallness of the LO imaginary part is indeed seen
in Fig. 5. In our setup, we find

‡LO

S
= 24.21+15%

≠14%
fb, ‡LO

I
= ≠0.11+20%

≠17%
fb. (21)

Here and in the following the quoted uncertainties are
obtained by coherently varying the renormalisation and
factorisation scales by a factor of two around the cen-
tral value µ = m““/2. At LO, we find that more than
80% of the destructive interference quoted above comes
from the imaginary part of the signal interfering with
the real part of the background. This gives us confi-
dence that neglecting mass e�ects in the background
prediction does not significantly impact our result. Fur-
thermore, as far as the signal goes, we note that the
bulk (about 95%) of the imaginary part is generated by
bottom-mass e�ects in the production amplitude. This

is easy to understand just by looking at the relative
importance of the top, bottom and W contributions to
the production and decay amplitudes.

At higher orders however, a larger interference is gen-
erated by the imaginary part of the background, which
no longer requires the presence of bottom quarks (see
the discussion in Sec. 3). Because of this, beyond LO
we only compute radiative corrections in the infinite-
top approximation and drop any mass dependence in
the background amplitudes. At NLO, we obtain

‡NLO

S
= 58.12+20%

≠14%
fb, ‡NLO

I
= ≠0.72+27%

≠21%
fb. (22)

These results are consistent with the analysis in
Ref. [26]. Our best prediction beyond NLO is ob-
tained within the soft-virtual approximation described
in Sec. 3. We find

‡NNLOsv
Õ

S
= 72.21+8%

≠8%
fb, ‡NNLOsv

I
= ≠1.21+7%

≠10%
fb,

(23)

hence the destructive interference reduces the total
rate by 1.7%.5 Given the theoretical [62] (see also
Refs. [63, 64]) and experimental [35, 36] uncertainty on
the Higgs total cross section, this e�ect is actually not
negligible and it can be used to further constrain the
Higgs width [26]. We do not pursue this line of investi-
gation here, but we estimate that, with current uncer-
tainties, one could already constrain the Higgs width to
about 20-30 times the Standard Model.

We can finally present the main result of our study, i.e.
the prediction for the mass-shift at NNLO. As discussed
5We point out that the theory uncertainties for the signal cross
section in Eq. (23) have been computed employing the exact
NNLO QCD scale variations.

Signal to BKG interference for gg → H → γγ
[Bargiela, Buccioni, Caola, Devoto, Manteuffel, Tancredi ‘22]

?

STANDARD MODEL — KNOWABLE UNKNOWNS

�9

This is what you get when you buy one 
of those famous CERN T-shirts

“understanding” = knowledge  ?
“understanding” = assumption ?



PRECISION AT COLLIDERS: THE “STANDARD” FACTORIZATION PICTURE

QCD is everywhere: 
strong interactions introduce 
extremely complex dynamics 
due to asymptotic freedom!



X

p p

PRECISION AT COLLIDERS: THE “STANDARD” FACTORIZATION PICTURE



X

p p

PRECISION AT COLLIDERS: THE “STANDARD” FACTORIZATION PICTURE

Non-perturbative:  

Parton Distribution Functions (PDFs)

Non perturbative 

“soft/collinear” physics

dσ = ∫ dx1dx2 f(x1)f(x2) dσpart(x1, x2)(1 + 𝒪(Λn
QCD/Qn))

“Hard” cross section

High energy  small coupling→



X

p p

“Hard” cross section

dσ = ∫ dx1dx2 f(x1)f(x2) dσpart(x1, x2)(1 + 𝒪(Λn
QCD/Qn))

Here, we ignore all that and 
zoom in the so-called ‘Hard 

Scattering’

% precision

PRECISION AT COLLIDERS: THE “STANDARD” FACTORIZATION PICTURE



Scattering Amplitude expanded in partial waves

FROM AMPLITUDES TO CROSS SECTION: IN QUANTUM MECHANICS

[Drawing from S. Gasiorowicz, Quantum Physics]

cross section



�qq̄!gg =

Z
[dPS] |Mqq̄!gg|2

<latexit sha1_base64="ij6vSKktFuXijLKR2ATNdVJPIXQ="></latexit><latexit sha1_base64="ij6vSKktFuXijLKR2ATNdVJPIXQ="></latexit><latexit sha1_base64="ij6vSKktFuXijLKR2ATNdVJPIXQ="></latexit><latexit sha1_base64="ij6vSKktFuXijLKR2ATNdVJPIXQ="></latexit>

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE QFT
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small “coupling constant” ∼ 0.1

|Mqq̄!gg|2 =
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qq̄!gg
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⇣↵s
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FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE QFT

~ 1% ?
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Tree-level Amplitudes
[slide from L. Dixon]
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Simplest pure-gluonic amplitudes 
Note: helicity label assumes particle is outgoing; reverse if it’s incoming  

Maximally helicity-violating (MHV) amplitudes: 

Parke-Taylor formula (1986) 

= 

   
 
 
 
 
 
 

1 

2 

(i-1) 

Strikingly, many vanish: 
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Virtual Real

+ ~ O(30%-10%) 
precision 

One-loop Amplitudes
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+ +

Double Virtual Real Virtual Double Real

~ O(5%) precision 

Often not enough!
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Two-loop amplitudes

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE QFT
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Inclusive Higgs : an example of precision  
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..

. . .

Dear Sir or Madam,

We are pleased to inform you that the Letter

Three-loop gluon scattering in QCD and the gluon

Regge trajectory

Fabrizio Caola et al.
Phys. Rev. Lett. 128, 212001 (2022)

Published 26 May 2022

has been highlighted by the editors as an Editors’ Suggestion. Publication of a Letter is

already a considerable achievement, as Physical Review Letters accepts fewer than 1/4 of

submissions, and is ranked first among physics and mathematics journals by the Google

Scholar five-year h-index. A highlighted Letter has additional significance, because only about

one Letter in seven is highlighted as a Suggestion due to its particular importance, innovation,

and broad appeal. Suggestions are downloaded more than twice as often as the average

Letter, and receive substantially more press coverage. Suggestions are cited at roughly twice

the rate of nonhighlighted Letters. More information about our journal and its history can be

found on our webpage prl.aps.org.

Yours sincerely,

Hugues Chaté

Editor

Physical Review Letters

Michael Thoennessen

Editor in Chief

American Physical Society

PHYSICAL REVIEW LETTERS

g

g

g

g

Scattering amplitudes: more masses

Federico Buccioni Ringberg 10/05/2024 11

Starting to see preliminary results for 2→3 with external two and more external masses

VVj and friends: see talk by Samuel

tt associated production

ttj

ttH/ttW

completed evaluation of MIs contributing to Leading Colour ttj amplitude

for most integral families, deqs admit a dLog form representation
presence of elliptic sectors → non-logarithmic differential forms

[Badger, Becchetti, Giraudo, Zoia 2404.12325]

two-loop MIs for ttH production with a Light-Quark Loop
[F. Febres Cordero, G. Figueiredo, M. Kraus, B. Page, L. Reina 2312.08131]

two-loop MIs for ttH production with a 
Light-Quark Loop

Two-loop amplitudes for ttH production, the Nf-part
[Bakul Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson 2402.03301]

solution via canonical deqs

solution via generalized series expansion
(Froebenius method)

MIs computed numerically: pySecDec

 R. Harlander, Precision Higgs Physics, LHCP 2023, Belgrade

LHCH(XS)WG YR4 ’16

= x
?

% precision, two- and three-loop amplitudes!

THE NEED OF PRECISION: TOWARDS THE  LEVEL%

[plot from M.Grazzini]



ON AMPLITUDES AND LOOPS
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Strip it of “trivial” Lorentz and Dirac structures (dependence on spin & polarizations of external particles) 

expanded in Feynman diagrams

= ℐ

Scalar Feynman Integrals!

For every closed loop, an integral over the unconstrained 
virtual momentum  of the particle circulating in the loopk
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Strip it of “trivial” Lorentz and Dirac structures (dependence on spin & polarizations of external particles) 
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Scalar Feynman Integrals!

For every closed loop, an integral over the unconstrained 
virtual momentum  of the particle circulating in the loopk

k

k − p2

k − p2 − p3

k − p1 − p2 − p3
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𝒜
=

N

∑
j=1

Rj ℐj

rational functions

scalar Feynman integrals

expanded in Feynman diagrams

ON AMPLITUDES AND LOOPS

analytic structure reflects basic principles of 
unitarity and causality



𝒜
=

N

∑
j=1

Rj ℐj

rational functions

scalar Feynman integrals

“special functions and special numbers”

analytic structure reflects basic principles of 
unitarity and causality

expanded in Feynman diagrams

position of poles and branch cuts dictated by virtual particles going on-shell!

ON AMPLITUDES AND LOOPS

…, , , , , …π log z ζ3 Li2(z)
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𝒜
The integrand

Decomposition into 
building blocks

computations of the 
building blocks

QED Mass-independent term: 2-loop contribution

aQED
e = C1

(α

π

)

+ C2

(α

π

)2
+ C3

(α

π

)3
+ C4

(α

π

)4
+ C5

(α

π

)5
+ . . .

7 diagrams

C2 =
197

144
+

1

12
π2

−
1

2
π2 ln 2 +

3

4
ζ(3)

= −0.328 478 965 579 . . .

obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 8

Usually dealt with separately

Often: unexpected simplicity 
of final results

2-loop electron g-2 in QED
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Connections among them largely to explore

Often: unexpected simplicity 
of final results

2-loop electron g-2 in QED

AMPLITUDES FOR COLLIDERS: HOW DO WE THINK ABOUT THEM?



MANY OPEN QUESTIONS AND SOME ANSWERS:
- What are general numbers and functions that can appear in the final result? 

- How does physics constrain the mathematical properties of the result? 

- What is the “shortest” path to the “simplest” form of the result? 

- ……..

A possible key to understanding these questions:  

explore interplay between mathematics of scattering amplitudes (geometry) and 
their physical properties (singularities, discontinuities, soft/collinear limits…)



WHAT IS AN AMPLITUDE?

..

. . .

Dear Sir or Madam,

We are pleased to inform you that the Letter

Three-loop gluon scattering in QCD and the gluon

Regge trajectory
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Integrals are divergent in   we use “dimensional regularization” D = 4 →

[’t Hooft, Veltman; Bollini, Giambiagi ’72]
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𝒜
FROM INTEGRAND TO SPECIAL FUNCTIONS

Integrals related through linear (IBPs) relations 

  ∫
L

∏
ℓ=1

dDkℓ

(2π)D ( ∂
∂kμ

r
vμ Sa1

1 . . . Saσσ

Db1
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i , kμ
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[Chetyrkin, Tkachov ’84]



FROM INTEGRAND TO SPECIAL FUNCTIONS

(PL) (NPL1) (NPL2)

Figure 1: Representative top level topologies for the planar (PL), single nonplanar

(NPL1), and double nonplanar (NPL2) integral families.

form ki · kj and 9 of the form ki · pj , so we can write a generic Feynman integral of the

form eq. (4.2) as
Z  3Y

i=1

D
dki

!
f(d; {pi · pj})

Dn1
1 . . . Dn15

15

, (4.4)

where now ni can also be negative integers. We refer to each set of inequivalent {D1, ..., D15}

as an “integral family”. Within each family, it is well known that not all the integrals

are linearly independent. Indeed, Feynman integrals satisfy integration-by-parts (IBP)

identities [36] of the form

Z  3Y

i=1

D
dki

!
@

@kµj

vµj
Dn1

1 ...Dnm
m

= 0 , (4.5)

where vj can be any loop or external momentum. In principle, it is possible to use these

identities to express all the F i form factors in terms of a minimal set of independent “master

integrals” (MI) [37]. While all the steps described above are well-understood in principle,

the complexity involved in intermediate stages grows very quickly with the number of loops

and external scales. In our case, the three-loop calculation involves 3 di↵erent families, each

of which can contribute with 6 independent crossings of the external legs, and more than

4⇥106 integrals to the amplitude. Moreover, using (4.5) directly would lead to a very large

number of equations involving also many additional auxiliary integrals. We now describe

the procedure that we have adopted to keep the degree of complexity manageable.

