

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università della Ricerca

Leveraging distributed resources through high throughput analysis platforms for enhancing HEP data analyses

CHEP2024, 19-25 Oct 2024, Krakow → ROOT PPP

ICSC Italian Research Center on High-Performance Computing. Big Data and Quantum Computing

Centro Nazionale di Ricerca in HPC, **Big Data and Quantum Computing**

Adelina D'Onofrio¹, Tommaso Diotalevi^{1,3}, Francesco Giuseppe Gravili^{1,5}, Salvatore Loffredo^{1,2}, Elvira Rossi^{1,2}, Federica Maria Simone^{1,4}, Bernardino Spisso¹ on behalf of the ATLAS and CMS Collaborations

1 INFN, 2 University Federico II, 3 University of Bologna, 4 Polytechnic Bari, 5 Università del Salento

Missione 4 • Istruzione e Ricerca

Motivations

- Challenges of LHC, and HL-LHC are pushing to re-think the HEP computing models
 - Ş Impact on several aspects, from software to the computing infrastructure

Higher rates of collision events

Similar trends for ATLAS and CMS HL-LHC projections

Higher demand for computing and storage resources

Need to:

- Optimize the usage of CPU and storage
- Promote the usage of better data formats
- Develop new analysis paradigms!
- New software based on declarative programming and interactive workflows
- Distribute on geographically separated resources

HEP data analysis with ICSC

*trigger rates for previous Runs, now factor $3 \div 5$ higher, will further scale in HL-LHC

m:			237 /	8192	MB
	0.		2 2	0	°o
6	Sing	ularity	kernel	0	0
					ă
	Q				C.
				l	
ers	ions	foun	d	1	
Col	19	HNL :	analys	is.ipv	nb

- After connecting to an entrypoint URL, the user reaches a <u>Jupyterhub</u> instance that, after authentication and authorization via <u>INDIGO-IAM</u>, allocates the required resources for the user's working area.
- The jupyterhub is deployed on a Kubernetes (k8s) cluster with **128 vCPUs and 258 GB**, divided into 8 nodes configured via <u>RKE2</u>

- The deployment of the Kubernetes resources is handled via HELM charts in the official Spoke2 Jhub HELM repo
- This allows for a scalable and faulttolerant deployment of the available resources

- Jupyterlab interface is flexible and customizable:
 Includes specific plugins (e.g. <u>Dask</u>)
- Working environment highly customizable using <u>Docker</u> containers allowing for experiment specific software

- Ideal environment for testing interactive analysis and validating new frameworks, e.g. the multithreading features of ROOT RDataFrame
- The <u>Dask Labextension</u> provides a user-friendly monitoring dashboard
- More in the <u>official docs</u>!

