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Conformal breaking
Discretum

Gapped continuum

For instance, 

Pheno of charged continuum:

• UnHiggs scenario 

• SM + continuum

Stancato, Terning ’08;  Falkowski, MPV ’08, ’09  

Csaki et al ‘18
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AdS/CFT

gapless continuum
gapped continuum

z

V
Schrödinger potential

μ0

discretum

Cacciapaglia, Marandella, Terning ’08 

Falkowski, MPV ‘08



Compressed BSM

Examples of BSM with compressed discrete spectrum:

• Large extra dimensions 

• Clockwork models

Arkani-Hamed, Dimopoulos, Dvali  ’98;  
Giudice, Rattazzi, Wells ’98; 
Dudas, Dienes, Gherghetta ´00

Kaplan, Rattazzi ’15;  Giudice, McCullough  ‘16

Continuum limitDiscretization

MPV ‘08
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Figure 2: Normalized energy distribution of the up quark in t → uOd decay (red, solid) for
d = 4/3 (left) and d = 9/4 (right), and the corresponding distributions for t → uφi decay into Padé
particles φi, with N = 7 (green, short dashes) and N = 17 (blue, long dashes). We choose the
renormalization point µ = mt. The distributions are smeared with a gaussian of width 0.05mt.
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Figure 3: Real (left) and minus imaginary (right) parts of the unparticle propagator (red, solid)
for d = 4/3 and the corresponding Padé approximants P4/3 with N = 2 (green, short dashes) and
N = 3 (blue, long dashes). The Padé point is in this case t = i, and we have chosen Λ = 0.05.

in the tail on the left. Thus, in the presence of backgrounds it can be very difficult to

distinguish the production of unparticles from the production of the Padé particles, even

for quite small N .

We finish this section with a generalization of our approach. The reality properties of

the Padé approximants of Stieltjes functions do not hold any longer if we choose a complex

Padé point (instead of the real point t = −1). Even if the particle interpretation is lost

in this case, it is interesting to observe that the approximation greatly improves in the

physical region. We give an example of this in figure 3. Notice that we are using a Λ

smaller than before. It is remarkable that just three unphysical particles are sufficient to

give an almost perfect approximation to the unpartical propagator at any momentum.

4. Unparticle properties from the particle perspective

In this section we show that the Padé approximants reproduce and help to understand

some basic properties of the unparticle propagators. These properties are related to the

behaviour of the propagators when d approaches or crosses integer values. We carry out a

numerical analysis, which should be sufficient to illustrate the general features.
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Figure 1: Real (left) and minus imaginary (right) parts of the unparticle propagator (red, solid)
for d = 4/3 and the corresponding Padé approximants P4/3 with N = 3 (green, short dashes),
N = 7 (purple, medium dashes) and N = 15 (blue, long dashes). We take Λ = 0.1.

Mass2 Residue

0.0079221 0.352052

0.107119 0.241402

0.361388 0.241640

0.924753 0.291822

2.32400 0.431874

7.21395 0.882060

55.5609 4.26730

Table 1: Values of the squared masses (in units of µ2) and residues of the seven particles in P4/3

for N = 7.

so their masses and couplings cannot be determined. On the other hand, the convergence

is slower for larger values of d.

The behaviour of the propagator translates directly into physical observables. As an

instance, let us follow ref. [1] and consider the top decaying into an up quark and an

unparticle via a derivative coupling

λūγµ(1 − γ5)t∂µOd + h.c. (3.5)

The normalized energy distribution of the outgoing up quark is displayed in figure 2 for

unparticle stuff and for our particle approximation. We consider the ideal situation in

which the unparticle and the associated Padé particles are stable and have no width. Finite

widths would just make more difficult to distinguish both possibilities. This time, rather

than going to complex energies, we have performed directly a gaussian smearing of the

energy distribution of the up quark, using a constant width.3 The conformal dimension of

the operator in the left and right plots are, respectively, d = 4/3 and d = 9/8. We see that

the approximation is worse when the dimension increases. Observe that in this process,

and for not too big dimensions, the approximation is much more accurate at the peak than

3The value of the width used for the plot, Γ = 0.05mt ≈ 8.6GeV, is somewhat above 5.3 GeV, the

performance-goal resolution of the LHC hadronic calorimeters at energies around 85 GeV [18], but is very

optimistic when the other effects mentioned in the footnote 2 are taken into account.
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To decay or not to decay

Does unparticle stuff with linear couplings to the SM fields decay?

