SCATTERING AMPLITUDES: FROM COLLIDER PHYSICS TO GEOMETRY

COMETA Colloquium December 16th 2024

Lorenzo Tancredi – Technical University Munich

WHY (STILL) COLLIDERS? THE LHC (AND BEYOND)...

Future Circular Collider Circumference: 90 -100 km Energy: 100 TeV (pp) 90-350 GeV (e*e*)

Large Hadron Collider(LHC) Large Electron-Positron Collider (LEP)

Circumference: 27 km Energy: 14 TeV (pp) 209 GeV (e⁺e⁻)

Tevatron Circumference: 6.2 km Energy: 2 TeV(pp)

THE LHC HAS BECOME A PRECISION MACHINE

THE HIGGS BOSON: THE LAST MISSING PIECE

HIGGS INTERACTIONS AT THE LHC

Hints to answer these questions hidden in the details of Higgs interactions to SM particles

"understanding" = knowledge

HIGGS INT

HIGGS INTERACTIONS THE YUKAWA SECTOR

2. Discovery couplings discovery failing of the fai

HIGGS SELF INTERACTIONS THE MOST MYSTERIOUS?

HL-LHC first to see the triple-H coupling

Higgs self coupling extremely difficult to measure.

With 2018 estimates 4σ ATLAS+CMS

HIGGS SELF INTERACTIONS THE MOST MYSTERIOUS?

HL-LHC first to see the triple-H coupling

Gavin Salam

HIGGS SELF INTERACTIONS THE MOST MYSTERIOUS?

HL-LHC first to see the triple-H coupling

Precisio

Gavin Salam

thesdata showsha Aro H.S OEKperse alla talla we MS 138 fb⁻¹ (13 TeV) bin WWγ

PROBING H SELF INTERACTION THE MOST CHALLENGING?

Direct sensitivity in HH production: Progress, but extremely hard to measure even at (HL-)LHC

Indirect sensitivity through precision studies!

BEYOND THE HIGGS: PROBING QM AT THE HIGHEST EVERGIES

jets of strongly interacting particles

Investigate Quantum Field Theory at the highest energies!

BEYOND THE HIGGS: probing QM at the highest energies

ENERGY DISTRIBUTION OF THE UNIVERSE

O Big Bang?
O Black Holes?
O DM?
O DE?
O ...?

DARK MATTER

Answering questions related to Quantum Gravity will require an entirely point of view.

Testing limitations of QFT *might* suggest how to go beyond!

For the first time in decades, we might not expect new particles ahead...

Still, thanks to the % precision physics program at colliders, we have the chance to discover "new types of interactions", and scrutinize quantum field theory to the highest precisions

% PRECISION, HOW DO WE GET THERE? (AND WHEN SHOULD WE STOP?)

FROM THEORY TO THEORY PREDICTIONS IN A LONG WAY! 5

Z = - à FALFMU + i FAY + $\chi_i \, \Upsilon_j \, \chi_j \, \phi$ + h.c. + $|D_i \, \phi|^2 - V(\phi)$

QCD is everywhere:

strong interactions introduce extremely complex dynamics due to <u>asymptotic freedom!</u>

Here, we ignore all that and zoom in the so-called 'Hard Scattering'

ſ $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{part}(x_1, x_2) (1 + \mathcal{O}(\Lambda_{QCD}^n / Q^n))$

 \mathcal{D}

% precision

FROM AMPLITUDES TO CROSS SECTION: IN QUANTUM MECHANICS

$$f(\theta) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) e^{i\delta_l(k)} \sin \delta_l(k) P_l(\cos \theta)$$

Scattering Amplitude expanded in partial waves

[Drawing from S. Gasiorowicz, Quantum Physics]

cross section $d\sigma = |f(\theta)|^2 d\Omega$

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE QFT

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE OFT

$$\mathcal{M}_{q\bar{q}\to gg}^{NLO}\Big|^2 + \left(\frac{\alpha_s}{2\pi}\right)^2 \Big|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\Big|^2 + \dots$$