File Edit View Run Kernel Tabs Settings Help disk/das/board/de26/492-bc56-4697-8164-88200ad5450 Q. AddressArte Time PER ACTION Q. BANDWOTH TYPES CUUSTER MARP CLUSTER MARP CUUSTER MARP CONTENTION CONTENTION Memory Use (I CONTENTION CONTENTION GROUP STOCK GROUP STOCK MARP GROUP STOCK GROUP STOCK GROUP STOCK GROUP STOCK SS Time PERFACT MEMOORY GROUP STOCK GROUP STREE Time PERFACT GROUP STREE GROUP STREE GROUP STREE Time PERFACE GROUP STREE GROUP STREE			cluster map	
	X Workers X + million million memory K + million memory K K K % M Memory K K K K % M Memory K K K K K % M Memory K K K K K % M Memory K K	• ret mad net sets dek mad dek	worker	
BCHEDULER BYSTEM NAX, STREAM WORKERS WORKERS CPU THASSERIES WORKERS DISK WORKERS NEWDOW CLUSTERS CLUSTERS CLUSTERS CLUSTERS Mander Of Ownlaws Amongy 1000 (CHEL Amongy 1000 (CHEL Mander Of Workers S Mander Of Workers S Mander Of Workers S Mander Of Workers S Mander Of Workers S <td>address nutre; 006er5-8-default-worker-23335668; tsp://0.42.656445129 0.000 006er5-8-default-worker-dec/813680; tsp://0.42.10.305.42533 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.10.8264477 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.8123 0.0100 006er5-8-default-worker-dec/813681; tsp://0.42.3181.40313 0.0100 006er5-8-default-worker-eds/81369; tsp://0.42.3181.40313 0.0100</td> <td>00g_rtmrval 1301833343005 224395548004 887351944358 497321535202 7008055622438</td> <td>•</td> <td></td>	address nutre; 006er5-8-default-worker-23335668; tsp://0.42.656445129 0.000 006er5-8-default-worker-dec/813680; tsp://0.42.10.305.42533 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.10.8264477 0.000 006er5-8-default-worker-dec/813681; tsp://0.42.8123 0.0100 006er5-8-default-worker-dec/813681; tsp://0.42.3181.40313 0.0100 006er5-8-default-worker-eds/81369; tsp://0.42.3181.40313 0.0100	00g_rtmrval 1301833343005 224395548004 887351944358 497321535202 7008055622438	•	

- computation are hosted in the same k8s cluster as
- allowing for heterogeneous resources (HTC/HPC/Cloud) (see more in backup)

Benchmark interactive analyses

CMS use-case

Search for $\tau \to 3\mu$ decays, which have very small SM branching fractions $BR_{SM} \sim O(10^{-55})$, while being predicted with sizable BR in several BSM scenarios $BR_{BSM} \sim \mathcal{O}(10^{-10} \div 10^{-8})$

- au leptons produced in D and B meson decays provide large statistics at LHC experiments, but are only accessible with **low-p_T muon triggers**
- Analysis of Run 2 data recently published, stat. limited \rightarrow benefitting from inclusive low-p_T muon L1 trigger in **Run 3**
 - \rightarrow technical challenge: **new datasets are** $\times 2 \div 3$ **times heavier**

Lepton Flavor Violation in the charged sector: $\tau \rightarrow 3\mu$

2017+2018

2017+2018

2017+2018

CMS use-case

	Contents lists available at ScienceDirect	
	Physics Letters B	PHYSICS LETTERS B
ELSEVIER	journal homepage: www.elsevier.com/locate/physletb	
letter		
letter Search for the lep	ton flavor violating $\tau \rightarrow 3\mu$ decay in proton-proton	Check for updates
Letter Search for the lept collisions at $\sqrt{s} =$	ton flavor violating $\tau \rightarrow 3\mu$ decay in proton-proton 13 TeV	Check for updates
Letter Search for the lep collisions at $\sqrt{s} =$ The CMS Collaboration	ton flavor violating $\tau \rightarrow 3\mu$ decay in proton-proton 13 TeV	Check for updates

Search for $\tau \to 3\mu$ decays, which have very small SM branching fractions $BR_{SM} \sim O(10^{-55})$, while being predicted with sizable BR in several BSM scenarios $BR_{BSM} \sim \mathcal{O}(10^{-10} \div 10^{-8})$

- τ leptons produced in D and B meson decays provide large statistics at LHC experiments, but are only accessible with **low-p_T muon triggers**
- The normalisation channel used as a benchmark: $D_s^+ \rightarrow \phi(\mu\mu)\pi^+$ \rightarrow cut-based analysis + mass fit for measuring the D_s^+ yield in data

Lepton Flavor Violation in the charged sector: $\tau \rightarrow 3\mu$

- Legacy: approach Loop-based analysis implemented using ROOT TTree: MakeClass
- New: Ntuples read as RDataFrame, almost all operations "lazy" \rightarrow no loop triggered till the end
 - going distributed using ROOT RDataFrame distributed features, with Dask backend.