• Yes 

• No Stephanov ‘07

Delgado, Espinosa, No, Quirós ‘08 Pole on 2nd Riemann sheet

3

where again by scale invariance ρO is given by Eq. (2).
Evaluating the integral over M2 one finds

Πµν(q) = (−gµν + qµqν/q2)
iAdU

2 sin(πdU )
(−q2 − iε)dU−2.

(17)
Deconstructing the unparticle operator Oµ proceeds sim-
ilarly to the scalar operator. We introduce decay con-
stants Fn via

〈0|Oµ(0)|λn〉 = εµFn, (18)

where εµ is the polarization of the massive vector parti-
cle λn. Then the correlation function is given by

Πµν(q) = (−gµν + qµqν/q2)
∑

n

iF 2
n

q2 −M2
n + iε

(19)

If we assume the same mass spectrum as in Eq. (4), the
constants Fn are again given by Eq. (8).
The contribution to the e+e− → µ+µ− amplitude from

the unparticle is proportional to the correlation function
(16) and following Ref. [2] we define:

∆U =
AdU

2 sin(πdU )
(−q2 − iε)dU−2. (20)

This amplitude interferes with the amplitude due to the
virtual Z proportional to

∆Z =
1

q2 −M2
Z + iMZΓZ

. (21)

This Standard Model amplitude is mostly real away
from the Z-pole and is mostly imaginary near the pole.
The unusual property of the unparticle amplitude (20)
pointed out in Ref.[2] is that it has nonzero imaginary
part for all q2 > 0. This allows the amplitudes ∆U and
∆Z to interfere even at the Z pole, where the latter is
imaginary.
This property follows naturally from the deconstructed

picture in which

∆U =
∑

n

F 2
n

q2 −M2
n + iε

. (22)

The imaginary part of the amplitude ∆U as a function
of q2 consists of a series of δ-function peaks at q2 = M2

n:

Im∆U = −
∑

n

F 2
nπδ(q

2 −M2
n). (23)

Each peak becomes lower as F 2
n ∼ ∆2 → 0, but their

density increases. Converting the sum over n into the
integral over M2

n we find that

Im∆U → −
F 2
n

∆2
π = −

AdU

2
(M2

n)
dU−2 (24)

in agreement with (20). The factor sin(πdU ) which can-
cels in (20) never appears in the first place in (24).

Away from the Z pole, where ∆Z is real, the interfer-
ence term is proportional to Re∆U . This is given by the
sum in (22) where particles with masses M2

n < q2 con-
tribute with the opposite sign from those with M2

n > q2.
The case dU = 3/2 is special, as pointed out in Ref.[2]:
Re∆U ∼ cot(πdU ) vanishes. This has a simple meaning
– at this value of dU particles with M2

n above q2 exactly
cancel contribution of particles below q2 (for any q2).
This is most clear from the integral representation:

Re∆U = −
∫ ∞

0
dM2 (M

2)dU−2

q2 −M2
(25)

That this (principal value) integral vanishes at dU = 3/2
can be seen by doing the change of variables M → q2/M
(mass inversion) which maps the regions above and below
q2 onto each other.