First, we generated all Feynman diagrams with Qgraf [38] and mapped each diagram to

an integral family using Reduze 2 [39, 40] to generate the required shifts of loop momenta.

At this stage, it is useful to group diagrams that present similar structures together and

perform the P1,...,8 projections for each of these groups separately. This can be done by

keeping together diagrams that can be mapped to the same crossing of the same integral

families. This allows us to reduce redundancy in the algebraic manipulations required.

Examples of top sectors from our three families of integrals are depicted in Fig. 1, while

their complete definition can be found in the ancillary files. To evaluate the contributions

to the form factors, we performed the colour, Lorentz and Dirac algebra as well as further

symbolic manipulations described in the following with Form [41].

We find it important to stress that by expressing the result for each F1,...,8 in terms

of a minimal set of integrals under crossings and shift symmetries, prior to performing the
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∑
i

𝒜
~ “only” 500 master integrals @ 3 loops in QCDgg → gg

Space of Feynman integrals is a finite-dimensional vector space; master integrals are a basis in this space!
[Smirnov, Petukhov ’10]
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FROM INTEGRAND TO SPECIAL FUNCTIONS
Master integrals can be conveniently organized in a “tree” depending on # of propagators

Box

triangles 
(pinching 1 propagator)

bubbles 
(pinching 2 propagators)

tadpoles 
(pinching 3 propagators)

At 1 loop every graph 
has 1 master integral 

(at most)
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“dot”: 1 propagator squared
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FROM INTEGRAND TO SPECIAL FUNCTIONS

the equal-mass sunrise

double tadpole 
(pinching 1 propagator)

5. The Electron Self-Energy in QED at Two Loops

Denominators

D1 = k2
1

D2 = k2
2 � m2

D3 = (k1 � k2)2 � m2

D4 = (k1 � p)2 � m2

D5 = (k2 � p)2

Table 5.1.: Definition of the integral family that the electron self-energy at two loops
reduces to.

Figure 5.2.: The topologies of the six sectors required for the two-loop self-energy of
the electron. The two sunrise sectors are two-dimensional each, while the
other sectors are one-dimensional. Thus there are eight master integrals.
The bottom right topology is the top sector, known as the kite integral.

The complexity of the necessary transformation to the canonical basis depends heavily
on the chosen initial, pre-canonical integrals. We choose to start from

I0,1,1,0,0, I1,1,0,1,0, I0,1,1,1,0, I0,2,1,1,0,
I1,0,1,0,1, I1,0,1,�1,1, I1,1,0,1,1, I1,1,1,1,1.

Here, all integrals are evaluated in d = 4� 2#. However, in many cases it can be easier to
find good candidates close to 2 dimensions. We thus use dimensional shift relations to
express integrals in two dimensions in terms of the basis of four-dimensional integrals.
By D

�
I we denote the integral I in 2 � 2# dimensions, expressed in terms of the four-

dimensional basis integrals. For bubbles and tadpoles, for example, it is convenient to
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Fundamental difference with one loop  hint that complexity of the problem “jumps”→

At higher loops: a “graph” can have more than one master integral
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[Kotikov ’93; Remiddi ’97; Gehrmann, Remiddi ’99]
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∂sij

⃗I = A(sij, D) ⃗I , A(sij, D)

2. Feynman Integrals and Differential Equations

equations for a master integral Ij with respect to some kinematic invariant si take the
form

∂Ij

∂si
= Â

k
(Asi)jk({sn}, d)Ik, (2.22)

where k runs over master integrals in the same sector and subtopologies. It is convenient
to introduce the vector ~I =

�
I1 . . . In

�T, where we order the master integrals by
increasing sector ID. The differential equations may then be written in matrix notation,

∂~I
∂si

= Asi({sn}, d)~I . (2.23)

Due to the properties mentioned above equation (2.25), the matrix A has, in general, a
lower block-triangular form

Asi =

0

BBBBBBBBBBBBBBBB@

⇤

⇤

0
⇤

⇤

⇤

⇤
. . .

⇤

1

CCCCCCCCCCCCCCCCA

. (2.24)

The diagonal part of the matrix represents the homogeneous equations. There may be
blocks of size m ⇥ m on the diagonal for sectors of dimension m, i.e. with m master
integrals. They arise since integrals of the same sector couple to each other in general.
Note that at one loop, there are no sectors with more than one master integral. Below
the (block-)diagonal are the couplings of the master integrals to their subtopologies.

We can write down differential equations in all the kinematic invariants si, including
masses. This set of differential equations can be written in a compact form using the
total differential,

d~I = A~I , where A = Asi dsi , (2.25)

i.e. A is a matrix of one-forms. It satisfies the integrability condition

dA � A ^ A = 0 (2.26)

11

block-triangular:
integrals with more propagators depend on ones with fewer

We can differentiate Feynman integrals w.r.t. the kinematical invariants
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Figure 5.2.: The topologies of the six sectors required for the two-loop self-energy of
the electron. The two sunrise sectors are two-dimensional each, while the
other sectors are one-dimensional. Thus there are eight master integrals.
The bottom right topology is the top sector, known as the kite integral.

The complexity of the necessary transformation to the canonical basis depends heavily
on the chosen initial, pre-canonical integrals. We choose to start from

I0,1,1,0,0, I1,1,0,1,0, I0,1,1,1,0, I0,2,1,1,0,
I1,0,1,0,1, I1,0,1,�1,1, I1,1,0,1,1, I1,1,1,1,1.

Here, all integrals are evaluated in d = 4� 2#. However, in many cases it can be easier to
find good candidates close to 2 dimensions. We thus use dimensional shift relations to
express integrals in two dimensions in terms of the basis of four-dimensional integrals.
By D

�
I we denote the integral I in 2 � 2# dimensions, expressed in terms of the four-

dimensional basis integrals. For bubbles and tadpoles, for example, it is convenient to
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True for general values of dimensions D !
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The diagonal part of the matrix represents the homogeneous equations. There may be
blocks of size m ⇥ m on the diagonal for sectors of dimension m, i.e. with m master
integrals. They arise since integrals of the same sector couple to each other in general.
Note that at one loop, there are no sectors with more than one master integral. Below
the (block-)diagonal are the couplings of the master integrals to their subtopologies.

We can write down differential equations in all the kinematic invariants si, including
masses. This set of differential equations can be written in a compact form using the
total differential,

d~I = A~I , where A = Asi dsi , (2.25)

i.e. A is a matrix of one-forms. It satisfies the integrability condition

dA � A ^ A = 0 (2.26)
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FROM DIFFERENTIAL EQUATIONS TO GEOMETRY
The story might change for D → 4 − 2ϵ

→ [
a11(sij) a12(sij)

0 a22(sij)] + 𝒪(ϵ)2 × 2

Equations might “decouple” close to  space-time dimensionsD = 4
 are rational functions  solution written iteratively in  as iterated integrals of rational functions!aij → ϵ

5. The Electron Self-Energy in QED at Two Loops

Denominators

D1 = k2
1

D2 = k2
2 � m2

D3 = (k1 � k2)2 � m2

D4 = (k1 � p)2 � m2

D5 = (k2 � p)2

Table 5.1.: Definition of the integral family that the electron self-energy at two loops
reduces to.

Figure 5.2.: The topologies of the six sectors required for the two-loop self-energy of
the electron. The two sunrise sectors are two-dimensional each, while the
other sectors are one-dimensional. Thus there are eight master integrals.
The bottom right topology is the top sector, known as the kite integral.

The complexity of the necessary transformation to the canonical basis depends heavily
on the chosen initial, pre-canonical integrals. We choose to start from

I0,1,1,0,0, I1,1,0,1,0, I0,1,1,1,0, I0,2,1,1,0,
I1,0,1,0,1, I1,0,1,�1,1, I1,1,0,1,1, I1,1,1,1,1.

Here, all integrals are evaluated in d = 4� 2#. However, in many cases it can be easier to
find good candidates close to 2 dimensions. We thus use dimensional shift relations to
express integrals in two dimensions in terms of the basis of four-dimensional integrals.
By D

�
I we denote the integral I in 2 � 2# dimensions, expressed in terms of the four-

dimensional basis integrals. For bubbles and tadpoles, for example, it is convenient to
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massless propagator: “photon”



MULTIPLE POLYLOGS AND THE RIEMANN SPHERE

If we integrate a rational function on ℂℙ1

Only non-trivial thing:  

log(1 − x/a) = ∫
x

0

dt
t − a
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MULTIPLE POLYLOGS AND THE RIEMANN SPHERE

G(c1, c2, ..., cn, x) =

Z x

0

dt1
t1 � c1

G(c2, ..., cn, t1)

=

Z x

0

dt1
t1 � c1

Z t1

0

dt2
t2 � c2

...

Z tn�1

0

dtn
tn � cn
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Generalisation: Multiple PolyLogarithms (MPLs)

If we integrate a rational function on ℂℙ1

Only non-trivial thing:  

log(1 − x/a) = ∫
x

0

dt
t − a



POLYLOGARITHMS, DLOG FORMS AND AMPLITUDES

∑
i

Ri(sij) ∫γ
d log fn ∧ . . . ∧ d log f1𝒜

Rational functions: 

encode poles (single particles going on shell)
Generalization of MPLs: 

iterated integrals over d-log forms 

All information on branch cuts  unitarity !→
Enormously simplify computation of all “polylogarithmic” amplitudes 

 Bootstrap program!→
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} Collider physics profited enormously 
from these developments: 

calculations for the production of 
1,2,3 massless particles up to four, 
three and two loops respectively

POLYLOGARITHMS, DLOG FORMS AND AMPLITUDES

modeling of QCD dynamics 
(production of jets at LHC)



∑
i

Ri(sij) ∫γ
d log fn ∧ . . . ∧ d log f1𝒜

QCD amplitudes: status

2→2 scattering:

Form factor:

4 
lo

op
s

2 
lo

op
s

2→3:

2→n≥4: 1-loop, numerical

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, 

Steinhauser (2022) 

OpenLoops, Collier, MadLoops, Recola, GoSam, 
Ninja, Blackhat, Rocket… up to 20 (!) gluons 

3 
lo

op
s NEW: planar result with one 

off-shell leg
Gehrmann, Jacubčík, Mella, Syrrakos, Tancredi 

(2023) 

QCD amplitudes: status

2→2 scattering:

Form factor:

4 
lo

op
s

2 
lo

op
s

2→3:

2→n≥4: 1-loop, numerical

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, 

Steinhauser (2022) 

OpenLoops, Collier, MadLoops, Recola, GoSam, 
Ninja, Blackhat, Rocket… up to 20 (!) gluons 

3 
lo

op
s NEW: planar result with one 

off-shell leg
Gehrmann, Jacubčík, Mella, Syrrakos, Tancredi 

(2023) 

QCD amplitudes: status

2→2 scattering:

Form factor:

4 
lo

op
s

2 
lo

op
s

2→3:

2→n≥4: 1-loop, numerical

Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, 

Steinhauser (2022) 

OpenLoops, Collier, MadLoops, Recola, GoSam, 
Ninja, Blackhat, Rocket… up to 20 (!) gluons 

3 
lo

op
s NEW: planar result with one 

off-shell leg
Gehrmann, Jacubčík, Mella, Syrrakos, Tancredi 

(2023) 

}

POLYLOGARITHMS, DLOG FORMS AND AMPLITUDES

5

0.5

1.0

1.5
LHC 13 TeV0.0 � y� < 0.4

0.5

1.0

1.5
0.4 � y� < 1.2

R
3/

2/
R

N
L
O

3/
2

(µ
0)

NLO NNLO

500 1000 1500 2000 2500 3000 3500 4000

HT [GeV]

0.5

1.0

1.5
1.2 � y� < 2.4

R3/2, Scale: µ0 = ĤT/2
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⇤ as ratio to NLO. The colours are the same

as in fig. 1.