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE QFT

$$\left[\mathrm{dPS}\right] \left| \mathcal{M}_{q\bar{q} \to gg} \right|^2$$

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE QFT

$$\sigma_{q\bar{q}\to gg} = \int$$

$$\left|\mathcal{M}_{q\bar{q}\rightarrow gg}\right|^{2} = \left|\mathcal{M}_{q\bar{q}\rightarrow gg}^{LO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right) \left|\mathcal{M}_{q\bar{q}\rightarrow gg}^{NLO}\right|^{2} + \left(\frac{\alpha_{s}}{2\pi}\right)^{2} \left|\mathcal{M}_{q\bar{q}\rightarrow gg}^{NNLO}\right|^{2} + \dots$$

$$A_{n}^{ij, \text{ MHV}} = A_{n}^{\text{tree}}(1^{+}, 2^{+}, \dots, i^{-}, \dots, j^{-}, \dots, n^{+})$$

$$= \overset{1}{} \overset{1}{$$

$$\left[\mathrm{dPS}\right] \left| \mathcal{M}_{q\bar{q} \to gg} \right|^2$$

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE OFT

FROM AMPLITUDES TO CROSS SECTION: IN PERTURBATIVE QFT

 $\sigma_{q\bar{q}\to gg} = \int [e$

$\left|\mathcal{M}_{q\bar{q}\to gg}\right|^2 = \left|\mathcal{M}_{q\bar{q}\to gg}^{LO}\right|^2 + \left(\frac{\alpha_s}{2\pi}\right)\left|\mathcal{N}_{q\bar{q}\to gg}\right|^2 +$

•

$$\left[\mathrm{dPS}\right] \left| \mathcal{M}_{q\bar{q} \to gg} \right|^2$$

$$\mathcal{M}_{q\bar{q}\to gg}^{NLO}\Big|^2 + \Big(\frac{\alpha_s}{2\pi}\Big)^2 \Big|\mathcal{M}_{q\bar{q}\to gg}^{NNLO}\Big|^2 + \dots$$

Double Real

	-
	-
	-
et al	
	-
	-

Strip it of "trivial" Lorentz and Dirac structures (dependence on spin & polarizations of external particles)

0000

expanded in Feynman diagrams

$$\frac{1}{(k-p_2)^2(k-p_2-p_3)^2(k-p_1-p_2-p_3)^2} = \mathscr{I}$$

Scalar Feynman Integrals!

For every **closed loop**, an **integral** over the **unconstrained virtual momentum** *k* of the particle circulating in the loop

Strip it of "trivial" Lorentz and Dirac structures (dependence on spin & polarizations of external particles)

$$4 \frac{k - p_1 - p_2 - p_3}{k + p_2 - p_3} \sim \int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2 (k - p_2)^2 (k - p_2 - p_3)^2 (k - p_1 - p_2 - p_3)^2} = \mathscr{I}$$

For every **closed loop**, an **integral** over the **unconstrained virtual momentum** *k* of the particle circulating in the loop

0000

expanded in Feynman diagrams

Scalar Feynman Integrals!

rational functions

analytic structure reflects basic principles of unitarity and causality

rational functions

position of **poles** and **branch cuts** dictated by *virtual particles going on-shell!*

expanded in Feynman diagrams

..., π , log z, ζ_3 , Li₂(z), ...

"special functions and special numbers"

scalar Feynman integrals

analytic structure reflects basic principles of unitarity and causality

The integrand

C

The integrand

Decomposition into building blocks

The integrand

Decomposition into building blocks

computations of the building blocks

The integrand

Decomposition into building blocks

Usually dealt with separately

The integrand

Decomposition into building blocks

Connections among them largely to explore

MANY OPEN QUESTIONS AND SOME ANSWERS:

- What are general **numbers and functions** that can appear in the final result?
- How does **physics** constrain the **mathematical properties** of the result?
- What is the "shortest" path to the "simplest" form of the result?

-

A possible key to understanding these questions:

explore interplay between mathematics of scattering amplitudes (geometry) and their physical properties (singularities, discontinuities, soft/collinear limits...)

WHAT IS AN AMPLITUDE?

"just" a sum of Feynman diagrams

WHAT IS AN AMPLITUDE?

$gg \rightarrow gg$ @ 3 loops in QCD

+ 500 more pages

= 50000 Feynman diagrams $= 10^7$ Feynman integrals!

