
Leveraging distributed resources through high throughput
analysis platforms for enhancing HEP data analyses

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing. Big Data and Quantum Computing

CHEP2024, 19-25 Oct 2024, Krakow→ ROOT PPP

Adelina D’Onofrio1, Tommaso Diotalevi1,3, Francesco Giuseppe
Gravili1,5, Salvatore Loffredo1,2, Elvira Rossi1,2, Federica Maria
Simone1,4, Bernardino Spisso1

on behalf of the ATLAS and CMS Collaborations

1 INFN, 2 University Federico II, 3 University of Bologna, 4 Polytechnic
Bari, 5 Università del Salento

Motivations

3

 Challenges of LHC, and HL-LHC are pushing to re-think the HEP computing models
 Impact on several aspects, from software to the computing infrastructure Need to:

• Optimize the usage of CPU
and storage

• Promote the usage of
better data formats

• Develop new analysis
paradigms!

• New software based on
declarative programming
and interactive workflows

• Distribute on
geographically separated
resources

Similar trends for ATLAS and CMS HL-LHC projections

Higher rates of collision events Higher demand for computing and storage resources

HEP data analysis with ICSC

Data analysis codeCPU use (%)

Memory Use (%)

Workers:

4

*

*trigger rates for previous Runs, now factor 3 ÷ 5 higher, will further scale in HL-LHC

High throughput data analysis platform

5

• After connecting to an entrypoint URL, the
user reaches a Jupyterhub instance that,
after authentication and authorization via
INDIGO-IAM, allocates the required
resources for the user’s working area.

• The jupyterhub is deployed on a Kubernetes
(k8s) cluster with 128 vCPUs and 258 GB,
divided into 8 nodes configured via RKE2

https://jupyterhub.readthedocs.io/en/stable/
https://github.com/indigo-iam/iam
https://docs.rke2.io/

High throughput data analysis platform

6

● The deployment of the Kubernetes
resources is handled via HELM charts in the
official Spoke2 Jhub HELM repo

● This allows for a scalable and fault-
tolerant deployment of the available
resources

https://github.com/ttedeschi/HighRateAnalysis-WP5/tree/main/stable/jhub-aas

High throughput data analysis platform

7

● Jupyterlab interface is flexible and customizable:
- Includes specific plugins (e.g. Dask)
- Working environment highly customizable using

Docker containers allowing for experiment specific
software

https://docs.dask.org/en/stable/
https://www.docker.com/

High throughput data analysis platform

8

● Ideal environment for testing interactive analysis
and validating new frameworks, e.g. the multi-
threading features of ROOT RDataFrame

● The Dask Labextension provides a user-friendly
monitoring dashboard

● More in the official docs!

https://github.com/dask/dask-labextension
https://icsc-spoke2-repo.github.io/HighRateAnalysis-WP5/sections/intro.html

High throughput data analysis platform

9

● Offloading strategy: resources used to offload the
computation are hosted in the same k8s cluster as
the jupyter interface, via DASK KubeCluster
● Under development: spawning on multiple remote sites
allowing for heterogeneous resources (HTC/HPC/Cloud)
(see more in backup)

Benchmark interactive
analyses

Search for 𝝉 → 𝟑𝝁 decays, which have very small SM branching fractions
BRSM ~ 𝒪 10−55 , while being predicted with sizable BR in several BSM
scenarios BRBSM ~ 𝒪 10−10 ÷ 10−8

• 𝝉 leptons produced in D and B meson decays provide large statistics at LHC
experiments, but are only accessible with low-pT muon triggers

• Analysis of Run 2 data recently published, stat. limited
→ benefitting from inclusive low-pT muon L1 trigger in Run 3
→ technical challenge: new datasets are × 𝟐 ÷ 𝟑 times heavier

Lepton Flavor Violation in the charged sector: 𝝉 → 𝟑𝝁
CMS use-case

Phys. Lett. B 853 (2024) 138633

15

https://doi.org/10.1016/j.physletb.2024.138633

16

Lepton Flavor Violation in the charged sector: 𝝉 → 𝟑𝝁
CMS use-case

Phys. Lett. B 853 (2024) 138633

Phys. Lett. B 853 (2024) 138633

Search for 𝝉 → 𝟑𝝁 decays, which have very small SM branching fractions
BRSM ~ 𝒪 10−55 , while being predicted with sizable BR in several BSM
scenarios BRBSM ~ 𝒪 10−10 ÷ 10−8

• 𝝉 leptons produced in D and B meson decays provide large statistics at LHC
experiments, but are only accessible with low-pT muon triggers

• The normalisation channel used as a benchmark: 𝐷𝑠+ → 𝜙 𝜇𝜇 𝜋+

→ cut-based analysis + mass fit for measuring the 𝐷𝑠+ yield in data

16

https://doi.org/10.1016/j.physletb.2024.138633
https://doi.org/10.1016/j.physletb.2024.138633

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis workflow

● Legacy: approach Loop-based analysis implemented using ROOT TTree:MakeClass
○ split computation in batches of input files, run separately as HTCondor jobs, gather the output rootfiles

● New: Ntuples read as RDataFrame, almost all operations “lazy” → no loop triggered till the end
○ going distributed using ROOT RDataFrame distributed features, with Dask backend.