V. NOTE ADDED: ERRATUM TO THE
PUBLISHED VERSION

In the original publication, we evaluated the two-loop
finite remainder function R

(2)l.c.(s12) defined in equa-
tion (2) with an incorrect colour factor. This oversight
was due to a missing conversion factor between the con-
ventions for the colour generator T

a
ij used by the au-

thors of ref. [27] (see [41], section 2 before equation
2.3) and our convention (see ref. [29], appendix A). By
convention, the generators in ref. [27] are normalised
such that Tr T

a
T

b = �
ab. In our convention we use

Tr T
a
T

b = 1

2
�
ab, which implies a factor of

p
2 per ap-

pearing colour generator T
a
ij . The following table lists

the colour factors and the conversion coe�cient for the

square of a colour factor as it appears in the squared
matrix element for each partonic channel:

Channel Colour factor C (|C|
2)our/(|C|

2)ref. [1]

0 ! ggggg Tr T
a
T

b
T

c
T

d
T

e 64

0 ! gggqq̄ (T a
T

b
T

c)ij 8

0 ! gQQ̄qq̄ (T a)ij�kl 2

These conversion factors should have been included in
our original calculation, and we include them now in this
erratum. These factors are sizable and have implications
on the phenomenology. In this version of the document,
we provide the corrected plots of the original publication.
The NNLO prediction increases flatly by about ⇡ 10%.
This implies that the double virtual contribution is about
⇡ 10% of the total NNLO cross-section in contrast to our
previous findings of ⇡ 2%. With this, the naive estimate
for corrections from sub-leading colour terms would cor-
respond to 1% corrections of the NNLO QCD prediction.
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HOW GENERAL IS THIS PICTURE?



2. Feynman Integrals and Differential Equations

equations for a master integral Ij with respect to some kinematic invariant si take the
form

∂Ij

∂si
= Â

k
(Asi)jk({sn}, d)Ik, (2.22)

where k runs over master integrals in the same sector and subtopologies. It is convenient
to introduce the vector ~I =

�
I1 . . . In

�T, where we order the master integrals by
increasing sector ID. The differential equations may then be written in matrix notation,

∂~I
∂si

= Asi({sn}, d)~I . (2.23)

Due to the properties mentioned above equation (2.25), the matrix A has, in general, a
lower block-triangular form

Asi =

0

BBBBBBBBBBBBBBBB@

⇤

⇤

0
⇤

⇤

⇤

⇤
. . .

⇤

1

CCCCCCCCCCCCCCCCA

. (2.24)

The diagonal part of the matrix represents the homogeneous equations. There may be
blocks of size m ⇥ m on the diagonal for sectors of dimension m, i.e. with m master
integrals. They arise since integrals of the same sector couple to each other in general.
Note that at one loop, there are no sectors with more than one master integral. Below
the (block-)diagonal are the couplings of the master integrals to their subtopologies.

We can write down differential equations in all the kinematic invariants si, including
masses. This set of differential equations can be written in a compact form using the
total differential,

d~I = A~I , where A = Asi dsi , (2.25)

i.e. A is a matrix of one-forms. It satisfies the integrability condition

dA � A ^ A = 0 (2.26)

11

FROM DIFFERENTIAL EQUATIONS TO GEOMETRY
Again, look at limit D → 4 − 2ϵ

→ [
a11(sij) a12(sij)
a21(sij) a22(sij)] + 𝒪(ϵ)2 × 2

all massive propagators

If equation does not decouple, there is an intrinsic “higher-order equation” (2nd order Picard-Fuchs equation) 
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fully characterizes the geometry of the electron propagator one order lower in perturbation
theory.

Figure 2: Planar and non-planar top sector diagrams relevant for the calculation of the
three-loop electron propagator. From the graphs, one can see that there can never be a cut
through four massive particles, which excludes contributions proportional to the three-loop
massive banana graph.

2.1 The elliptic curve

While the elliptic curve appearing in the sunrise graph has already been studied at full
length in the literature [4, 17, 49–52], we recall here some of its properties for convenience
of the reader and to establish our notations. The elliptic curve associated to the maximal
cut of the two-loop sunrise (see fig. 3) can be defined in terms of the kinematical invariants
of the propagator by the following fourth-order equation

Y
2 = P4(X) = X

�
X � 4m2

��
X � (

p
p2 �m)2

��
X � (

p
p2 +m)2

�
. (2.10)

Figure 3: The two loop sunrise graph, whose maximal cut is associated to the elliptic
curve defined by eq. (2.10).

The periods of the elliptic curve satisfy the following second-order Picard-Fuchs equa-
tion
"✓

x
d

dx

◆2

+

✓
1

x� 1
+

9

x� 9
+ 2

◆✓
x
d

dx

◆
+

27

4(x� 9)
+

1

4(x� 1)
+ 1

#
$(x) = 0 , (2.11)

where we have used the dimensionless ratio x defined in eq. (2.1). It is well known that close
to any regular singular point, this equation admits two solutions, a regular one and one
which diverges logarithmically. In a neighborhood of a regular-singular point, we always
denote the regular or holomorphic solution by $0(x). Note that a solution, which is holo-
morphic at one regular singular point, need not be holomorphic at another regular-singular
point (see also refs. [28, 53]). If we discuss different regular singular points p at the same
time, we will use superscripts like $

[p]
0 (x) to indicate the solution that is holomorphic in a

neighborhood of the point p.

– 6 –

x = p2

m2

If equation does not decouple, there is an intrinsic “higher-order equation” (2nd order Picard-Fuchs equation) 

Again, look at limit D → 4 − 2ϵ



THE TWO-LOOP ELECTRON PROPAGATOR
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Figure 1: The Feynman graphs contributing to the two-loop electron self-energy.

p
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Figure 2: The kite graph. This graph is equivalent to the second graph in fig. 1.

with the propagators

D1 = k2
1 −m2, D2 = k2

2, D3 = (k1 − k2)
2 −m2, D4 = (k1 − p)2, D5 = (p− k2)

2 −m2 (10)

and ν12345 = ν1+ν2 +ν3+ν4 +ν5. The internal momenta are denoted by k1 and k2, the internal
mass by m, the external momentum by p and the dimension of space-time by D = 4−2ε. The
arbitrary scale µ renders the integral dimensionless. In the following we set µ = m. We further

define

x =
p2

m2
. (11)

The five propagators D1-D5 are indicated by the numbers 1-5 in fig. 2. We note that all propa-
gators of the rainbow diagram and the fermion loop insertion diagram are a subset of these. In
order to show this, we labelled all propagators in fig. 1 with the appropriate numbers. Therefore

it is sufficient to consider only the master integrals of the kite integral. In order to present these
master integrals let us first denote by ψ1 and ψ2 two independent solutions of the second-order
differential equation [2, 36]

[

x(x−1)(x−9)
d2

dx2
+
(

3x2 −20x+9
) d

dx
+ x−3

]

ψ = 0. (12)

Of course, this does not fully specify ψ1 nor ψ2, but for the moment this is all what we would

like to assume about ψ1 and ψ2. The exact definitions of ψ1 and ψ2 will be given in section 6.
We denote the Wronskian by

W = ψ1
d

dx
ψ2 −ψ2

d

dx
ψ1. (13)

6

The electron propagator in QED; A. Sabri 1962
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master integrals let us first denote by ψ1 and ψ2 two independent solutions of the second-order
differential equation [2, 36]

[

x(x−1)(x−9)
d2

dx2
+
(

3x2 −20x+9
) d

dx
+ x−3

]

ψ = 0. (12)

Of course, this does not fully specify ψ1 nor ψ2, but for the moment this is all what we would

like to assume about ψ1 and ψ2. The exact definitions of ψ1 and ψ2 will be given in section 6.
We denote the Wronskian by

W = ψ1
d

dx
ψ2 −ψ2

d

dx
ψ1. (13)
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5. The Electron Self-Energy in QED at Two Loops

Denominators

D1 = k2
1

D2 = k2
2 � m2

D3 = (k1 � k2)2 � m2

D4 = (k1 � p)2 � m2

D5 = (k2 � p)2

Table 5.1.: Definition of the integral family that the electron self-energy at two loops
reduces to.

Figure 5.2.: The topologies of the six sectors required for the two-loop self-energy of
the electron. The two sunrise sectors are two-dimensional each, while the
other sectors are one-dimensional. Thus there are eight master integrals.
The bottom right topology is the top sector, known as the kite integral.

The complexity of the necessary transformation to the canonical basis depends heavily
on the chosen initial, pre-canonical integrals. We choose to start from

I0,1,1,0,0, I1,1,0,1,0, I0,1,1,1,0, I0,2,1,1,0,
I1,0,1,0,1, I1,0,1,�1,1, I1,1,0,1,1, I1,1,1,1,1.

Here, all integrals are evaluated in d = 4� 2#. However, in many cases it can be easier to
find good candidates close to 2 dimensions. We thus use dimensional shift relations to
express integrals in two dimensions in terms of the basis of four-dimensional integrals.
By D

�
I we denote the integral I in 2 � 2# dimensions, expressed in terms of the four-

dimensional basis integrals. For bubbles and tadpoles, for example, it is convenient to
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FROM DIFFERENTIAL EQUATIONS TO GEOMETRY

fully characterizes the geometry of the electron propagator one order lower in perturbation
theory.

Figure 2: Planar and non-planar top sector diagrams relevant for the calculation of the
three-loop electron propagator. From the graphs, one can see that there can never be a cut
through four massive particles, which excludes contributions proportional to the three-loop
massive banana graph.

2.1 The elliptic curve

While the elliptic curve appearing in the sunrise graph has already been studied at full
length in the literature [4, 17, 49–52], we recall here some of its properties for convenience
of the reader and to establish our notations. The elliptic curve associated to the maximal
cut of the two-loop sunrise (see fig. 3) can be defined in terms of the kinematical invariants
of the propagator by the following fourth-order equation

Y
2 = P4(X) = X

�
X � 4m2

��
X � (

p
p2 �m)2

��
X � (

p
p2 +m)2

�
. (2.10)

Figure 3: The two loop sunrise graph, whose maximal cut is associated to the elliptic
curve defined by eq. (2.10).

The periods of the elliptic curve satisfy the following second-order Picard-Fuchs equa-
tion
"✓

x
d

dx

◆2

+
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1

x� 1
+
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x� 9
+ 2

◆✓
x
d

dx

◆
+

27

4(x� 9)
+

1

4(x� 1)
+ 1

#
$(x) = 0 , (2.11)

where we have used the dimensionless ratio x defined in eq. (2.1). It is well known that close
to any regular singular point, this equation admits two solutions, a regular one and one
which diverges logarithmically. In a neighborhood of a regular-singular point, we always
denote the regular or holomorphic solution by $0(x). Note that a solution, which is holo-
morphic at one regular singular point, need not be holomorphic at another regular-singular
point (see also refs. [28, 53]). If we discuss different regular singular points p at the same
time, we will use superscripts like $

[p]
0 (x) to indicate the solution that is holomorphic in a

neighborhood of the point p.