ROOT ntuples • Skimmed data, events with 2µ+1track final state • Saving only physics objects of interest

• Plain data format, ~ 5 GB / fb-1, stored on eos

- Define high-level variables
- Apply scale factors and corrections
- Apply **selections**, select best D_s candidate per event
- **Fit** the 2µ+1track invariant mass

Analysis

• split computation in batches of input files, run separately as HTCondor jobs, gather the output rootfiles

Ntuples are nanoAOD-like

- Select events with triplets passing selections (e.g. containing muons with a given quality)
- Select best triplet per event in case >1 pass

Basic imports

```
[1]: import sys, os, time
start = time.time()
import json
import ROOT
```

Welcome to JupyROOT 6.30/02

Dask scheduler

```
[2]: from dask.distributed import Client, performance_report
```

```
[3]: Local = False
if Local:
    from dask.distributed import LocalCluster
    cluster = LocalCluster()
    client = Client(cluster.scheduler.address)
```

Now start new Dask cluster, scale the number of workers

Scheduler Info

• Define a Dask Client

X509 proxy configuration

The /tmp/x509up_u file should be generated prior running the notebook using voms-proxy-init - cert ../cert/usercert.pem -key ../cert/userkey.pem

```
[9]: from distributed.diagnostics.plugin import UploadFile
    client.register_worker_plugin(UploadFile("/tmp/x509up_u0"))
```

```
/tmp/ipykernel_676/2847743139.py:2: DeprecationWarning: `Client.register_worker_plugin` has
been deprecated; please use `Client.register_plugin` instead
    client.register_worker_plugin(UploadFile("/tmp/x509up_u0"))
```

[10]: def set_proxy(dask_worker): import os import shutil working_dir = dask_worker.local_directory proxy_name = 'x509up_u0' os.environ['X509_USER_PROXY'] = working_dir + '/' + proxy_name os.environ['X509_CERT_DIR']="/cvmfs/grid.cern.ch/etc/grid-security/certificates/" return os.environ.get("X509_USER_PROXY"), os.environ.get("X509_CERT_DIR")

[11]: client.run(set_proxy)

```
□ ↑ ↓ 古 Ţ 首
```


Define a Dask Client
Load X509 user proxy to Dask workers and set env paths

Declare custom C++ functions

```
[8]: text_file = open("Utilities.h", "r")
    data = text_file.read()
```

def my_initialization_function():
 R00T.gInterpreter.Declare('{}'.format(data))

ROOT.RDF.Experimental.Distributed.initialize(my_initialization_function)

numWorkers= len(client.scheduler_info()['workers']) #npartitions = 2 * numWorkers npartitions = 2 * nfiles print("Number of workers is: {}".format(numWorkers)) print("Number of total partitions is: {}".format(npartitions)) df = R00T.RDF.Experimental.Distributed.Dask.RDataFrame(treename, chain, daskclient=client) 'root://eosuser.cern.ch//eos/mypath/*.root'

Define a Dask Client
Load X509 user proxy to Dask workers and set env paths
Declare useful C++ functions and define Distributed.Dask.RDataFrame

#	Selections on triplets
#	2 -> 2mu+track candidate mass in (1.62-2.02)GeV
#	3 -> at least 2 track associated with PV
#	4 -> Significance of BS-SV distance in the transverse plane > 2
tr	<pre>riplet_selection = "Triplet2_Mass>1.62 && Triplet2_Mass<2.02 && \</pre>
	RefittedPV2_NTracks > 1 && \
	FlightDistBS_SV_Significance > 2 "

Events with at least one good candidate
df = df.Define("triplet_mask1", triplet_selection).Filter("R00T::VecOps::Sum(triplet_mask1) >0")

Define a Dask Client
Load X509 user proxy to Dask workers and set env paths
Declare useful C++ functions and define Distributed.Dask.RDataFrame

Some steps of the analysis:

• Apply selections on branches with size nTriplet


```
# Selections on triplets
# 2 -> 2mu+track candidate mass in (1.62-2.02)GeV
# 3 -> at least 2 track associated with PV
# 4 -> Significance of BS-SV distance in the transverse plane > 2
triplet_selection = "Triplet2_Mass>1.62 && Triplet2_Mass<2.02 && \</pre>
                     RefittedPV2_NTracks > 1 && \
                     FlightDistBS_SV_Significance > 2 "
# Events with at least one good candidate
df = df.Define("triplet_mask1", triplet_selection).Filter("R00T::VecOps::Sum(triplet_mask1) >0")
```

```
# Find index in "Muon_" and "Track_" branches
df = df.Define("Mu01_index", "match(MuonPt, Mu01_Pt)")
df = df.Define("Mu02_index", "match(MuonPt, Mu02_Pt)")
df = df.Define("Tr_index", "match(MuonPt, Tr_Pt)")
# 7 -> Apply Muon ID Global and Particle Flow
```

```
df = df.Define("Mu01_ID", "muon_id(Mu01_index, Muon_isGlobal && Muon_isPF)")
df = df.Define("Mu02_ID", "muon_id(Mu02_index, Muon_isGlobal && Muon_isPF)")
```

```
# 8 -> IP(track, BS) z direction < 20 cm and xy direction < 0.3 cm
df = df.Define("Tr_IPcut", "muon_id(Tr_index, (Track_dz<20 && Track_dxy<0.3) )")</pre>
df = df.Define("triplet_mask4", "Mu01_ID && Mu02_ID && Tr_IPcut").Filter("R00T::Vec0ps::Sum(triplet_mask4)>0")
```


• Define a Dask Client Load X509 user proxy to Dask workers and set env paths • Declare useful C++ functions and define Distributed.Dask.RDataFrame

Some steps of the analysis:

• Apply selections on branches with size nTriplet Match other branches (e.g. Muon_*) with Triplet_* and apply selections

RVec<int> match(R00T::Vec0ps::RVec<double> branch1, R00T::Vec0ps::RVec<double> branch2){ //returns vector of indeces such that branch2[index]=branch1 RVec<int> index; for(unsigned i = 0; i<branch1.size(); i++){</pre> auto idx = std::find(branch2.begin(), branch2.end(), branch1.at(i)); if(idx != branch2.end()) index.push_back(std::distance(branch2.begin(), idx)); else index.push_back(-99); return index;

	• L
# Selections on triplets	
# 2 -> 2mu+track candidate mass in (1.62-2.02)GeV	• L
# 3 -> at least 2 track associated with PV	[
# 4 -> Significance of BS-SV distance in the transverse plane > 2	• L
<pre>triplet_selection = "Triplet2_Mass>1.62 && Triplet2_Mass<2.02 && \</pre>	
RefittedPV2_NTracks > 1 && \	L
FlightDistBS_SV_Significance > 2 "	
# Events with at least one good candidate	So
<pre>df = df.Define("triplet_mask1", triplet_selection).Filter("R00T::Vec0ps::Sum(triplet_mask1) >0")</pre>	50
	• /
# Find index in "Muon_" and "Track_" branches	• 1
df = df.Define("Mu01_index", "match(MuonPt, Mu01_Pt)")	C
<pre>df = df.Define("Mu02_index", "match(MuonPt, Mu02_Pt)")</pre>	
<pre>df = df.Define("Tr_index", "match(MuonPt, Tr_Pt)")</pre>	_
	• 1
# 7 -> Apply Muon ID Global and Particle Flow	
<pre>df = df.Define("Mu01_ID", "muon_id(Mu01_index, Muon_isGlobal && Muon_isPF)")</pre>	
<pre>df = df.Define("Mu02_ID", "muon_id(Mu02_index, Muon_isGlobal && Muon_isPF)")</pre>	
# 8 -> IP(track, BS) z direction < 20 cm and xy direction < 0.3 cm	
df = df.Define("Tr IPcut", "muon id(Tr index, (Track dz<20 && Track dxv<0.3))")	