V. DECAY?

We observe (8) that each deconstructing particle λn
couples with strength proportional to F 2

n ∼ ∆2 which
vanishes as ∆ → 0. Thus, in a certain sense, a
true (∆ = 0) unparticle, once produced, never decays.
This limiting procedure explains the apparent paradox
pointed out in Ref. [2]: the finite imaginary part (24)
of the “propagator” of unparticle does not mean it has
finite lifetime.
What if the unparticle sector is almost conformal with

a very small but nonzero ∆? The lifetime of a decon-
structing particle λn is proportional to F−2

n ∼ ∆−2, and
let us assume that it is in the range that one can observe
the displaced vertex of λn decay into ordinary Standard
Model particles. What would the signatures of such de-
cays be? For simplicity, let us assume here no interference
with Standard Model amplitudes.
First of all, the invariant mass spectrum of the decay

products (e.g., lepton pairs) will not peak but will be
a monotonous distribution (we assume that ∆ is much
less than the experimental resolution). Furthermore, the
lifetime would be proportional to F−2

n , which depends
on Mn according to Eq. (8) or (9). There are of course
trivial kinematic and coupling factors, which might add
an integer power ofMn. One would therefore observe sec-
ondary vertices whose average displacement is correlated
with the invariant mass of the products of decay.
For example, the contribution of the interaction (15)

to the decay rate of λn is (taking Fn from Eq. (8))

Γ(λn → µ+µ−) =
c2AUM

2−2dU

Z

8π
F 2
n Mn

=
c2AUM

2−2dU

Z AdU

16π2
∆2 M2dU−3

n .

(26)

Thus, the lifetime τd measured through the mean dis-
placement of a vertex (τd = (d/(γv)), if observed, will
scale with the reconstructed invariant mass as

τd = 1/Γ ∼ M3−2dU . (27)

3
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Toy model

elementary field

composite field (mediator)
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only two-point function Π for simplicity (large N)

massless complex scalar

real scalar

L = �1

2
A⇧(�@2)A+ @µ'

†@µ'+ gA'†'
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2 Setup

We will work with a simple toy model that captures essential features of the scenario
we have described in the introduction. It is a four-dimensional e↵ective theory of a real
scalar field A coupled locally to a massless scalar field ', which we call the elementary
field, with Lagrangian [Change at the end the coupling g to �?]

L = �1

2
A⇧(�@2)A+ @µ'

†@µ'+ gA'†', (1)

where ⇧ is an arbitrary form factor, up to the restrictions enforced by the axioms of
quantum field theory. As discussed above, this e↵ective theory can arise from a more
conventional one with some extra sector that has been integrated out (without any
derivative expansion). The field A is to be understood as a local operator of the extra
sector that has not been integrated out or as a mediator field that couples linearly to
such an operator (more formally, A can be the Legendre dual of the operator, treated
as a dynamical field as in [5]). For simplicity we do not include A self-interactions
in the e↵ective theory, which correspond to three-point and higher-point correlation
functions in the extra sector. Even if they will be generically present, they can be
suppressed in certain regimes, such as the large N limit of an SU(N) gauge theory.
We will comment on the impact of A self-interactions in the conclusions. The local
coupling to the elementary field ' arises if ' only interacts with the extra sector via
A. Choosing the mass term of ' to vanish requires fine tuning and is not essential,
but we make this choice for maximal simplicity. In section 5 we give a five-dimensional
realization of a UV completion of this model, inspired by holographic dualities.

We will work throughout the paper in the approximation with tree-level ' propaga-
tor, dressed A propagator—obtained by the Dyson resummation of all the contributions
with an arbitrary number of A self-energies, which we calculate at one loop—and no
vertex or higher-point one-particle irreducible loop corrections. We will call this the A1
approximation. The resummation for the A propagator is essential to describe correctly
the behaviour of the unstable (un)particles associated to the field A. To calculate the
self-energy we use dimensional regularization and the MS scheme.4 The renormalized
one-loop contribution to the A self-energy is then