MiniAOD

• Data collected by low
pT dimuon triggers

• MiniAOD data tier
centrally produced

CMS
Dataset

ROOT
ntuples • Define high-level variables

• Apply scale factors and
corrections

• Apply selections, select best Ds

candidate per event

• Fit the 2µ+1track invariant mass

Analysis

• Skimmed data, events
with 2µ+1track final state

• Saving only physics

objects of interest
• Plain data format, ~ 5

GB / fb-1, stored on eos

17

https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072052/pdf

Ntuples are nanoAOD-like

18

evt 0

evt 1

evt 2
HLT_Mu0_pt[0]

HLT_Mu0_pt[0]

HLT_Mu0_pt[0]

HLT_Mu0_pt[0]

HLT_Mu0_pt[0]

Triplet_pt [0]

Triplet_pt [1]

Triplet_pt [2]

Triplet_pt [3]

Triplet_pt [4]

HLT_Mu0_pt[0]

HLT_Mu0_pt[0]

Muon_pt[0]

Muon_pt[1]

Muon_pt[2]

Muon_pt[3]

Muon_pt[4]

Muon_pt[5]

n
M

u
o
n

n
H

L
T

_
o

b
j

Muon_eta[0]

Muon_eta[1]

Muon_eta[2]

Muon_eta[3]

Muon_eta[4]

Muon_eta[5]

n
T

rip
le

t

Goal:
●Select events with triplets passing

selections (e.g. containing muons with a
given quality)

●Select best triplet per event in case >1 pass

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

● Define a Dask Client

19

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

20

● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

21

● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define

Distributed.Dask.RDataFrame

'root://eosuser.cern.ch//eos/mypath/*.root’

root://eosuser.cern.ch/eos/user/f/fsimone/lustre/SkimPhiPi_UL2017_Run2017B_ModFilter_Mini_v2/210131_221715/0000/Tree_PhiPi_1.root

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

22

● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

23

● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet
● Match other branches (e.g. Muon_*) with Triplet_* and apply

selections

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

24

● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet
● Match other branches (e.g. Muon_*) with Triplet_* and apply

selections
● Keep best mu mu track candidate

𝑫𝒔
+ → 𝝓 𝝁𝝁 𝝅+ analysis code

25

● Define a Dask Client
● Load X509 user proxy to Dask workers and set env paths
● Declare useful C++ functions and define

Distributed.Dask.RDataFrame

Some steps of the analysis:
● Apply selections on branches with size nTriplet
● Match other branches (e.g. Muon_*) with Triplet_* and apply

selections
● Keep best mu mu track candidate

Output/results:
• Drawing or counting out of the final df triggers the

computation → smooth
• Snapshoting the final df for further analysis: many

“out.root” files are saved in the workers and need to be
copied back

• Tried “AsNumpy” as an alternative →workers don’t finish
computation

Preliminary results
Significant improvement in execution
time wrt the standard/serial approach
The facility allows for dynamically scaling
the resources, here testing the
performance at fixed #cores and
memory, varying the dataset size

Stress test at high CPU and
memory occupancy
Stable performance, linearly
scaling with the input dataset size
Dataset size ~ 100 GiB is
representative of ~15 /fb of Run3
data for this specific analysis

26

Feedback from a user point of view:

27

• Implementing the analysis in RDataFrame was easy, looking at tutorials and forum

• Interfacing RDataFrame and Dask → only few lines of code, no debugging needed

• It would be nice to have a “distributed” version of Snapshot for harvesting the
outputs from the workers (or maybe I missed something here? ☺)

• This AF is under testing, we presently have ~10 beta users from CMS, ATLAS,
FCC (mostly from CMS tough)

• Will reach a larger audience after expanding the current pool of resources

Conclusions & Next Steps
HL-LHC poses significant challenges to HEP experiments in terms of storage and computing resources
An interactive high throughput platform has been developed in the framework of the “HPC, Big Data e Quantum
Computing Research Centre” Italian National Center (ICSC)

- offers users a modern interactive web interface based on JupyterLab
- experiment-agnostic resources
- based on a parallel and geographically distributed back-end

Interactive analyses feasibility studies on INFN cloud succeeded
Performance evaluated using the high-rate platform
HEP analysis use-case explored from the CMS and ATLAS Collaborations

Medium-long term goals: Expand the current pool of resources by a factor of 5 in the upcoming months, to perform scale
testing of the analysis workflows.

This work is (partially) supported by ICSC – Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing, funded by European Union – NextGenerationEU

Thank you!

Back-up

30

High throughput data analysis platform

31

● Offloading strategy: resources used to offload the
computation are hosted in the same k8s cluster as
the jupyter interface, via DASK KubeCluster

● Under development: schedule worker processes
spawning on multiple remote sites dynamically and
transparently → Implementation on heterogeneous
resources (HTC/HPC/Cloud)

InterLink provides execution of a
Kubernetes pod on almost any remote
resource. Resources visible to the user
thanks to an HTCondor overlay

https://github.com/interTwin-eu/interLink

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