FROM INTEGRAND TO SPECIA

$gg \rightarrow gg$ @ 3 loops in QCD

+ 500 more pages

- = 50000 Feynman diagrams
 = 10⁷ Feynman integrals!
- S School

 $S_i = \{$

g

lease

L FUNCTIONS

$$10^5 - 10^7$$
 Feynman integrals:

$$\int \prod_{\ell=1}^{L} \frac{d^D k_{\ell}}{(2\pi)^D} \frac{S_1^{a_1} \dots S_{\sigma}^{a_{\sigma}}}{D_1^{b_1} \dots D_n^{b_n}} \quad \text{with}$$
 $k_{\ell} \cdot p_j, k_{\ell_1} \cdot k_{\ell_2}$, $D_i = (\sum_j k_j + q)^2 - m_i^2$

FROM INTEGRAND TO SPECE

$gg \rightarrow gg$ @ 3 loops in QCD

+ 500 more pages

= 50000 Feynman diagrams $= 10^7$ Feynman integrals!

Z lege Co

FROM INTEGRAND TO SPECIAL

$gg \rightarrow gg$ @ 3 loops in QCD

+ 500 more pages

- = 50000 Feynman diagrams
- $= 10^7$ Feynman integrals!

Z

lezer

Space of Feynman integrals is a *finite-dimensional vector space; master integrals are a basis in this space!* [Smirnov, Petukhov '10]

 $gg \rightarrow gg$ @ 3 loops in QCD ~ "only" 500 master integrals

Master integrals can be conveniently *organized in a "tree"* depending on # of propagators

Box

Master integrals can be conveniently *organized in a "tree"* depending on # of propagators

Box

triangles (pinching 1 propagator)

Master integrals can be conveniently organized in a "tree" depending on # of propagators

Box

Master integrals can be conveniently *organized in a "tree"* depending on # of propagators

Box

tadpoles (pinching 3 propagators)

Master integrals can be conveniently *organized in a "tree"* depending on # of propagators

Box

bubbles

(pinching 2 propagators)

At 1 loop every graph has 1 master integral (at most)

tadpoles

(pinching 3 propagators)

At *higher loops*: a "graph" can have more than one master integral

the equal-mass sunrise

At higher loops: a "graph" can have more than one master integral

the equal-mass sunrise

At *higher loops*: a "graph" can have more than one master integral

$$\int \frac{d^D k_1}{(2\pi)^D} \frac{d^D k_2}{(2\pi)^D} \frac{1}{(k_1^2 - m^2)(k_2^2 - m^2)^2((k_1 - k_2 - p)^2 - m^2)}$$

"dot": 1 propagator squared

the equal-mass sunrise

At higher loops: a "graph" can have more than one master integral

Fundamental difference with one loop \rightarrow hint that complexity of the problem "jumps"

the equal-mass sunrise

double tadpole (pinching 1 propagator)

We can differentiate Feynman integrals w.r.t. the kinematical invariants

$$\frac{\partial}{\partial s_{ij}} \left[\int \prod_{\ell=1}^{L} \frac{d^D k_{\ell}}{(2\pi)^D} \frac{S_1^{a_1} \dots S_{\sigma}^{a_{\sigma}}}{D_1^{b_1} \dots D_n^{b_n}} \right] =$$

$$\forall s_{ij} = \{p_i \cdot p_j, m_k^2\}$$

We can differentiate Feynman integrals w.r.t. the kinematical invariants

$$\frac{\partial}{\partial s_{ij}} \left[\int \prod_{\ell=1}^{L} \frac{d^{D}k_{\ell}}{(2\pi)^{D}} \frac{S_{1}^{a_{1}} \dots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \dots D_{n}^{b_{n}}} \right] = \sum_{I} c_{I} \int \prod_{\ell=1}^{L} \frac{d^{D}k_{\ell}}{(2\pi)^{D}} \frac{S_{1}^{a_{1}} \dots S_{\sigma}^{a_{\sigma}}}{D_{1}^{b_{1}} \dots D_{n}^{b_{n}}} \qquad \forall s_{ij} = \{p_{i} \cdot p_{j}, m_{k}^{2}\}$$

