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Motivations

3

 Challenges of LHC, and HL-LHC are pushing to re-think the HEP computing models
 Impact on several aspects, from software to the computing infrastructure Need to:

• Optimize the usage of CPU 
and storage

• Promote the usage of 
better data formats

• Develop new analysis 
paradigms!

• New software based on 
declarative programming 
and interactive workflows

• Distribute on 
geographically separated 
resources

Similar trends for ATLAS and CMS HL-LHC projections

Higher rates of collision events Higher demand for computing and storage resources



HEP data analysis with ICSC

Data analysis codeCPU use (%)

Memory Use (%)

Workers:
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*

*trigger rates for previous Runs, now factor 3 ÷ 5 higher, will further scale in HL-LHC



High throughput data analysis platform
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• After connecting to an entrypoint URL, the 
user reaches a Jupyterhub instance that, 
after authentication and authorization via 
INDIGO-IAM, allocates the required 
resources for the user’s working area. 

• The jupyterhub is deployed on a Kubernetes 
(k8s) cluster with 128 vCPUs and 258 GB, 
divided into 8 nodes configured via RKE2

https://jupyterhub.readthedocs.io/en/stable/
https://github.com/indigo-iam/iam
https://docs.rke2.io/


High throughput data analysis platform

6

● The deployment of the Kubernetes 
resources is handled via HELM charts in the 
official Spoke2 Jhub HELM repo

● This allows for a scalable and fault-
tolerant deployment of the available 
resources

https://github.com/ttedeschi/HighRateAnalysis-WP5/tree/main/stable/jhub-aas


High throughput data analysis platform
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● Jupyterlab interface is flexible and customizable:
- Includes specific plugins (e.g. Dask)
- Working environment highly customizable using 

Docker containers allowing for experiment specific 
software

https://docs.dask.org/en/stable/
https://www.docker.com/


High throughput data analysis platform
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● Ideal environment for testing interactive analysis 
and validating new frameworks, e.g. the multi-
threading features of ROOT RDataFrame

● The Dask Labextension provides a user-friendly 
monitoring dashboard

● More in the official docs!

https://github.com/dask/dask-labextension
https://icsc-spoke2-repo.github.io/HighRateAnalysis-WP5/sections/intro.html


High throughput data analysis platform
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● Offloading strategy: resources used to offload the 
computation are hosted in the same k8s cluster as 
the jupyter interface, via DASK KubeCluster
● Under development: spawning on multiple remote sites 
allowing for heterogeneous resources (HTC/HPC/Cloud) 
(see more in backup)



Benchmark interactive 
analyses



Search for 𝝉 → 𝟑𝝁 decays, which have very small SM branching fractions  
BRSM ~ 𝒪 10−55 , while being predicted with sizable BR in several BSM 
scenarios BRBSM ~ 𝒪 10−10 ÷ 10−8

• 𝝉 leptons produced in D and B meson decays provide large statistics at LHC 
experiments, but are only accessible with low-pT muon triggers

• Analysis of Run 2 data recently published, stat. limited 
→ benefitting from inclusive low-pT muon L1 trigger in Run 3
→ technical challenge: new datasets are × 𝟐 ÷ 𝟑 times heavier

Lepton Flavor Violation in the charged sector: 𝝉 → 𝟑𝝁
CMS use-case 

Phys. Lett. B 853 (2024) 138633
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https://doi.org/10.1016/j.physletb.2024.138633
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Lepton Flavor Violation in the charged sector: 𝝉 → 𝟑𝝁
CMS use-case 

Phys. Lett. B 853 (2024) 138633

Phys. Lett. B 853 (2024) 138633

Search for 𝝉 → 𝟑𝝁 decays, which have very small SM branching fractions  
BRSM ~ 𝒪 10−55 , while being predicted with sizable BR in several BSM 
scenarios BRBSM ~ 𝒪 10−10 ÷ 10−8

• 𝝉 leptons produced in D and B meson decays provide large statistics at LHC 
experiments, but are only accessible with low-pT muon triggers

• The normalisation channel used as a benchmark: 𝐷𝑠+ → 𝜙 𝜇𝜇 𝜋+

→ cut-based analysis + mass fit for measuring the 𝐷𝑠+ yield in data  
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https://doi.org/10.1016/j.physletb.2024.138633
https://doi.org/10.1016/j.physletb.2024.138633


𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis workflow

● Legacy: approach Loop-based analysis implemented using ROOT TTree:MakeClass
○ split computation in batches of input files, run separately as HTCondor jobs, gather the output rootfiles

● New: Ntuples read as RDataFrame, almost all operations “lazy” → no loop triggered till the end
○ going distributed using ROOT RDataFrame distributed features, with Dask backend.