df.Define("triplet_mask4", "Mu01_ID && Mu02_ID && Tr_IPcut").Filter("R00T::Vec0ps::Sum(triplet_mask4)>0"

```
# Keep best candidate based on vertex chi2
df = df.Define("BestTriplet_index", "bestcandidate(TripletVtx2_Chi2)")
df = df.Define("BestTriplet_mass", "flattening(Triplet2_Mass, BestTriplet_index)")
```


Define a Dask Client Load X509 user proxy to Dask workers and set env paths Declare useful C++ functions and define Distributed.Dask.RDataFrame

me steps of the analysis:

Apply selections on branches with size nTriplet

Match other branches (e.g. Muon_*) with Triplet_* and apply selections

Keep best mu mu track candidate

Save output for further processing: snapshot saves on workers! df_out = df.Snapshot("ntuple", "out.root", ["BestTriplet_mass"])

np_out = df.AsNumpy(columns=["BestTriplet_mass"]) #workers stay "in-memory" forever

• Define a Dask Client Load X509 user proxy to Dask workers and set env paths • Declare useful C++ functions and define Distributed.Dask.RDataFrame

Some steps of the analysis:

- Apply selections on branches with size nTriplet
- Match other branches (e.g. Muon_*) with Triplet_* and apply selections
- Keep best mu mu track candidate

Output/results:

- Drawing or counting out of the final df triggers the computation \rightarrow smooth
- Snapshoting the final df for further analysis: many
- "out.root" files are saved in the workers and need to be copied back
- Tried "AsNumpy" as an alternative \rightarrow workers don't finish computation

Preliminary results

- Stress test at high CPU and memory occupancy
- Stable performance, linearly scaling with the input dataset size
- Dataset size ~ 100 GiB is representative of ~15 /fb of Run3 data for this specific analysis

- Significant improvement in execution time *wrt* the standard/serial approach
- the resources, here testing the performance at fixed #cores and memory, varying the dataset size

Feedback from a user point of view:

- Implementing the analysis in RDataFrame was easy, looking at tutorials and forum
- Interfacing RDataFrame and Dask \rightarrow only few lines of code, no debugging needed
- It would be nice to have a "distributed" version of Snapshot for harvesting the outputs from the workers (or maybe I missed something here? ③)

- This AF is under testing, we presently have ~10 beta users from CMS, ATLAS, FCC (mostly from CMS tough)
- Will reach a larger audience after expanding the current pool of resources

Conclusions & Next Steps

- HL-LHC poses significant challenges to HEP experiments in terms of storage and computing resources An interactive high throughput platform has been developed in the framework of the "HPC, Big Data e Quantum" Computing Research Centre" Italian National Center (ICSC)
- - offers users a modern interactive web interface based on JupyterLab
 - experiment-agnostic resources
 - based on a parallel and geographically distributed back-end
- Interactive analyses feasibility studies on INFN cloud succeeded Performance evaluated using the high-rate platform HEP analysis use-case explored from the CMS and ATLAS Collaborations

testing of the analysis workflows.

This work is (partially) supported by ICSC – Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing, funded by European Union – NextGenerationEU

Medium-long term goals: Expand the current pool of resources by a factor of 5 in the upcoming months, to perform scale

Thank you!

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

- Offloading strategy: resources used to offload the computation are hosted in the same k8s cluster as the jupyter interface, via DASK KubeCluster
- Under development: schedule worker processes spawning on multiple remote sites dynamically and transparently \rightarrow Implementation on heterogeneous resources (HTC/HPC/Cloud)

InterLink provides execution of a Kubernetes pod on almost any remote resource. Resources visible to the user thanks to an HTCondor overlay