[Kotikov '93; Remiddi '97; Gehrmann, Remiddi '99]

We can **differentiate** Feynman integrals w.r.t. the kinematical invariants

$$\frac{\partial}{\partial s_{ij}} \left[\int \prod_{\ell=1}^{L} \frac{d^D k_{\ell}}{(2\pi)^D} \frac{S_1^{a_1} \dots S_{\sigma}^{a_{\sigma}}}{D_1^{b_1} \dots D_n^{b_n}} \right] = \sum_{I} c_I \int \prod_{\ell=1}^{L} \frac{d^D k_{\ell}}{(2\pi)^D} \frac{S_1^{a_1} \dots S_{\sigma}^{a_{\sigma}}}{D_1^{b_1} \dots D_n^{b_n}} \qquad \forall s_{ij} = \{p_i \cdot p_j, m_k^2\}$$

$$\frac{\partial}{\partial s_{ij}}\vec{I} = A(s_{ij}, D)\vec{I},$$

[Kotikov '93; Remiddi '97; Gehrmann, Remiddi '99]

$A(s_{ij}, D)$ Rational functions

We can differentiate Feynman integrals w.r.t. the kinematical invariants

$$\frac{\partial}{\partial s_{ij}} \left[\int \prod_{\ell=1}^{L} \frac{d^D k_{\ell}}{(2\pi)^D} \frac{S_1^{a_1} \dots S_{\sigma}^{a_{\sigma}}}{D_1^{b_1} \dots D_n^{b_n}} \right] = \sum_I c_I \int \prod_{\ell=1}^{L} \frac{d^D k_{\ell}}{(2\pi)^D} \frac{S_1^{a_1} \dots S_{\sigma}^{a_{\sigma}}}{D_1^{b_1} \dots D_n^{b_n}}$$

$$\frac{\partial}{\partial s_{ij}}\vec{I} = A(s_{ij}, D)\vec{I},$$

block-triangular:

integrals with more propagators depend on ones with fewer

$$\forall s_{ij} = \{p_i \cdot p_j, m_k^2\}$$

True for general values of dimensions D !

 1×1 blocks correspond to single master integrals

coupled $n \times n$ blocks correspond to graphs with *n* master integrals

True for general values of dimensions D !

 1×1 blocks correspond to single master integrals

coupled $n \times n$ blocks correspond to graphs with *n* master integrals

FROM DIFFERENTIAL EQUATIONS TO GEOMETRY

The story might change for $D \rightarrow 4 - 2\epsilon$

Equations might "decouple" close to D = 4 space-time dimensions a_{ii} are rational functions \rightarrow solution written iteratively in ϵ as *iterated integrals of rational functions!*

MULTIPLE POLYLOGS AND THE RIEMANN SPHERE

If we integrate a rational function on \mathbb{CP}^1 Only non-trivial thing:

$$\log(1 - x/a) = \int_0^x \frac{dt}{t - a}$$

MULTIPLE POLYLOGS AND THE RIEMANN SPHERE

If we integrate a rational function on \mathbb{CP}^1 Only non-trivial thing:

$$\log(1 - x/a) = \int_0^x \frac{dt}{t - a}$$

MULTIPLE POLYLOGS AND THE RIEMANN SPHERE

Generalisation: Multiple PolyLogarithms (MPLs)

$$G(c_1, c_2, ..., c_n, x) = \int_0^x \frac{dt_1}{t_1 - c_1} G(c_2, ..., c_n)$$
$$= \int_0^x \frac{dt_1}{t_1 - c_1} \int_0^{t_1} \frac{dt_2}{t_2 - c_1}$$

If we integrate a rational function on \mathbb{CP}^1 Only non-trivial thing:

$$\log(1 - x/a) = \int_0^x \frac{dt}{t - a}$$

POLYLOGARITHMS, DLOG FORMS AND AMPLITUDES

Rational functions:

encode poles (single particles going on shell)

Generalization of MPLs:

iterated integrals over d-log forms

All information on branch cuts \rightarrow unitarity !