MiniAOD

• Data collected by low 
pT dimuon triggers

• MiniAOD data tier 
centrally produced

CMS 
Dataset

ROOT 
ntuples • Define high-level variables

• Apply scale factors and 
corrections

• Apply selections, select best Ds

candidate per event

• Fit the 2µ+1track invariant mass

Analysis

• Skimmed data, events 
with 2µ+1track final state

• Saving only physics 

objects of interest
• Plain data format, ~ 5 

GB / fb-1, stored on eos
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https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072052/pdf


Ntuples are nanoAOD-like
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Goal:
●Select events with triplets passing 

selections (e.g. containing muons with a 
given quality)

●Select best triplet per event in case >1 pass



𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

● Define a Dask Client
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𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code
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● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths



𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

21

● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define 

Distributed.Dask.RDataFrame

'root://eosuser.cern.ch//eos/mypath/*.root’

root://eosuser.cern.ch/eos/user/f/fsimone/lustre/SkimPhiPi_UL2017_Run2017B_ModFilter_Mini_v2/210131_221715/0000/Tree_PhiPi_1.root


𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code
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● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define 

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet



𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code
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● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define 

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet
● Match other branches (e.g. Muon_*) with Triplet_* and apply 

selections



𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code
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● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define 

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet
● Match other branches (e.g. Muon_*) with Triplet_* and apply 

selections
● Keep best mu mu track candidate



𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code
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● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define 

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet
● Match other branches (e.g. Muon_*) with Triplet_* and apply 

selections
● Keep best mu mu track candidate

Output/results:
• Drawing or counting out of the final df triggers the 

computation → smooth
• Snapshoting the final df for further analysis: many 

“out.root” files are saved in the workers and need to be 
copied back

• Tried “AsNumpy” as an alternative →workers don’t finish 
computation



Preliminary results
Significant improvement in execution 
time wrt the standard/serial approach
The facility allows for dynamically scaling 
the resources, here testing the 
performance at fixed #cores and 
memory, varying the dataset size 

Stress test at high CPU and 
memory occupancy
Stable performance, linearly
scaling with the input dataset size
Dataset size ~ 100 GiB is
representative of ~15 /fb of Run3 
data for this specific analysis

26



Feedback from a user point of view:
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• Implementing the analysis in RDataFrame was easy, looking at tutorials and forum

• Interfacing RDataFrame and Dask → only few lines of code, no debugging needed

• It would be nice to have a “distributed” version of Snapshot for harvesting the 
outputs from the workers (or maybe I missed something here? ☺ )

• This AF is under testing, we presently have ~10 beta users from CMS, ATLAS, 
FCC (mostly from CMS tough)

• Will reach a larger audience after expanding the current pool of resources



Conclusions & Next Steps
HL-LHC poses significant challenges to HEP experiments in terms of storage and computing resources
An interactive high throughput platform has been developed in the framework of the “HPC, Big Data e Quantum 
Computing Research Centre” Italian National Center (ICSC)

- offers users a modern interactive web interface based on JupyterLab
- experiment-agnostic resources
- based on a parallel and geographically distributed back-end

Interactive analyses feasibility studies on INFN cloud succeeded 
Performance evaluated using the high-rate platform
HEP analysis use-case explored from the CMS and ATLAS Collaborations

Medium-long term goals: Expand the current pool of resources by a factor of 5 in the upcoming months, to perform scale 
testing of the analysis workflows.

This work is (partially) supported by ICSC – Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing, funded by European Union – NextGenerationEU



Thank you!



Back-up
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High throughput data analysis platform
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● Offloading strategy: resources used to offload the 
computation are hosted in the same k8s cluster as 
the jupyter interface, via DASK KubeCluster

● Under development: schedule worker processes 
spawning on multiple remote sites dynamically and 
transparently → Implementation on heterogeneous 
resources (HTC/HPC/Cloud)

InterLink provides execution of a 
Kubernetes pod on almost any remote 
resource. Resources visible to the user 
thanks to an HTCondor overlay

https://github.com/interTwin-eu/interLink
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