⌃(p2) = � g2

16⇡2
log

�p2

M2
, (2)

with M a renormalization scale. Changes in M can be absorbed into ⇧(0). The
logarithm above is defined as usual with a branch cut along the negative real axis, so
⌃ has a branch cut along the positive real axis. This is relevant because we will often
make use of amplitudes and Green functions evaluated at complex momenta. We will
need the imaginary part of ⌃ right above the real axis, which corresponds to Feynman
boundary conditions and is equal to half the discontinuity across the branch cut:

Im⌃(p2 + i0+) =
g2

16⇡
✓(p2). (3)

4
We also impose as a renormalization condition that the one-point function of A vanishes. For a

masless ' this is automatic at one loop for the Lagrangian (1).

5

Note that it is positive. In this approximation, the quadratic part in A of the quantum
e↵ective action reads

�(2) = �
Z

d4x
1

2
A
⇥
⇧(�@2) + ⌃(�@2)

⇤
A. (4)

The dressed propagator for the field A is just the inverse of the operator in the square
bracket above:

iG(p2) =
i

⇧(p2) + ⌃(p2)

=
i

⇧(p2)


1� ⌃(p2)

⇧(p2)
+ . . .

�
. (5)

The expansion in the second line is a geometric series in powers of g. When g = 0 all
the fields in (1) are free and the propagator reduces to

iG(0)(p2) =
i

⇧(p2)
. (6)

The Källén-Lehmann spectral representation of the propagator is

iG(p2) =

Z 1

0

dµ2�(µ2)
i

p2 � µ2
, (7)

with the spectral density � given by

�(µ2) = � 1

⇡
ImG(µ2 + i0+)

=
1

⇡

Im (⇧(µ2 + i0+) + ⌃(µ2 + i0+))

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2
, (8)

with real and positive µ2. In the free theory, we obviously have

�(0)(µ2) = � 1

⇡
ImG(0)(µ2 + i0+)

=
1

⇡

Im⇧(µ2 + i0+)

|⇧(µ2 + i0+)|2
. (9)

In the interacting theory the spectral density in Eq. (8) can be written as � = �1 + �2,
where

�1(µ
2) =

1

⇡

Im⇧(µ2 + i0+)

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2

= �(0)(µ2) +O(g2) (10)

and

�2(µ
2) =

1

⇡

Im⌃(µ2 + i0+)

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2

=
1

⇡

Im⌃(µ2 + i0+)

|⇧(µ2 + i0+)|2 +O(g4). (11)
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Note that it is positive. In this approximation, the quadratic part in A of the quantum
e↵ective action reads

�(2) = �
Z

d4x
1

2
A
⇥
⇧(�@2) + ⌃(�@2)

⇤
A. (4)

The dressed propagator for the field A is just the inverse of the operator in the square
bracket above:

iG(p2) =
i

⇧(p2) + ⌃(p2)

=
i

⇧(p2)


1� ⌃(p2)

⇧(p2)
+ . . .

�
. (5)

The expansion in the second line is a geometric series in powers of g. When g = 0 all
the fields in (1) are free and the propagator reduces to

iG(0)(p2) =
i

⇧(p2)
. (6)

The Källén-Lehmann spectral representation of the propagator is

iG(p2) =

Z 1

0

dµ2�(µ2)
i

p2 � µ2
, (7)

with the spectral density � given by

�(µ2) = � 1

⇡
ImG(µ2 + i0+)

=
1

⇡

Im (⇧(µ2 + i0+) + ⌃(µ2 + i0+))

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2
, (8)

with real and positive µ2. In the free theory, we obviously have

�(0)(µ2) = � 1

⇡
ImG(0)(µ2 + i0+)

=
1

⇡

Im⇧(µ2 + i0+)

|⇧(µ2 + i0+)|2
. (9)

In the interacting theory the spectral density in Eq. (8) can be written as � = �1 + �2,
where

�1(µ
2) =

1

⇡

Im⇧(µ2 + i0+)