– 6 –

Solutions: periods of an elliptic curve. Obvious? 

In some cases, you might be lucky enough to find the diff equation in some list of known ones…
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= ∫
( s−m)2

4m2

dt
Y

Im(b)

Re(b) 

0

(a)

0

Im(b)

Re(b) 

(b)

Figure 1: Left panel: The contours C1, C3 and C1. The branches of the integrand for the positive
sign in the root in Eq. (2.3) are drawn in red. Right panel: The contour C2. The branches of the
integrand for the negative sign in the root in Eq. (2.3) are drawn in red.

where u = p
2
/m

2. The graph in d = 2 space-time dimensions satisfies the following second-order
di↵erential equation


d
2

du2
+

✓
1

u
+

1

u � 1
+

1

u � 9

◆
d

du
+

✓
� 1

3u
+

1

4(u � 1)
+

1

12(u � 9)

◆�
S(u) = 0 , (2.2)

where we neglected the inhomogeneous terms which are irrelevant here and we set S(2;u) = S(u).
As it is well known, the maximal cut of the sunrise graph in d = 2 can be written as

Cut (S(u)) =

I

C

dbp
±b (b � 4) (b � (

p
u � 1)2) (b � (

p
u + 1)2)

=

I

C

dbp
±R4(b, u)

, (2.3)

where we use the notation Cut(S(u)) for the maximal cut of S(u) and we have not fully specified
neither the integration contour C nor the sign of the argument of the root. We claim that the
integration along any contour C which does not cross any branching point of the integrand produces
a solution of (2.2). In particular, we will see that there are only two possible independent contours
of such type and that by integrating along them we get at once both independent solutions of (2.2).

First of all, the square-root has four branching points. By choosing u > 9 we have

0 < 4 < (
p

u � 1)2 < (
p

u + 1)2 . (2.4)

The ordering of the branching points depends on the value of u, but the argument used below does not
depend on it. Given the four branching points it should be obvious that, depending on the sign that
we pick in (2.3), there are four possible integration contours which we can draw without crossing
the branch cuts. If we choose the plus sign, the integrand develops a branch cut for 0 < b < 4
and (

p
u � 1)2 < b < (

p
u + 1)2. If we pick the minus sign the branches are for �1 < b < 0,

4 < b < (
p

u�1)2 and (
p

u+1)2 < b < +1. In the first case, i.e. picking a plus sign, we can clearly
draw the two contours C1 and C2 depicted in Figure 1a. The third contour, C1, is instead equivalent
to the sum of the two, and we will need it later on. In the second case, we can draw instead only
one single contour, see Figure 1b, giving a total of three apparently di↵erent possibilities.

4

Y = t(t − 4m2)(t − ( s − m)2)(t − ( s + m)2)

[Laporta, Remiddi ’04; Primo, Tancredi ’16,17]

Information again from “unitarity”  study what happens when virtual particles go on shell!→



ELLIPTIC CURVES AND COMPLEX TORI
Elliptic curve given by an algebraic equation y = ± (x − a1)(x − a2)(x − a3)(x − a4)



ELLIPTIC CURVES AND COMPLEX TORI
Elliptic curve given by an algebraic equation y = ± (x − a1)(x − a2)(x − a3)(x − a4)

Torus is the Riemann surface associated to the square root with 4 branching points
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genus 1, elliptic curve;  y = P3(x)
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AN EXAMPLE CALCULATION: THE THREE-LOOP QED SELF-ENERGY

of these relations are independent is not an obstacle since, when trying to solve them, some relations will vanish
identically and for this reason will automatically be of no use.
The next step is to solve the system of these equations. Though there are several ways of thinking about what such

a solution might be, we prefer to look for the most general one. We then want to construct an algorithm that, for a
given topology and for any given initial set of powers of propagators, expresses an initial integral through a minimal
set of “simpler” integrals. The simpler integrals are usually those that either have denominators raised to small powers
or those that belong to simpler topologies. We then consider these “simpler”, but still non-trivial topologies, write
down a new set of recurrence relations for them, construct an algorithm that reduces any integral to even simpler
topologies and continue along these lines until we have an algorithm that completely solves the initial problem in
terms of a few master integrals. The final set of master integrals is found experimentally. There is no proof that the
set we find is indeed minimal with respect to integration-by-parts relations in the strict mathematical sense, but for
practical calculations this set of integrals is sufficient.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

FIG. 1. Examples of three-loop quark propagator diagrams corresponding to eleven integration topologies.

Our solution of the system of recurrence relations shows that it is possible to express any integral which belongs to
the above topologies through 18 master integrals. Most of these integrals have been calculated in the course of the
analytical calculation of the electron anomalous magnetic moment [10] and can be taken from there. It is remarkable
that a transition from the abelian theory to the non-abelian theory does not result in a significant increase in the
number of master integrals to be computed, although the number of basic topologies does. As compared to Ref. [10],
we need one additional master integral that corresponds to topology A and we also need one of the master integrals
of Ref. [10] to a higher order in the regularization parameter ε. For the QCD wave function renormalization constant
we also need the constant C1 (see [10] ) which was not computed in [10], because it mysteriously canceled in the
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fully characterizes the geometry of the electron propagator one order lower in perturbation
theory.

Figure 2: Planar and non-planar top sector diagrams relevant for the calculation of the
three-loop electron propagator. From the graphs, one can see that there can never be a cut
through four massive particles, which excludes contributions proportional to the three-loop
massive banana graph.

2.1 The elliptic curve

While the elliptic curve appearing in the sunrise graph has already been studied at full
length in the literature [4, 17, 49–52], we recall here some of its properties for convenience
of the reader and to establish our notations. The elliptic curve associated to the maximal
cut of the two-loop sunrise (see fig. 3) can be defined in terms of the kinematical invariants
of the propagator by the following fourth-order equation
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Figure 3: The two loop sunrise graph, whose maximal cut is associated to the elliptic
curve defined by eq. (2.10).

The periods of the elliptic curve satisfy the following second-order Picard-Fuchs equa-
tion
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where we have used the dimensionless ratio x defined in eq. (2.1). It is well known that close
to any regular singular point, this equation admits two solutions, a regular one and one
which diverges logarithmically. In a neighborhood of a regular-singular point, we always
denote the regular or holomorphic solution by $0(x). Note that a solution, which is holo-
morphic at one regular singular point, need not be holomorphic at another regular-singular
point (see also refs. [28, 53]). If we discuss different regular singular points p at the same
time, we will use superscripts like $

[p]
0 (x) to indicate the solution that is holomorphic in a

neighborhood of the point p.

– 6 –

2 “top graphs”

 expressed in terms of  Masters Integrals  ΣV & ΣS 𝒪(50) ⃗J

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl ’24]
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a new basis of master integrals that fulfills a so-called ✏-factorized system of differential
equations [21]. More explicitly, we define a new basis of integrals ~J through

~J = A(✏, x)~I , (3.2)

and we would like to find a matrix A(✏, x) such that the new basis of master integrals fulfills

d

dx
~J = ✏G(x) ~J , ✏G(x) = ABA

�1 +
dA

dx
A

�1
. (3.3)

In this form, the differential equations can easily be solved as series expansion in ✏. The
matrix G(x) can in general be written as follows

G(x) =
X

i

Gi fi(x) , (3.4)

where Gi are numerical matrices and the fi(x) are functions of the kinematical variable
x. Importantly, the functions fi(x) determine the analytic structure of the solutions to all
orders in ✏. Using the language of differential forms we can write

fi(x)dx = !i , (3.5)

such that the system of differential equations takes the form

d ~J = ✏

 
X

i

Gi !i

!
~J . (3.6)

Its solutions can formally be written as a path-ordered exponential,

~J(x) = P exp

"
✏

X

i

Gi

Z

�
!i

#
~J0 , (3.7)

where P is the path-ordering operator, ~J0 is the boundary condition at x = x0 and � is a
path that connects the points x0 to the generic point x. In this form, it becomes obvious
that at all orders in ✏ the integrals ~J can be written as linear combinations of (Chen)
iterated integrals [14] over the forms !i. In the problem under study we only deal with one
kinematic variable and the ensuing iterated integrals are explicitly given by

I(!in , . . . ,!i1) =
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where x0 is the chosen boundary point.
As already hinted at in the previous section, in the case of the three-loop self-energy

in QED, we find that the space of differential one-forms is larger than just dlog-forms, and
differential one-forms related to the elliptic curve of the two-loop equal mass sunrise integral
appear. In order to find an ✏-factorized basis, we proceed in two equivalent ways: first, using
an Ansatz as elucidated in refs. [25, 30, 54], and second, employing the algorithm described
in ref. [29]. We verified explicitly that both approaches generate the same ✏-factorized
basis, up to a rotation by a constant matrix. For the dlog-type integrals, we use a standard
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of these relations are independent is not an obstacle since, when trying to solve them, some relations will vanish
identically and for this reason will automatically be of no use.
The next step is to solve the system of these equations. Though there are several ways of thinking about what such

a solution might be, we prefer to look for the most general one. We then want to construct an algorithm that, for a
given topology and for any given initial set of powers of propagators, expresses an initial integral through a minimal
set of “simpler” integrals. The simpler integrals are usually those that either have denominators raised to small powers
or those that belong to simpler topologies. We then consider these “simpler”, but still non-trivial topologies, write
down a new set of recurrence relations for them, construct an algorithm that reduces any integral to even simpler
topologies and continue along these lines until we have an algorithm that completely solves the initial problem in
terms of a few master integrals. The final set of master integrals is found experimentally. There is no proof that the
set we find is indeed minimal with respect to integration-by-parts relations in the strict mathematical sense, but for
practical calculations this set of integrals is sufficient.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

FIG. 1. Examples of three-loop quark propagator diagrams corresponding to eleven integration topologies.

Our solution of the system of recurrence relations shows that it is possible to express any integral which belongs to
the above topologies through 18 master integrals. Most of these integrals have been calculated in the course of the
analytical calculation of the electron anomalous magnetic moment [10] and can be taken from there. It is remarkable
that a transition from the abelian theory to the non-abelian theory does not result in a significant increase in the
number of master integrals to be computed, although the number of basic topologies does. As compared to Ref. [10],
we need one additional master integral that corresponds to topology A and we also need one of the master integrals
of Ref. [10] to a higher order in the regularization parameter ε. For the QCD wave function renormalization constant
we also need the constant C1 (see [10] ) which was not computed in [10], because it mysteriously canceled in the

4

̂p ΣV(p2, m2) + m ΣS(p2, m2)

AN EXAMPLE CALCULATION: THE THREE-LOOP QED SELF-ENERGY

Full analytic and numerical control of result across all values of the momentum p2
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Figure 4: Real and imaginary part of ⌃(3)
S,0 (for ⇠ = 0).

Figure 5: Real and imaginary part of ⌃(3)
V,0 (for ⇠ = 0).

From the plots in figs. 4 and 5, we can easily see the expected discontinuity generated
by the threshold singularity at x0 = 1. Notice the vanishing imaginary part below x0 = 1.
At the point x0 = 9, the functions are continuous but not differentiable, see figs. 6 and 7.