Enormously simplify computation of all "polylogarithmic" amplitudes \rightarrow Bootstrap program!
POLYLOGAR THMS, DLOG FORMS AND AMPLITUDES

$\sum_{i} R_i(s_{ij}) \int_{\gamma} d\log f_n \wedge \ldots \wedge d\log f_1$

Collider physics profited enormously from these developments:

calculations for the production of 1,2,3 massless particles up to **four**, **three** and **two** loops respectively

modeling of **QCD dynamics** (production of jets at LHC)

POLYLOGAR THMS, DLOG FORMS AND AMPLITUDES

$\sum_{i} R_i(s_{ij}) \int_{\gamma} d\log f_n \wedge \ldots \wedge d\log f_1$

3-jet production in NNLO QCD

[Czakon, Mitov, Poncelet '22, '23]

HOW GENERAL IS THIS PICTURE?

FROM DIFFERENTIAL EQUATIONS TO GEOMETRY

Again, look at limit $D \rightarrow 4 - 2\epsilon$

If equation does not decouple, there is an intrinsic "higher-order equation" (2nd order Picard-Fuchs equation)

FROM DIFFERENTIAL EQUATIONS TO GEOMETRY

Again, look at limit $D \rightarrow 4 - 2\epsilon$

THE TWO-LOOP ELECTRON PROPAGATOR

The electron propagator in QED; A. Sabri 1962

THE TWO-LOOP ELECTRON PROPAGATOR

Solutions: periods of an elliptic curve. Obvious?

FROM DIFFERENTIAL EQUATION

$$\frac{\xi}{\xi} = \frac{\xi}{\xi} = \frac{\xi$$

Solutions: periods of an elliptic curve. Øbvious!!!

ONS TO GEOMETRY

ELLIPTIC CURVES AND COMPLEX TORI

Elliptic curve given by an algebraic equation

 $y = \pm \sqrt{(x - a_1)(x - a_2)(x - a_3)(x - a_4)}$

ELLIPTIC CURVES AND COMPLEX TORI

Elliptic curve given by an algebraic equation

Torus is the Riemann surface associated to the square root with 4 branching points

$$y = \pm \sqrt{(x - a_1)(x - a_2)(x - a_3)(x - a_4)}$$

DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES

entire space of functions spanned by single poles

$$\log(1 - x/a) = \int_0^x \frac{dt}{t - a}$$

DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES

entire space of functions spanned by single poles

$$\log(1 - x/a) = \int_0^x \frac{dt}{t - a}$$

genus 1, elliptic curve; $y = \sqrt{P_3(x)}$

Third kind

single poles $g \sim \int \frac{dx}{(x - c_i)y}$

DIFFERENTIAL FORMS ON ELLIPTIC GEOMETRIES

entire space of functions spanned by single poles

$$\log(1 - x/a) = \int_0^x \frac{dt}{t - a}$$

genus 1, elliptic curve; $y = \sqrt{P_3(x)}$

First kind

o poles
$$\omega \sim \left[\frac{dx}{v}\right]$$

N

Second kind

double poles
$$\eta \sim$$

$$\frac{dx x}{v}$$

Third kind

single poles $g \sim \int \frac{dx}{(x - c_i)y}$

2 "top graphs"

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl '24]

 $\hat{p} \Sigma_V(p^2, m^2) + m \Sigma_S(p^2, m^2)$

 $\Sigma_V \& \Sigma_S$ expressed in terms of $\mathcal{O}(50)$ Masters Integrals \vec{J}

mix of elliptic and logarithmic sectors same elliptic curve as 2loop sunrise graph [Duhr, Gasparotto, Nega, Tancredi, Weinzierl '24]

 $\hat{p} \Sigma_V(p^2, m^2) + m \Sigma_S(p^2, m^2)$

 $\Sigma_V \& \Sigma_S$ expressed in terms of $\mathcal{O}(50)$ Masters Integrals \vec{J}

The geometrical picture allows us to solve differential equations [Görges, Nega, Tancredi, Wagner '23]

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl '24]

 $\hat{p} \Sigma_V(p^2, m^2) + m \Sigma_S(p^2, m^2)$

 $\Sigma_V \& \Sigma_S$ expressed in terms of $\mathcal{O}(50)$ Masters Integrals \vec{J}

 $\mathrm{d}\vec{J} = \epsilon \left(\sum_{i} G_{i} \,\omega_{i}\right) \vec{J} \quad \longleftarrow \quad f_{i}(x) \mathrm{d}x = \omega_{i}$

Differential forms can be classified using properties of the underlying geometry

Full analytic and numerical control of result across all values of the momentum p^2

Figure 4: Real and imaginary part of $\Sigma_{S,0}^{(3)}$ (for $\xi = 0$).