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2

= �(0)(µ2) +O(g2) (10)

and

�2(µ
2) =

1

⇡

Im⌃(µ2 + i0+)

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2

=
1

⇡

Im⌃(µ2 + i0+)

|⇧(µ2 + i0+)|2 +O(g4). (11)
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Spectral density:

Note that it is positive. In this approximation, the quadratic part in A of the quantum
e↵ective action reads

�(2) = �
Z

d4x
1

2
A
⇥
⇧(�@2) + ⌃(�@2)

⇤
A. (4)

The dressed propagator for the field A is just the inverse of the operator in the square
bracket above:

iG(p2) =
i

⇧(p2) + ⌃(p2)

=
i

⇧(p2)


1� ⌃(p2)

⇧(p2)
+ . . .

�
. (5)

The expansion in the second line is a geometric series in powers of g. When g = 0 all
the fields in (1) are free and the propagator reduces to

iG(0)(p2) =
i

⇧(p2)
. (6)

The Källén-Lehmann spectral representation of the propagator is

iG(p2) =

Z 1

0

dµ2�(µ2)
i

p2 � µ2
, (7)

with the spectral density � given by

�(µ2) = � 1

⇡
ImG(µ2 + i0+)

=
1

⇡

Im (⇧(µ2 + i0+) + ⌃(µ2 + i0+))

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2
, (8)

with real and positive µ2. In the free theory, we obviously have

�(0)(µ2) = � 1

⇡
ImG(0)(µ2 + i0+)

=
1

⇡

Im⇧(µ2 + i0+)

|⇧(µ2 + i0+)|2
. (9)

In the interacting theory the spectral density in Eq. (8) can be written as � = �1 + �2,
where

�1(µ
2) =

1

⇡

Im⇧(µ2 + i0+)

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2

= �(0)(µ2) +O(g2) (10)

and

�2(µ
2) =

1

⇡

Im⌃(µ2 + i0+)

|⇧(µ2 + i0+) + ⌃(µ2 + i0+)|2

=
1

⇡

Im⌃(µ2 + i0+)

|⇧(µ2 + i0+)|2 +O(g4). (11)
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in free theory

Conversely, using the spectral representation we can decompose G = G1 +G2 with

Gi(p
2) =

Z 1

0

dµ2 �i(µ2)

p2 � µ2
, i = 1, 2. (12)

Let Pµ be the momentum operator, with Hamiltonian P0 = H and P (0)
µ be the momen-

tum operator in the free theory (g = 0), with free Hamiltonian P (0)
0 = H0 = H|g=0.

Up to a point at µ2 = 0 associated to the massless particles created by ', the spectra
of P µPµ and P (0)µP (0)

µ are given by the support of � and �(0), respectively. We shall
consider two cases, depending on the type of spectrum of the free theory: in the discrete
case,

�(0)(µ2) =
X

n

Fn�(µ
2 �m2

n
), (13)

while in the continuous case �(0) is a non-singular function. Mixed situations with both
discrete and continuous spectrum are also possible, but we will not study them in this
paper. We assume that in both cases the free theory for the field A has a mass gap
µ0, that is, �(0)(µ2) = 0 for µ2 < µ2

0. On the other hand, in the interacting theory � is
always a non-singular function.5 The contribution �1 has support included in [µ2

0,1),
while �2 is non vanishing in all R+. Moreover, �1 identically vanishes in the discrete
case for g 6= 0.