5.1 Accelerated series expansions

It is a well known fact that one can apply suitable transformations in order to improve the
rate of convergence of a certain class of series expansions. When dealing with generalized
series with logarithmic singularities of the type that typically appear in the evaluation of
classical or multiple polylogarithms, a popular choice is given by so-called Bernoulli-like
variables, first introduced in ref. [31]. These have since been exploited in most numerical
routines for the numerical evaluation of multiple polylogarithms, see, e.g., refs. [12, 82, 83].
Here, we examine their use to accelerate the series expansions for the Feynman integrals
encountered in our calculation, which are related to a more general elliptic geometry. The ef-
fectiveness of using Bernoulli-like variables beyond polylogarithms has already been demon-
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Figure 6: Real and imaginary part of ⌃(3)
S,0 close to x0 = 9 (for ⇠ = 0). Notice different

scales for different quantities in ordinate.

Figure 7: Real and imaginary part of ⌃(3)
V,0 close to x0 = 9 (for ⇠ = 0). Notice different

scales for different quantities in ordinate.

strated in the case of the two-loop equal mass sunrise graph [84]. In fact, irrespective of
the geometry involved, close to each regular singular point, Feynman integrals are always
expected to be expressible as generalized series expansion of the form given in eq. (4.3).
Bernoulli-like variables are related to the logarithmic behavior of the corresponding series
at the singular point considered, and we expect therefore that they could help accelerate
the convergence whenever these types of series are considered.

Let us showcase the effect of this transformation, reconsidering the series expansion for
⌃(3)
S,0 around x0 = 0. The variable we consider is defined by

x(z) = 1� e
�z

, with inverse: z(x) = � log(1� x) . (5.7)

We can express ⌃(3)
S,0 as a function of z thanks to eq. (5.7) and study the convergence of

partial sums at the point z = log(2) (corresponding to x = 1/2 in the original variables).
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AN EXAMPLE CALCULATION: BEYOND ELLIPTIC PHOTONS
[Forner Nega, Tancredi ’24]

Figure 1: Some examples of Feynman diagrams contributing to the QED photon self-
energy up to three loops. In total, there are one, three, and 20 diagrams at one, two, and
three loops, respectively.

Denominator Integral family A Integral family B Integral family C

D1 k21 �m2 k21 �m2 k21 �m2

D2 k22 �m2 k22 �m2 k22 �m2

D3 k23 �m2 k23 k23
D4 (k1 � p)2 �m2 (k1 � p)2 �m2 (k1 � p)2 �m2

D5 (k2 � p)2 �m2 (k2 � p)2 �m2 (k2 � p)2 �m2

D6 (k3 � p)2 �m2 (k3 � p)2 (k3 � p)2

D7 (k1 � k2)2 (k1 � k3)2 �m2 (k1 � k2)2

D8 (k1 � k3)2 (k2 � k3)2 �m2 (k2 + k3 � p)2 �m2

D9 (k2 � k3)2 (k1 + k2 � k3 � p)2 (k1 + k3 � p)2 �m2

Table 1: Definitions of the propagators of the three scalar integral families A,B,C.

All scalar integrals can be reduced to masters using symmetries and integration-by-
parts (IBP) relations [10, 75, 76]. In this way, it is easy to see that family C does not
introduce any additional master integrals with respect to those generated by family A and
B. To perform the reduction we have employed Reduze 2 [77, 78] and Kira 2 [79–81]. We
find 36 independent master integrals in total, where the first 20 belong to family A, and the
last 16 come from family B. As a convenient choice of initial Laporta integrals, we follow
the general prescriptions provided in [67] and consider the basis

IA111000000 , IA111100000 , IA011100100 , IA�111100100 , IA011000110 ,

IA001010110 , IA�101010110 , IA0�11010110 , IA111110000 , IA011101100 ,

IA�111101100 , IA�111100110 , IA�211100110 , IA01110011�1 , IA01101011�1 ,
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IA111111000 , IA012110110 , IA011011210 , IA111011110 , IA111111110 ,

IB110000110 , IB010100110 , IB020100110 , IB030100110 , IB110100110 ,

IB001110110 , IB�101110110 , IB110110210 , IB210110210 , IB01120110 ,

IB01120110 , IB011100211 , IB011100121 , IB011100311 , IB111110111 ,

IB11111�1111 .

Figure 2: Planar and non-planar top sectors of family A and B that admit a fully massive
four-particle cut.

As we discussed earlier, the photon self-energy at one and two loops is purely poly-
logarithmic, unlike the electron self-energy where elliptic integrals already appear at two
loops [56]. In Fig. 2, we draw the planar and non-planar top sectors contributing to the
three-loop photon self-energy. As it is easy to see, they both involve diagrams with four
massive particle cuts, as opposed to the electron self-energy at three loops [56]. This cut
is related to the three-loop equal-mass banana integral, which is known to be associated
with a K3 surface [36, 40, 82]. Indeed, by an analysis of the relevant maximal cuts [36, 83]
in Baikov representation [84–86], one can easily prove that all higher sectors beyond the
banana do not introduce any further geometry beyond the K3 associated to the banana
integral.

Before describing our canonical basis for this set of master integrals, it is useful to recall
some well-known properties of the associated K3 geometry.

2.2 The K3 geometry

The maximal cut of the three-loop equal-mass banana graph satisfies a third-order Picard-
Fuchs differential equation [36]

L3(x)$i(x) = 0 for i = 0, 1, 2, (2.10)

with

L3(x) =

✓
x
d

dx

◆3

+
3x(x� 10)

(x� 16)(x� 4)

✓
x
d

dx

◆2

+
3x(x� 6)

(x� 16)(x� 4)

✓
x
d

dx

◆
+

x

(x� 16)
.

(2.11)

This differential equation has regular singular points at x 2 {0, 4, 16,1}, and its solutions
are the three periods of a one-parameter K3 surface. In the following, we give our choice
of local solutions around these four singular points. We label our solutions by $[p]

i for
i = 0, 1, 2, where p = {0, 4, 16,1} refers to the expansion point. Moreover, we also consider
the solution close to the point x = 1, which is not a singular point of eq. (2.11), but will
become important later.
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This time there is a three-massive particle cut
 three-loop banana associated to a K3 geometry→

the same considerations apply and one finds that there are only two independent contours which are
equivalent to the following one dimensional real integrals

I(a1, a2) =

Z
a2

a1

dap
�R(a, a1, a2, a3, a4)

=

Z
a4

a3

dap
�R(a, a1, a2, a3, a4)

,

I(a2, a3) =

Z
a3

a2

dap
R(a, a1, a2, a3, a4)

=

✓Z
a1

�1
+

Z +1

a4

◆
dap

R(a, a1, a2, a3, a4)
. (2.11)

As for the explicit case of the sunrise with equal masses, we chose the sign in the root in order to
deal with real integrals everywhere.

As a last remark, the integrals in Eqs. (2.11) are nothing but complete elliptic integrals of the first
kind. To see this, we perform the two standard changes of variables for the two integrals respectively

I(a1, a2) �! t
2 =

(a4 � a2)(a � a1)

(a2 � a1)(a4 � a)
,

I(a2, a3) �! t
2 =

(a1 � a3)(a � a2)

(a3 � a2)(a1 � a)
, (2.12)

and obtain

I(a1, a2) =
2p

(a3 � a1)(a4 � a2)
K (w1) , (2.13)

I(a2, a3) =
2p

(a3 � a1)(a4 � a2)
K (1� w1) , (2.14)

where

K(w) =

Z 1

0

dzp
(1� z2)(1� w z2)

with <(w) < 1 , (2.15)

is the elliptic integral of the first kind and

w1 =
(a2 � a1)(a4 � a3)

(a3 � a1)(a4 � a2)
. (2.16)

Indeed, a standard result of the theory of the complete elliptic integrals shows that K(w) and
K(1 � w) satisfy the same second-order di↵erential equation, of which they constitute the two
independent solutions.

The analysis carried out in this section might seem somewhat redundant, as the theory of the
elliptic integrals has been very well understood for a long time. Nevertheless, when considering the
three-loop banana graph, we will see that many of the ideas and of the results derived here can be
directly borrowed or trivially extended to more complicated cases. We believe that this will make
our analysis in this much less trivial case, much more transparent.

3 The three-loop massive banana graph

We consider the three-loop two-point integral family defined by

p

m

m

m

m

= Ia1,a2,a3,a4,a5,a6,a7,a8,a9

���
a5,··· ,a9<0

6
can be thought of as a higher dimensional elliptic curve

 expressed in terms of  Masters Integrals  Π(p2) 𝒪(36) ⃗J



AN EXAMPLE CALCULATION: BEYOND ELLIPTIC PHOTONS
[Forner Nega, Tancredi ’24]
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than expected from the differential equation. In particular, the singularity of the differential
equations at x = 1 seems not to restrict the radius of convergence. This goes along with
similar observations made in the context of simpler problems [103] and can be traced back
to the fact that the physical solutions for all master integrals are regular at x = 1. The
self-energy develops a square-root branch cut from the threshold x = 4 to x = 1. Before
the threshold, the self-energy is purely real. Interestingly, at the singularity x = 16, the
self-energy is also regular, whereas the individual master integrals develop a further square
root cut which cancels in the final physical result.
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Figure 3: Real and imaginary part of ⇧3,0(x) across the whole kinematic space (left panel)
and a zoom of the region close to the threshold x = 4 (right panel).

Before closing our discussion, we want to comment on the use of so-called Bernoulli-like
variables [104] to obtain accelerated series expansions for our result. These variables are
typically used to improve the convergence of classical and multiple polylogarithms [105–
107], but their utility was also demonstrated in elliptic cases, see [103] and, more recently in
reference [56]. Let us consider, in particular, the series solution centered at x = 0. Since we
can ignore the closest singularity at x = 1, the next relevant singularity that would restrict
its radius of convergence is x = 4. By transforming to the Bernoulli-like variable

zB = � log
⇣
1�

x

4

⌘
whose inverse reads x = 4(1� e�zB ) , (6.7)

this singularity is pushed to infinity. Similar Bernoulli-like variables can also be defined
at the other relevant singular points, allowing us to cover the whole kinematic space with
higher numerical precision but still with the same number of terms.

We stress here that, due to the fact that our differential equations have, in general,
more than three singular points, it is not obvious that this transformation should improve
the convergence of the series. In fact, whenever we are dealing with a problem characterized
by only three singular points (which, for definiteness, can always be fixed to be {0, 1,1}),
it is always possible to redefine the series close to x = 0 with a Bernoulli-like variable that
pushes x = 1 to infinity, extending in this way the expected radius of convergence of the
series. If a fourth singular point exists, under a standard Bernoulli transformation, this
will typically be moved to some location in the complex plane at a finite distance from
x = 0. As a result, the radius of convergence of the series expansion will still be limited.
Despite this, we still observe a substantial improvement in the convergence of the series. It
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Following same approach: derive and solve differential equations using properties of K3 geometry
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Figure 1: Examples of two-loop Feynman diagrams that contribute to the process
gg → Hg.

diagrams with QGRAF [14]. A few examples of the two-loop Feynman diagrams that

contribute to the gg → Hg amplitude are shown in Fig. 1. The projection operators
are applied diagram by diagram and the polarization sums are computed following
Eqs.(3.2, 3.3, 3.4). Once this step is completed, each contributing diagram is written

in terms of integrals that depend on the scalar products of the loop momenta between
themselves and the scalar products of the loop momenta with the external momenta.