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl '24]

 $\hat{p} \Sigma_V(p^2, m^2) + m \Sigma_S(p^2, m^2)$

Figure 6: Real and imaginary part of $\Sigma_{S,0}^{(3)}$ close to $x_0 = 9$ (for $\xi = 0$).

AN EXAMPLE CALCULATION: BEYOND FUI IPTIC PHOTONS

2 "top graphs"

[Forner Nega, Tancredi '24]

 $\Pi(p^2)$ expressed in terms of $\mathcal{O}(36)$ Masters Integrals \vec{J}

AN FXAMPLE CALCULATION: BEYOND ELLIPTIC PHOTONS

This time there is a **three-massive particle cut** \rightarrow three-loop banana associated to a K3 geometry can be thought of as a higher dimensional elliptic curve [Forner Nega, Tancredi '24]

 $\Pi(p^2)$ expressed in terms of $\mathcal{O}(36)$ Masters Integrals \vec{J}

AN EXAMPLE CALCULATION: BEYOND ELLIPTIC PHOTONS

Following same approach: derive and solve differential equations using properties of K3 geometry

[Forner Nega, Tancredi '24]

 $\left(p^2 g_{\mu\nu} - p^{\mu} p^{\nu}\right) \Pi(p^2)$

ELLIPTIC AND BEYOND: HIGHER GENUS AND HIGHER DIMENSION

This picture holds for many other elliptic cases (more to appear hopefully soon!)

 $\sum_{i} k_i - p_1^2$

 $\sum_i k_i + p_2$

 $s = (p_1 + p_2)^2$

And for more general geometries, with obvious generalizations: higher-order eqs, more "solutions"...

عووووووو

BEYOND ELLIPTICS "CALABI-YAUS IN THE SKY"

Recently, CY geometries have been shown to be indispensable to model gravitation waves in Post-Minkoskian expansion

[Klemm, Nega, Sauer, Plefka '24; Frellesvig, Morales, Willhelm '23] [Bern, Parra-Martinez, Roiban, Ruf, Shen '21,...'24]

CONCLUSIONS AND OUTLOOK

- amplitudes are *fundamental building blocks in QFT*, for precision collider physics and beyond
- complexity of the calculations is often matched by unexpected simplicity in final results
- searching for a way to make simplicity manifest informs on how to compute amplitudes more efficiently (language of differential forms on complex varieties is an example!)
- what we learnt in past 10 years is finally bearing fruit: the first realistic "correlators" and amplitudes under *analytic and numerical control*
- same structures observed in gravitational waves calculations and cosmological correlators!

THANK YOU VERY MUCH!

BACK-UP SLIDES

FROM DIFFERENTIAL EQUATION

$$\left[\left(x\frac{d}{dx}\right)^{2} + \left(\frac{1}{x-1} + \frac{9}{x-9} + 2\right)\left(x\frac{d}{dx}\right) + \frac{27}{4(x-1)}\right]$$
Solutions: periods of an elliptic curve obvious.
In some cases, you might be lucky enough to tiple the device of the device

mon

ONS TO GEOVETRY

second independent solution from second integration contour

[Primo, Tancredi '16,'17]

7 (independent) elliptic differential forms: full analytic control over iterated integrals over these for

$$f_{i} \in \left\{ \frac{1}{x(x-1)(x-9)\varpi_{0}(x)^{2}}, \varpi_{0}(x), \frac{\varpi_{0}(x)}{x-1}, \frac{(x-3)\varpi_{0}(x)}{\sqrt{(1-x)(9-x)}}, \frac{(x+3)^{4}\varpi_{0}(x)^{2}}{x(x-1)(x-9)}, \frac{(x+3)(x-1)\varpi_{0}(x)^{2}}{x(x-1)(x-9)}, \frac{(x+3)(x-1)(x-9)}{x(x-9)}, \frac{(x+3)(x-1)(x-9)}{x(x-1)(x-9)}, \frac{(x+3)(x-1)(x-9)}{x(x-1)(x-1)(x-9)}, \frac{(x+3)(x-1)(x-9)}{x(x-1)(x-1)(x-1)(x-9)}, \frac{(x+3)(x-1)(x-9)}{x(x-1)(x-1)(x-1)(x-9)}, \frac{(x+3)(x-1)$$