All this is directly related to the analytical structure of G. In the free theory, the
spectral representation (7) implies that G(0)(p2) has simple poles at the real values m2

n

in the discrete case,

G(0)(p2) =
X

n

Fn

1

p2 �m2
n

, (14)

while it has a branch cut along the real interval [µ0,1) in the continuous case. This
cut can be intuitively understood in the continuum limit of the discrete case as the
collective e↵ect of closer and closer poles with smaller and smaller residua. In the
interacting theory, the G2 part of the propagator G has a branch cut along [0,1) in
both cases. In the discrete case, when the interaction is turned on the poles move
away from the real axis into the fourth quadrant of the second Riemann sheet and
G1 = 0. In the continuous case with interaction, G1 does not vanish and has a branch
cut along the real interval [µ0,1). Therefore, in this case G has two branch cuts,
partially superimposed.6 In the continuum limit, the complex poles of the interacting
discrete case move closer and closer to the real axis, which agrees with the fact that the
extra branch cut in the continuum case is located on the real axis. At least one complex
pole can also be present in the interacting continuous case, as shown and emphasized
in [26].

To finish this section, we give an alternative form of theory (1), which is obtained by
integrating in a discrete or continuous tower of real scalar fields Bµ (here and in several
quantities below we use the subindex µ :=

p
µ2, not to be confused with a Lorentz

5
We assume that the renormalization scale M and ⇧ are such that there are no tachyonic poles in

the interacting theory.
6
Further cuts, which higher values of µ

2
at the branch points, occur beyond the A1 approximation.

7
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Figure 1: Analytic structure of propagator G(s) for complex s. We plot |G(s)| in the
discrete case for L = 10 (left) and in the continuous case (right), with g = 4, µ0 = 1
and M = 10.

The Lagrangians L and L0 represent equivalent theories, as can be shown by integrating
out the fields Bµ, subject to the constraint

A =

Z 1

0

dµ2�(0)(µ2)Bµ. (16)

Using a Lagrange multiplier for the constraint (16), this is a Gaussian functional inte-
gral, which straightfowardly gives (1) as a result.

3 Unitarity

We assume that the e↵ective theory described by (1) is unitary. This should be the
case, even at energies larger than the mass gap, if it arises from integrating out an extra
sector in a unitary theory and as long as the asymptotic states of the extra sector are
taken into account. We provide an explicit example in section 5. In this section we use
unitarity to learn about the hidden states, for both discrete and continuous spectrum,
without knowledge of the UV completion. Specifically, we consider the optical theorem
for ''̄ ! ''̄ scattering, where ' ('̄) denotes the (anti) particle created by the field '.
In our model, this process is mediated by the A field. The Feynman diagrams for this
process have the same topology as the ones for Bhabha scattering in QED. The optical
theorem relates the cross section and the imaginary part of the forward amplitude.
There are also partial optical theorems satisfied separately for the imaginary part of
the sum of certain subsets of diagrams and certain contributions (not necessarily of
the same diagrams) to the cross section. The A1 approximation actually violates the
optical theorem, which requires including box and vertex subdiagrams and also higher
loops. But we can get away with it by considering instead a partial optical theorem
involving only the contribution M(s)

' to the amplitude, given in this approximation by
the s-channel diagram displayed in Fig. 2, and restricting the number of particles in the
final state.

Let M'(s, t) = M ('̄(p1)'(p2) ! '̄(p3)'(p4)), with s = (p1+p2)2 and t = (p1�p3)2

the Mandelstam variables, be the on-shell amplitude of the process. The total cross
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Figure 1: Analytic structure of propagator G(s) for complex s. We plot |G(s)| in the
discrete case for L = 10 (left) and in the continuum case (right), with g = .... [Hay que
ponerlo como funcion de parte real en horizontal e imaginaria en vertical, dejando un
poco del primer, segundo y tercer cuadrantes, para que se vea donde estamos]

index) with standard kinetic terms:

L0 =@⌫'
†@⌫'

+

Z 1

0

dµ2�(0)(µ2)
⇣1
2
@⌫Bµ@

⌫Bµ �
µ2

2
B2

µ
+ gBµ'

†'
⌘

(15)

The Lagrangians L and L0 represent equivalent theories, as can be shown by integrating
out the fields Bµ, subject to the constraint

A =

Z 1

0

dµ2�(0)(µ2)Bµ. (16)

Using a Lagrange multiplier for the constraint (16), this is a Gaussian functional inte-
gral, which straightfowardly gives (1) as a result.