We can assign all Feynman integrals that contribute to the scattering amplitude to
three integral families, two planar and one non-planar. These integral families are
given by

Itop(a1, a2, ..., a8, a9) =

∫
DdkDdl

[1]a1 [2]a2 [3]a3 [4]a4 [5]a5 [6]a6 [7]a7 [8]a8 [9]a9
, (3.7)

where top ∈ {PL1,PL2,NPL} is the topology label and the propagators [1], [2], ..., [9]

for each topology are shown in Table 1. The integration measure is defined as

D
dk = (−m2

h)
(4−d)/2 (4π)d/2

iΓ(1 + ϵ)

∫
ddk

(2π)d
. (3.8)

We note that the loop momenta shifts required to map contributing Feynman

diagrams on to the integral families are obtained using the shift finder implemented
in Reduze2 [15]. All algebraic manipulations needed at different stages of the com-

putation are performed using FORM [16]. Once the amplitude is written in terms of
scalar integrals, we simplify them using all possible loop momenta shifts with a unit

Jacobian; this can also be done using the momentum shift finder of Reduze2. When
the contributions of all diagrams to the form factors are summed up, significant sim-
plifications occur; for example, only integrals with up to three scalar products are

left, although some individual diagrams receive contributions from integrals with up
to four scalar products.

Having determined all scalar integrals that contribute to the amplitude, we need
to reduce them to master integrals. The reduction procedure relies on a systematic
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ELLIPTIC AND BEYOND: HIGHER GENUS AND HIGHER DIMENSION
This picture holds for many other elliptic cases (more to appear hopefully soon!) 

And for more general geometries, with obvious generalizations: higher-order eqs, more “solutions”…

5 Cases beyond a single elliptic curve

In the previous sections, we have provided examples of how our procedure can be applied
to multi-scale elliptic problems to obtain fully ✏-factorised systems of differential equations.
Here, we want to test the applicability of our procedure beyond the elliptic case, considering
families of Feynman graphs with different underlying geometries. We start with a family
with two elliptic curves and then consider a three-loop example characterised by a K3
surface.

5.1 The three-loop ice cone

Our first example of a Feynman graph family with underlying geometry beyond a single
elliptic curve is the three-loop ice cone family (see figure 6).

k1

k2

k3

P
i ki � p1

P
i ki + p2

p21 = 0 p22 = 0

s = (p1 + p2)2

Figure 6. The three-loop ice cone graph.

As it was argued in [66], by studying the maximal cut of the three-loop ice cone in d = 2

one finds two different elliptic curves, which can be both related to the elliptic curve of the
two-loop sunrise graph. We follow the conventions from [66] and define the propagators
and irreducible scalar products of the ice cone family as

D1 = k21 �m2 , D2 = k22 �m2 , D3 = k23 �m2 ,

D4 = (k1 + k2 + k3 � p1)
2
�m2 , D5 = (k1 + k2 + k3 + p2)

2
�m2 ,

N1 = (k1 + k2 + k3)
2 , N2 = k1 · k3 ,

N3 = k2 · k3 , N4 = k2 · p1 , N5 = k2 · p2 , N6 = k3 · p1 , N7 = k3 · p2 .
(5.1)

Again following [66], we take as the set of starting master integrals14

I1 = I1,1,1,0,0,0,0 , I2 = I1,1,1,1,0,0,0 , I3 = I2,2,0,1,1,0,0 ,

I4 = I1,1,1,1,1,0,0 , I5 = I1,1,1,1,1,�1,0 , I6 = I2,1,1,1,1,0,0 , I7 = I2,1,1,1,1,�1,0 ,

I8 = I1,1,1,1,1,�1,�1 +
1

6
I2 +

1

6
I4 �

1� z + z2

6z
I5 .

(5.2)

14For simplicity we only write down the first seven ⌫i’s. The other numerators are not needed for our
choice of master integrals.
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Figure 1. The l-loop banana graph with external momentum p and internal masses mi.

the integral only depends on the propagator masses and the dot products between the
external momenta. We refer to these collectively as the scales xk, and we collect them
into the vector x = (xk)1ÆkÆN . By dimensional analysis, the only non-trivial functional
dependence is through the ratios

zk := xk+1/x1 , 1 Æ k < N . (2.2)

It is well known that not all the integrals in this family are independent. We can
use integration-by-parts (IBP) relations to write every member of this family as a linear
combination of a certain set of basis elements, conventionally referred to as master inte-
grals [95, 96]. The basis of master integrals is known to be always finite [97–99]. In the
following it will be useful to group the members of the family into sectors, i.e., integrals that
share the same set of denominators in the integrand in eq. (2.1) (though the denominators
may be raised to di�erent powers). More precisely, consider the map Ë : Zp æ {0, 1}p

which sends ‹ = (‹j)1ÆjÆp to Ë(‹) = (◊(‹j))1ÆjÆp, where ◊(m) denotes the Heaviside step
function:

◊(m) =
I

1 , if m > 0 ,

0 , if m Æ 0 .
(2.3)

We say that I‹(x; D) and I‹Õ(x; D) belong to the same sector if Ë(‹) = Ë(‹ Õ). There is a
natural partial order on sectors, given by Ë(‹) Æ Ë(‹ Õ) if and only if ◊(‹ Õ

i) ≠ ◊(‹i) Ø 0, for
all 1 Æ i Æ p.

We work in dimensional regularization, and each member of this family is interpreted
as a Laurent series in the dimensional regularization parameter ‘ = (D0 ≠ D)/2, with D0

a positive integer, cf., e.g., ref. [100]. For algebraic values of the scales x, the Laurent
coe�cients are periods [1] in the sense of Kontsevich and Zagier [2]. This motivates the
use of techniques from algebraic geometry to compute Feynman integrals. One of the
main goals of this paper is to study how some methods from geometry to compute periods
can be used to compute multi-loop Feynman integrals in dimensional regularization. Our
recurrent example will be a special class of l-loop Feynman integrals in D = 2 ≠ 2‘ with at
most p = l + 1 propagators, known as banana integrals (see figure 1), and the propagators
are given by

Dj = k2

j ≠ m2

j , 1 Æ j Æ l ,

Dl+1 = (k1 + . . . + kl ≠ p)2 ≠ m2

l+1 .
(2.4)
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5

FIG. 3. Examples of hyperelliptic Feynman integrals in which
genus drop via an extra involution can be observed. These
integrals contribute to gg ! tt with a top loop, and Møller
scattering e�e� ! e�e� with the exchange of three Z bosons.

and another that contributes to Møller scattering. The
maximum cut of both diagrams involve curves of genus 3
in momentum space that enjoy an extra involution sym-
metry and can be mapped to curves of genus 2.

It is also possible to see genus drop via the same mech-
anism in special kinematic limits. For instance, a further
involution symmetry appears in the equal-mass nonpla-
nar crossed box diagram when s = �2t. In this limit
there is a permutation symmetry that exchanges p1 $ p2,
and the curve becomes

y2 = 8t2
�
2ẑ2�m2t

� �
4ẑ2�2m2t�t2

� �
4ẑ2+6m2t�t2

�
,

with ẑ = z � t
2
. This makes it evident that the maximal

cut of this diagram drops from genus 2 to genus 1 in this
limit [93]. This is consistent with the Picard–Fuchs oper-
ator associated with this integral, which we also observe
to drop from order 4 to order 2 when s = �2t.

Finally, a similar genus drop can be observed for the
five-point box-pentagon-box integral shown in Figure 4,
for massless external particles and equal internal masses.
In momentum space, we find that the maximal cut of
this integral gives rise to a curve of genus 5 using Sin-
gular [94], which matches our expectations from the
results of [20]. We also find that the maximal cut ob-
tained using a loop-by-loop Baikov parametrization can
be identified with a period of a hyperelliptic curve of
genus 3. Notably—unlike the other examples we have
considered—the momentum space curve is in this case
not hyperelliptic; even so, we expect that a mechanism
similar to the one we have described for hyperelliptic
curves is responsible for this genus drop.

Conclusion

In this letter we have studied Feynman diagrams that
give rise to integrals over hyperelliptic curves, and high-
lighted the fact that di↵erent integral representations of
these diagrams can lead to curves with di↵erent genera.
Importantly, this drop in genus represents a significant
simplification in the types of functions that these dia-
grams are expected to evaluate to. In all of our hyper-
elliptic examples, we have observed that discrepancy in
genus can be explained by the presence of an extra invo-
lution symmetry that allows the higher-genus curve to be
algebraically mapped to the curve with lower genus. We

FIG. 4. The three-loop box-pentagon-box integral with equal
internal masses and massless external momenta, which ex-
hibits a genus drop from 5 to 3.

expect that the presence of extra involutions in the mo-
mentum representation can follow from discrete Lorentz
symmetries (spacetime parity or time reversal). We also
presented an algorithm to detect when an extra involu-
tion exists, and showed that this symmetry leads to linear
relations among the periods of the corresponding curve.

While it is important to be able to diagnose which class
of special functions a given Feynman integral is expected
to be expressible in terms of, it will be even more es-
sential to develop the technology for working with these
classes of functions. Despite remarkable recent progress
on iterated integrals involving elliptic curves (see [95] for
an overview), much less technology has currently been
developed for iterated integrals over hyperelliptic curves
(however, for recent work see [96–98]). The nonplanar
crossed box with equal internal masses represents an ideal
example on which to develop such technology, given that
it only involves a curve of genus 2 and depends on two
dimensionless variables [99].

Having identified a novel class of simplifications that
can occur in hyperelliptic Feynman integrals, it is natural
to wonder whether analogous simplifications can occur in
Feynman integrals that involve integrals over more gen-
eral varieties, such as curves that are not hyperelliptic or
higher-dimensional Calabi–Yaus. One way to search for
evidence of such simplifications would be to look for un-
expected relations between entries of the period matrix.
We leave this enticing possibility to future work.
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solve the differential equations, along with a brief analysis on the geometry underlying the actual
analytic solution.

Moreover, as ancillary material attached to this paper, we furnish the analytic expressions of the
finite reminder for the form factors, alongside with Mathematica files which allows for a standalone
evaluation of the MIs with DiffExp.

2 Computational setup and amplitude structure

In this paper, we consider the two-loop form factors for diphoton production in the quark annihila-
tion channel with a heavy quark loop. At the partonic level, the scattering amplitude proceeds as
the Born subprocess:

q(p1) + q(p2) ! �(p3) + �(p4). (2.1)

The kinematics for this process is described by the Mandelstam variables3

s = �(p1 + p2)
2, t = �(p1 � p3)

2, u = �(p2 � p3)
2, with s+ t+ u = 0, (2.2)

where the external particles are on-shell, i.e. p2
i
= 0, and we indicate with m2

t
the heavy-quark

Figure 1: Representative set of two-loop diagrams with internal heavy-quark loops, which con-
tribute at NNLO QCD corrections to diphoton production in the quark annihilation channel. Thin
black lines represents light quarks, thick black lines heavy quarks, curly lines gluons and curby lines
photons.

squared mass4. In order to obtain the scattering amplitude, we generated the relevant Feynman
diagrams using the FeynArts package [108]. We found a total number of 14 diagrams contributing
to the amplitude, the representative ones are shown in fig. 1. We write the scattering amplitude
in terms of form factors, which are decomposed into a basis of 72 MIs exploiting IBPs reduction
[47–49, 51–57, 109], as implemented in the software Kira [57].

The MIs contributing to this process can be described by three different scalar integral topologies
(modulo exchange of the two final photons). Specifically, the MIs for the Feynman diagrams (a)
and (b) in fig. 1 are associated to the integral families PLA and NPL, respectively, as defined
in section 3. Similarly, the MIs for the diagrams (c), (d) and (e) can be grouped into one scalar
integral family, PLB, also defined in section 3. The MIs of the families PLA and PLB were already
known in the literature [67]. Regarding the non-planar topology NPL, while most of the MIs have
already been studied [67, 72, 73, 97, 110–112], the double-box top-sector have not been considered
in the literature yet, and therefore its computation represents an original result by itself.