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl '24]

$$(p^2, m^2) + m \Sigma_S(p^2, m^2)$$

 $\Sigma_V \& \Sigma_S$ expressed in terms of $\mathcal{O}(50)$ Masters Integrals \vec{J}

 $\varpi_0(x)$ is the first elliptic period

ľ	ľ]	S

7 (independent) elliptic differential forms: full analytic control over **iterated integrals** over these forms

$$f_i \in \left\{ \frac{1}{x(x-1)(x-9)\varpi_0(x)^2}, \varpi_0(x), \frac{\varpi_0(x)}{x-1}, \frac{(x-3)\varpi_0(x)}{\sqrt{(1-x)(9-x)}}, \frac{(x+3)^4 \varpi_0(x)^2}{x(x-1)(x-9)}, \frac{(x+3)(x-1)(x-9)}{x(x-1)(x-9)}, \frac{(x+3)(x-1)(x-9)}{x(x-1)(x-1)(x-9)}, \frac{(x+3)(x-1)(x-1)(x-9)}{x(x-1)(x-1)(x-1)(x-1)}, \frac{(x+3)(x-1)(x-1)}$$

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl '24]

$$(p^2, m^2) + m \Sigma_S(p^2, m^2)$$

 $\Sigma_V \& \Sigma_S$ expressed in terms of $\mathcal{O}(50)$ Masters Integrals \vec{J}

amplitude: they are related to forms of the second kind with "double poles" \rightarrow a hint for bootstrap program?

$$\begin{split} \Sigma_{V,\mathrm{res}}^{(3)} &= \left[-\frac{27}{128\epsilon^3} - \frac{673}{1152\epsilon^2} + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right] + (1-x)^{-2\epsilon} \left[\frac{27}{64\epsilon^3} + \frac{27}{32\epsilon^2} + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right] \\ &+ (1-x)^{-4\epsilon} \left[-\frac{27}{128\epsilon^3} - \frac{27}{128\epsilon^2} + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right] + \mathcal{O}(1-x) \,, \\ \Sigma_{S,\mathrm{res}}^{(3)} &= \left[-\frac{653}{1152\epsilon^3} + \frac{1447}{6912\epsilon^2} + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right] + (1-x)^{-2\epsilon} \left[\frac{1}{x-1} \left(\frac{27}{32\epsilon^2} + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right) \right] \\ &+ \frac{9}{16\epsilon^3} - \frac{91}{256\epsilon^2} + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right] + (1-x)^{-4\epsilon} \left[\frac{27}{128\epsilon^2} + \mathcal{O}\left(\frac{1}{\epsilon}\right) \right] + \mathcal{O}(1-x) \,, \end{split}$$

[Duhr, Gasparotto, Nega, Tancredi, Weinzierl '24]

$$(p^2, m^2) + m \Sigma_S(p^2, m^2)$$

One can obtain resummed results close to on-shell limit $p^2 = m^2$ required for UV renormalization

MORE ELLIPTICS ELECTRON-ELECTRON SCATTERING

This picture holds for many other elliptic cases: Bhabha scattering

Bhabha is a "standard-candle" process in Quantum Electrodynamics: $e^+ e^- \rightarrow e^+ e^-$

At leading order (tree level) just two diagrams Classical calculation in QFT 1 courses

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{\pi\alpha^2}{s} \left(u^2 \left(\frac{1}{s} + \frac{1}{t}\right)^2 + \left(\frac{t}{s}\right)^2 + \left(\frac{s}{t}\right)^2 \right)$$

Cross section (for massless electrons) on Wikipedia!

MORE ELLIPTICS ELECTRON-ELECTRON SCATTERING

This picture holds for many other elliptic cases: 2loop Bhabha scattering