3 Unitarity

We assume that the e↵ective theory described by (1) is unitary. This should be the
case, even at energies larger than the mass gap, if it arises from integrating out an extra
sector in a unitary theory and as long as the asymptotic states of the extra sector are
taken into account. We provide an explicit example in section 5. In this section we use
unitarity to learn about the hidden states, for both discrete and continuous spectrum,
without knowledge of the UV completion. Specifically, we consider the optical theorem
for ''̄ ! ''̄ scattering, where ' ('̄) denotes the (anti) particle created by the field '.
In our model, this process is mediated by the A field. The Feynman diagrams for this
process have the same topology as the ones for Bhabha scattering in QED. The optical
theorem relates the cross section and the imaginary part of the forward amplitude.
There are also partial optical theorems satisfied separately for the imaginary part of
the sum of certain subsets of diagrams and certain contributions (not necessarily of
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non-singular function.5 The contribution σ1 has support included in [µ2
0,∞), while σ2 is non

vanishing in all R+. Moreover, σ1 identically vanishes in the discrete case for g "= 0.
All this is directly related to the analytical structure of G. In the free theory, the

spectral representation (2.7) implies that G(0)(p2) has simple poles at the real values m2
n

in the discrete case,

G(0)(p2) =
∑

n

Fn
1

p2 − m2
n
, (2.14)

while it has a branch cut along the real interval [µ0,∞) in the continuous case. This cut can
be intuitively understood in the continuum limit of the discrete case as the collective effect of
closer and closer poles with smaller and smaller residua. In the interacting theory, the G2
part of the propagator G has a branch cut along [0,∞) in both cases. In the discrete case,
when the interaction is turned on the poles move away from the real axis into the fourth
quadrant of the second Riemann sheet and G1 = 0. In the continuous case with interaction,
G1 does not vanish and has a branch cut along the real interval [µ0,∞). Therefore, in this
case G has two branch cuts, partially superimposed.6 In the continuum limit, the complex
poles of the interacting discrete case move closer and closer to the real axis, which agrees
with the fact that the extra branch cut in the continuum case is located on the real axis.
At least one complex pole can also be present in the interacting continuous case, as shown
and emphasized in [26]. The analytic structure of GII, the propagator analytically continued
into the second Riemann sheet across the real interval (0, µ0), is illustrated in figure 1 for
the model introduced in section 5.

To finish this section, we give an alternative form of theory (2.1), which is obtained
by integrating in a discrete or continuous tower of real scalar fields Bµ (here and in several
quantities below we use the subindex µ :=

√
µ2, not to be confused with a Lorentz index)

with standard kinetic terms:

L′ =∂νϕ
†∂νϕ+

∫ ∞

0
dµ2σ(0)(µ2)

(1
2∂νBµ∂

νBµ − µ2

2 B2
µ + gBµϕ

†ϕ
)
. (2.15)

The Lagrangians L and L′ represent equivalent theories, as can be shown by integrating
out the fields Bµ, subject to the constraint

A =
∫ ∞

0
dµ2σ(0)(µ2)Bµ. (2.16)

Using a Lagrange multiplier for the constraint (2.16), this is a Gaussian functional integral,
which straightfowardly gives (2.1) as a result.

5In the examples we have considered σ actually contains one discrete delta function FT δ(µ2 − m2
T ) with

m2
T < 0 and |m2

T | " M2. This tachyonic mode signals a failure of the A1 approximation, due to IR divergences
in the presence of the massless elementary field ϕ. The tachyon would not appear in this approximation if
the elementary field were massive and in the massless case it could in principle be avoided by a Sudakov-like
resummation. Nevertheless, in this paper we insist in working with a massless elementary field in the A1
approximation, for simplicity, and in the following we just ignore the tachyon in our formulas and discussions.
This is possible because the value of FT is exponentially small for perturbative values of the coupling g, so all
the effects of the tachyon on the physics we want to describe are negligible. Because we ignore the tachyon,
we will write the integrals on µ2 with range from 0 to ∞ (rather than from −∞ to ∞), as we have already
done in (2.7).