For this project, we performed an independent calculation of all the MIs by means of the
differential equations method [59–66]. In particular we solved the system of differential equations

3For our computations we use the metric of [107].
4For the rest of this paper we will refer to the heavy quark as top quark. We note however that our formulas are

general and they can be evaluated with a different value of the heavy quark mass.
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BEYOND ELLIPTICS ”CALABI-YAUS IN THE SKY”

Recently, CY geometries have been shown to be indispensable to model gravitation waves in Post-Minkoskian expansion

[Klemm, Nega, Sauer, Plefka ’24; Frellesvig, Morales, Willhelm ’23 ]

[Bern, Parra-Martinez, Roiban, Ruf, Shen ’21,…’24]



CONCLUSIONS AND OUTLOOK
- amplitudes are fundamental building blocks in QFT, for precision collider physics and beyond 

- complexity of the calculations is often matched by unexpected simplicity in final results 

- searching for a way to make simplicity manifest informs on how to compute amplitudes 

more efficiently (language of differential forms on complex varieties is an example!) 

- what we learnt in past 10 years is finally bearing fruit: the first realistic “correlators” and 

amplitudes under analytic and numerical control 

- same structures observed in gravitational waves calculations and cosmological corrrelators!



THANK YOU VERY MUCH!
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FROM DIFFERENTIAL EQUATIONS TO GEOMETRY

fully characterizes the geometry of the electron propagator one order lower in perturbation
theory.

Figure 2: Planar and non-planar top sector diagrams relevant for the calculation of the
three-loop electron propagator. From the graphs, one can see that there can never be a cut
through four massive particles, which excludes contributions proportional to the three-loop
massive banana graph.

2.1 The elliptic curve

While the elliptic curve appearing in the sunrise graph has already been studied at full
length in the literature [4, 17, 49–52], we recall here some of its properties for convenience
of the reader and to establish our notations. The elliptic curve associated to the maximal
cut of the two-loop sunrise (see fig. 3) can be defined in terms of the kinematical invariants
of the propagator by the following fourth-order equation

Y
2 = P4(X) = X

�
X � 4m2

��
X � (

p
p2 �m)2

��
X � (

p
p2 +m)2

�
. (2.10)

Figure 3: The two loop sunrise graph, whose maximal cut is associated to the elliptic
curve defined by eq. (2.10).

The periods of the elliptic curve satisfy the following second-order Picard-Fuchs equa-
tion
"✓

x
d

dx

◆2

+

✓
1

x� 1
+

9

x� 9
+ 2

◆✓
x
d

dx

◆
+

27

4(x� 9)
+

1

4(x� 1)
+ 1

#
$(x) = 0 , (2.11)

where we have used the dimensionless ratio x defined in eq. (2.1). It is well known that close
to any regular singular point, this equation admits two solutions, a regular one and one
which diverges logarithmically. In a neighborhood of a regular-singular point, we always
denote the regular or holomorphic solution by $0(x). Note that a solution, which is holo-
morphic at one regular singular point, need not be holomorphic at another regular-singular
point (see also refs. [28, 53]). If we discuss different regular singular points p at the same
time, we will use superscripts like $

[p]
0 (x) to indicate the solution that is holomorphic in a

neighborhood of the point p.
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By cutting all propagators (and continuing down to leading singularities) we can “expose” simplest integral 
which fulfils the homogeneous differential equation [Primo, Tancredi ’16,’17]
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= 0

Solutions: periods of an elliptic curve. Obvious? 

In some cases, you might be lucky enough to find the diff equation in some list of known ones…



FROM DIFFERENTIAL EQUATIONS TO GEOMETRY

fully characterizes the geometry of the electron propagator one order lower in perturbation
theory.

Figure 2: Planar and non-planar top sector diagrams relevant for the calculation of the
three-loop electron propagator. From the graphs, one can see that there can never be a cut
through four massive particles, which excludes contributions proportional to the three-loop
massive banana graph.

2.1 The elliptic curve

While the elliptic curve appearing in the sunrise graph has already been studied at full
length in the literature [4, 17, 49–52], we recall here some of its properties for convenience
of the reader and to establish our notations. The elliptic curve associated to the maximal
cut of the two-loop sunrise (see fig. 3) can be defined in terms of the kinematical invariants
of the propagator by the following fourth-order equation

Y
2 = P4(X) = X

�
X � 4m2

��
X � (

p
p2 �m)2

��
X � (

p
p2 +m)2

�
. (2.10)

Figure 3: The two loop sunrise graph, whose maximal cut is associated to the elliptic
curve defined by eq. (2.10).

The periods of the elliptic curve satisfy the following second-order Picard-Fuchs equa-
tion
"✓

x
d

dx

◆2

+

✓
1

x� 1
+

9

x� 9
+ 2

◆✓
x
d

dx

◆
+

27

4(x� 9)
+

1

4(x� 1)
+ 1

#
$(x) = 0 , (2.11)

where we have used the dimensionless ratio x defined in eq. (2.1). It is well known that close
to any regular singular point, this equation admits two solutions, a regular one and one
which diverges logarithmically. In a neighborhood of a regular-singular point, we always
denote the regular or holomorphic solution by $0(x). Note that a solution, which is holo-
morphic at one regular singular point, need not be holomorphic at another regular-singular
point (see also refs. [28, 53]). If we discuss different regular singular points p at the same
time, we will use superscripts like $

[p]
0 (x) to indicate the solution that is holomorphic in a

neighborhood of the point p.

– 6 –

Im(b)

Re(b) 

0

(a)

0

Im(b)

Re(b) 

(b)

Figure 1: Left panel: The contours C1, C3 and C1. The branches of the integrand for the positive
sign in the root in Eq. (2.3) are drawn in red. Right panel: The contour C2. The branches of the
integrand for the negative sign in the root in Eq. (2.3) are drawn in red.

where u = p
2
/m

2. The graph in d = 2 space-time dimensions satisfies the following second-order
di↵erential equation


d
2

du2
+
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u � 1
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◆
d

du
+

✓
� 1

3u
+

1

4(u � 1)
+

1

12(u � 9)

◆�
S(u) = 0 , (2.2)

where we neglected the inhomogeneous terms which are irrelevant here and we set S(2;u) = S(u).
As it is well known, the maximal cut of the sunrise graph in d = 2 can be written as

Cut (S(u)) =

I

C

dbp
±b (b � 4) (b � (

p
u � 1)2) (b � (

p
u + 1)2)

=

I

C

dbp
±R4(b, u)

, (2.3)

where we use the notation Cut(S(u)) for the maximal cut of S(u) and we have not fully specified
neither the integration contour C nor the sign of the argument of the root. We claim that the
integration along any contour C which does not cross any branching point of the integrand produces
a solution of (2.2). In particular, we will see that there are only two possible independent contours
of such type and that by integrating along them we get at once both independent solutions of (2.2).

First of all, the square-root has four branching points. By choosing u > 9 we have

0 < 4 < (
p

u � 1)2 < (
p

u + 1)2 . (2.4)

The ordering of the branching points depends on the value of u, but the argument used below does not
depend on it. Given the four branching points it should be obvious that, depending on the sign that
we pick in (2.3), there are four possible integration contours which we can draw without crossing
the branch cuts. If we choose the plus sign, the integrand develops a branch cut for 0 < b < 4
and (

p
u � 1)2 < b < (

p
u + 1)2. If we pick the minus sign the branches are for �1 < b < 0,

4 < b < (
p

u�1)2 and (
p

u+1)2 < b < +1. In the first case, i.e. picking a plus sign, we can clearly
draw the two contours C1 and C2 depicted in Figure 1a. The third contour, C1, is instead equivalent
to the sum of the two, and we will need it later on. In the second case, we can draw instead only
one single contour, see Figure 1b, giving a total of three apparently di↵erent possibilities.
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sign in the root in Eq. (2.3) are drawn in red. Right panel: The contour C2. The branches of the
integrand for the negative sign in the root in Eq. (2.3) are drawn in red.
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p
u + 1)2. If we pick the minus sign the branches are for �1 < b < 0,

4 < b < (
p

u�1)2 and (
p

u+1)2 < b < +1. In the first case, i.e. picking a plus sign, we can clearly
draw the two contours C1 and C2 depicted in Figure 1a. The third contour, C1, is instead equivalent
to the sum of the two, and we will need it later on. In the second case, we can draw instead only
one single contour, see Figure 1b, giving a total of three apparently di↵erent possibilities.
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second independent solution from second integration contour [Primo, Tancredi ’16,’17]

Solutions: periods of an elliptic curve. Obvious!!! 



of these relations are independent is not an obstacle since, when trying to solve them, some relations will vanish
identically and for this reason will automatically be of no use.
The next step is to solve the system of these equations. Though there are several ways of thinking about what such

a solution might be, we prefer to look for the most general one. We then want to construct an algorithm that, for a
given topology and for any given initial set of powers of propagators, expresses an initial integral through a minimal
set of “simpler” integrals. The simpler integrals are usually those that either have denominators raised to small powers
or those that belong to simpler topologies. We then consider these “simpler”, but still non-trivial topologies, write
down a new set of recurrence relations for them, construct an algorithm that reduces any integral to even simpler
topologies and continue along these lines until we have an algorithm that completely solves the initial problem in
terms of a few master integrals. The final set of master integrals is found experimentally. There is no proof that the
set we find is indeed minimal with respect to integration-by-parts relations in the strict mathematical sense, but for
practical calculations this set of integrals is sufficient.
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FIG. 1. Examples of three-loop quark propagator diagrams corresponding to eleven integration topologies.

Our solution of the system of recurrence relations shows that it is possible to express any integral which belongs to
the above topologies through 18 master integrals. Most of these integrals have been calculated in the course of the
analytical calculation of the electron anomalous magnetic moment [10] and can be taken from there. It is remarkable
that a transition from the abelian theory to the non-abelian theory does not result in a significant increase in the
number of master integrals to be computed, although the number of basic topologies does. As compared to Ref. [10],
we need one additional master integral that corresponds to topology A and we also need one of the master integrals
of Ref. [10] to a higher order in the regularization parameter ε. For the QCD wave function renormalization constant
we also need the constant C1 (see [10] ) which was not computed in [10], because it mysteriously canceled in the
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approach [20, 55, 56] to derive a canonical ✏-factorized basis, including a leading singularity
analysis in Baikov representation [57–59]. We write our basis compactly in appendix A and
an explicit version expressed in terms of the basis integrals in eq. (2.9) can be found in the
ancillary file to this manuscript.

We write our ✏-factorized equations as in eq. (3.6), and we find that we need a total
of 16 differential forms !i = fi(x)dx. 9 of these differential forms are dlog forms, and the
remaining 7 involve a solution of the Picard-Fuchs equation (2.11). By using the notation
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the regular singular point x0. Explicitly, they are given in eqs. (2.12) to (2.15). To simplify
the notation, we suppress here and in what follows the dependence of the solution $

[x0]
0 (x)

on the singular point x0. The formulas in eq. (3.10) become explicit only once considered
locally, close to a given singular point. For each singular point, we use the definitions of
the holomorphic solutions given in eqs. (2.12) to (2.15). We provide the corresponding
numerical matrices Gi in the ancillary files attached to the arXiv submission of this paper.
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If we define ⌘j(⌧) by
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with ⌧ defined by eq. (2.21), then ⌘3(⌧), ⌘4(⌧), ⌘6(⌧), ⌘10(⌧)⌘11(⌧), ⌘12(⌧), ⌘14(⌧), ⌘15(⌧) and
⌘16(⌧) are modular forms of �1(6). We will comment more on the connection to modular
forms in section 4.5.
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of these relations are independent is not an obstacle since, when trying to solve them, some relations will vanish
identically and for this reason will automatically be of no use.
The next step is to solve the system of these equations. Though there are several ways of thinking about what such

a solution might be, we prefer to look for the most general one. We then want to construct an algorithm that, for a
given topology and for any given initial set of powers of propagators, expresses an initial integral through a minimal
set of “simpler” integrals. The simpler integrals are usually those that either have denominators raised to small powers
or those that belong to simpler topologies. We then consider these “simpler”, but still non-trivial topologies, write
down a new set of recurrence relations for them, construct an algorithm that reduces any integral to even simpler
topologies and continue along these lines until we have an algorithm that completely solves the initial problem in
terms of a few master integrals. The final set of master integrals is found experimentally. There is no proof that the
set we find is indeed minimal with respect to integration-by-parts relations in the strict mathematical sense, but for
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Our solution of the system of recurrence relations shows that it is possible to express any integral which belongs to
the above topologies through 18 master integrals. Most of these integrals have been calculated in the course of the
analytical calculation of the electron anomalous magnetic moment [10] and can be taken from there. It is remarkable
that a transition from the abelian theory to the non-abelian theory does not result in a significant increase in the
number of master integrals to be computed, although the number of basic topologies does. As compared to Ref. [10],
we need one additional master integral that corresponds to topology A and we also need one of the master integrals
of Ref. [10] to a higher order in the regularization parameter ε. For the QCD wave function renormalization constant
we also need the constant C1 (see [10] ) which was not computed in [10], because it mysteriously canceled in the
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AN EXAMPLE CALCULATION: THE THREE-LOOP QED SELF-ENERGY

3 of the kernels drop in the physical amplitude: 
they are related to forms of the second kind with 
“double poles”  a hint for bootstrap program?→

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl ’24]



of these relations are independent is not an obstacle since, when trying to solve them, some relations will vanish
identically and for this reason will automatically be of no use.
The next step is to solve the system of these equations. Though there are several ways of thinking about what such

a solution might be, we prefer to look for the most general one. We then want to construct an algorithm that, for a
given topology and for any given initial set of powers of propagators, expresses an initial integral through a minimal
set of “simpler” integrals. The simpler integrals are usually those that either have denominators raised to small powers
or those that belong to simpler topologies. We then consider these “simpler”, but still non-trivial topologies, write
down a new set of recurrence relations for them, construct an algorithm that reduces any integral to even simpler
topologies and continue along these lines until we have an algorithm that completely solves the initial problem in
terms of a few master integrals. The final set of master integrals is found experimentally. There is no proof that the
set we find is indeed minimal with respect to integration-by-parts relations in the strict mathematical sense, but for
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FIG. 1. Examples of three-loop quark propagator diagrams corresponding to eleven integration topologies.

Our solution of the system of recurrence relations shows that it is possible to express any integral which belongs to
the above topologies through 18 master integrals. Most of these integrals have been calculated in the course of the
analytical calculation of the electron anomalous magnetic moment [10] and can be taken from there. It is remarkable
that a transition from the abelian theory to the non-abelian theory does not result in a significant increase in the
number of master integrals to be computed, although the number of basic topologies does. As compared to Ref. [10],
we need one additional master integral that corresponds to topology A and we also need one of the master integrals
of Ref. [10] to a higher order in the regularization parameter ε. For the QCD wave function renormalization constant
we also need the constant C1 (see [10] ) which was not computed in [10], because it mysteriously canceled in the
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AN EXAMPLE CALCULATION: THE THREE-LOOP QED SELF-ENERGY

Expanding in ✏ and retaining only the logarithmically enhanced terms and the constant
part in (1 � x), the expressions simplify further and the bare self-energy at two loops can
be written in compact form as
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We stress that, in order to match the transcendental weight of the three-loop results, we
derived results up to transcendental weight 5 also for the one- and two-loop coefficients,
which are provided in the ancillary files that accompany the arXiv submission of this paper.

Finally, at three loops the branch structure is richer and the resummed self-energy can
be expressed as
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where we see once more that the highest branch (1 � x)�6✏ is suppressed by a power of
(1� x). Moreover, we notice that the branch (1� x)�2✏ starts with a single pole as x ! 1.
We will elaborate more on this in the following. As exemplification, keeping just the first
orders in ✏, we can write
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(4.21)

while the complete results to order O(✏0) for the various branches can be obtained in com-
puter readable format from the arXiv submission of this paper. If we expand all branches in
✏ to O(✏0), and retain only the non-suppressed terms in (1�x), we find the rather compact
expressions
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One can obtain resummed results close to on-shell limit  required for UV renormalizationp2 = m2

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl ’24]



This picture holds for many other elliptic cases: Bhabha scattering 

Bhabha is a “standard-candle” process in Quantum Electrodynamics:  e+ e− → e+ e−

At leading order (tree level) just two diagrams

Classical calculation in QFT 1 courses

Cross section (for massless electrons) on Wikipedia!

MORE ELLIPTICS ELECTRON-ELECTRON SCATTERING



MORE ELLIPTICS ELECTRON-ELECTRON SCATTERING
This picture holds for many other elliptic cases: 2loop Bhabha scattering 

there are a total of 47 Feynman diagrams; however, many of these diagrams generate identical re-

sults. Of the 47 diagrams, 35 contain no fermion loop, 11 contain one fermion loop, and 1 contains

two fermion loops. The Bhabha amplitude may be obtained from the e+e− → µ+µ− amplitude

by adding to it the same set of diagrams, but with an exchange of one pair of external legs. The

e−µ− → e−µ− and e−µ+ → e−µ+ amplitudes may, of course, be obtained by crossing.

Figure 1: The independent diagrammatic topologies for two-loop four-fermion scattering in QED.

We have evaluated these diagrams interfered with the tree amplitudes and summed over spins

in the conventional dimensional regularization (CDR) scheme. This interference gives directly the

two-loop virtual correction to the 2 → 2 differential cross section. The rules for implementing CDR

are straightforward because all particle are treated uniformly in all parts of the calculation. In this

scheme, all momenta and all Lorentz indices are taken to be D = 4− 2ϵ dimensional vectors. (The

γ-matrices remain as 4× 4 matrices; i.e., Tr[1] = 4.)

After performing all γ-matrix algebra present in the two-loop Feynman diagrams, we use the

conservation of momenta flowing on the internal lines to express the tensor structure of the diagrams

in terms of inverse scalar propagators and a small number of additional scalar invariants containing

loop momenta. The inverse scalar propagators cancel propagators in the denominator to generate

simpler “boundary” integrals. To handle the integrals containing scalar invariants, we introduce

Feynman parameters and interpret the resulting integrals in terms of scalar integrals with multiple

propagators, which are then reduced to a set of master integrals with the help of equations in

refs. [14, 15, 19].

Proceeding in this way, we obtain an expression for the amplitude in terms of master integrals

(of the type listed in ref. [15], plus a few more for the planar double box topology) multiplied by

4

5

ization we are left with IR poles which are one-loop-exact,

A
OS(↵,m, s, t, ✏) = e

↵
4⇡

ZIR
1

✏ C(↵,m, s, t, ✏) , (26)

where C is the finite remainder function, ↵ is the on-shell
electromagnetic coupling, and Z

IR
1

is the anomalous di-
mension which controls the soft singularities of the am-
plitude to all-orders through exponentiation [89, 90]. The
exact form of ZIR is immaterial for the present discussion
and we report it for completeness in the supplemental
material.

We performed several checks on our results. First of
all, we verified that our two-loop amplitudes have the
correct UV and IR behavior, as illustrated above. In ad-
dition, we compared both the bare and the finite remain-
ders of our one-loop amplitudes against OpenLoops [91,
92] and found perfect agreement. We stress here that
the unpolarized finite remainders in Conventional Di-
mensional Regularization equal those in the tHV scheme,
while the bare and UV-renormalized amplitudes in gen-
eral di↵er. The equality of the finite remainders provides
another check of our calculation.

DISCUSSION AND CONCLUSIONS

Our results for the two-loop amplitudes for Bhabha
and Møller scattering are given as generalized series ex-
pansion in x = m/ECM. They are provided as computer-
readable files in the ancillary material of the arXiv sub-
mission for both the polarized and unpolarized scattering
amplitudes. We provide su�ciently high orders to ob-
tain reliable predictions for the low-energy experiments
mentioned in the introduction, where we expect the mass
e↵ects to be the largest. In the following we discuss some
of the phenomenological implications of our results. We
focus here on unpolarized Møller scattering, but all con-
clusions equally apply to Bhabha scattering.

Let us start by assessing the accuracy of the small-
mass expansion. We begin by noticing that we expect the
expansion to become unreliable in the extreme forward or
backward regions, where the coe�cients of the series in x

develop large logarithms in (�t)/s which can invalidate
the convergence of the expansion.1 To quantify the region
of convergence, we compare the exact results for the one-
loop amplitude A

1l
exact

with the corresponding expansion
A

1l
20

to O(x20) and study the ratio �
1l
exact,20 = (A1l

exact
�

A
1l
20
)/A1l

exact
. Depending on the scattering energy ECM =

p
s, we find that �1l

exact,20  1% for di↵erent ranges of the

1 This can be interpreted as a manifestation of the lack of commu-
tativity of the small mass limit with the forward limit.

scattering angle ✓:

ECM = 150m ! 2� < ✓ < 179� ,

ECM = 32m ! 9� < ✓ < 174� , (27)

ECM = 5m ! 70� < ✓ < 130� ,

where the energy values are chosen to match those probed
at present and future experiments. This shows that at
very low energies the expansions must be interpreted with
care outside of the central region. To extend this to the
two-loop amplitudes, we repeat the same analysis at one
and two loops, comparing this time the series expanded
to order 20 with the one expanded to order 18. We find
that the same applies: for L = 1, 2 (ALl

20
� A

Ll
18
)/ALl

20


1% for the same values of ✓ as in (27). In fig. 2 we
display the various orders of the series for the two-loop
amplitude, for di↵erent values of the scattering at the
intermediate energy of ECM = 32m. We highlight the
lack of convergence for ✓ not in the range [9�, 174�] in
the two sub plots.

e- e-
→ e- e-, m=0.511MeV, Ecm=32m
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FIG. 2: Convergence of the mass expansion. Plotted are
the 2-loop finite remainders C†(2)

C
(0) as functions of

scattering angle in degrees, at various truncation orders.

After having assessed the validity of our small-mass
expansions, let us comment on the phenomenological rel-
evance of the mass e↵ects. We only discuss here the mass
e↵ects in the purely virtual corrections. So far two-loop
mass e↵ects had only been included to leading-power,
O(x0). We expect that the finite-mass e↵ects are more
pronounced for small values of ECM. In fig. 2 we see
that, for ECM = 32m, the two-loop leading-power ap-
proximation does not capture the full extend of the mass
e↵ects for ✓ & 150� (for small angles, we are outside the
region of (27)). We therefore expect that in that region
precise NNLO results can only be obtained by including
the subleading terms we have computed. The e↵ect is
even more pronounced for ECM = 5m: in fig. 3 we show
that, even in the range of intermediate angles in (27), the
leading-power approximation does not provide a reliable
prediction of the finite-mass e↵ects. At the same time, we
observe a very nice convergence of the mass expansion,
corroborating that we can provide reliable and precise
predictions for the two-loop corrections even at such low

[Delto, Duhr, Zhu, Tancredi ’23]At two loops, some Feynman diagrams require dealing with underlying Elliptic geometry