6Further cuts, with branch points at higher values of µ2, occur beyond the A1 approximation.
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Figure 2: Diagram contributing to M' with dressed A propagator in the s channel; the
cut extracts the discontinuity across the real axis.

the same diagrams) to the cross section. The A1 approximation actually violates the
optical theorem, which requires including box and vertex subdiagrams and also higher
loops. But we can get away with it by considering instead a partial optical theorem
involving only the contribution M(s)

' to the amplitude, given in this approximation by
the s-channel diagram displayed in Fig. 2, and restricting the number of particles in the
final state.

Let M'(s, t) = M ('̄(p1)'(p2) ! '̄(p3)'(p4)), with s = (p1+p2)2 and t = (p1�p3)2

the Mandelstam variables, be the on-shell amplitude of the process. The total cross
section with initial state '̄(p1)'(p2) is proportional to

�̃'(p1, p2) =
X

X

Z
d⇧X(2⇡)

4�(4)(p1 + p2 � pX)|M('̄(p1)'(p2) ! X)|2, (17)

with X any possible final state and d⇧X the corresponding Lorentz invariant phase
space measure. The optical theorem for this amplitude is the statement

ImM'(s, 0) =
1

2
�̃'(p1, p2). (18)

We concentrate on the partial optical theorem

ImM(s)
'
(s, 0) =

1

2
�̃(s)
'
(p1, p2), (19)

where �̃(s) refers to contributions to the total cross section mediated by the dressed
A propagator in the s channel. When A creates only one particle in the free theory,
this particle is unstable in the interacting theory. Veltman has shown in [27] that this
unstable particle is not an independent state of the Hilbert space and that the optical
theorem is satisfied, as long as the dressed propagator is used, without including it
as a final state in the total cross section. In that familiar particular case, it is easy
to see that (19) holds in the A1 approximation if we only include the final states
X = |'̄(q1)'(q2)i, corresponding to elastic scattering with final momenta qi. Then �̃(s)

is proportional to |M(s)
' |2. In general, the s-channel amplitude is

M(s)
'
(s, t) = �g2G(s+ i0+). (20)

This gives the quadratic s-channel contribution of the '̄' final state to the total cross
section

�̃(s)'̄'
'

(p1, p2) =
g4

8⇡

1

|⇧(s+ i0+) + ⌃(s+ i0+)|2 (21)
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Figure 2: Diagram contributing to M' with dressed A propagator in the s channel; the
cut extracts the discontinuity across the real axis.

the same diagrams) to the cross section. The A1 approximation actually violates the
optical theorem, which requires including box and vertex subdiagrams and also higher
loops. But we can get away with it by considering instead a partial optical theorem
involving only the contribution M(s)

' to the amplitude, given in this approximation by
the s-channel diagram displayed in Fig. 2, and restricting the number of particles in the
final state.

Let M'(s, t) = M ('̄(p1)'(p2) ! '̄(p3)'(p4)), with s = (p1+p2)2 and t = (p1�p3)2

the Mandelstam variables, be the on-shell amplitude of the process. The total cross
section with initial state '̄(p1)'(p2) is proportional to

�̃'(p1, p2) =
X

X

Z
d⇧X(2⇡)

4�(4)(p1 + p2 � pX)|M('̄(p1)'(p2) ! X)|2, (17)

with X any possible final state and d⇧X the corresponding Lorentz invariant phase
space measure. The optical theorem for this amplitude is the statement

ImM'(s, 0) =
1

2
�̃'(p1, p2). (18)

We concentrate on the partial optical theorem

ImM(s)
'
(s, 0) =

1

2
�̃(s)
'
(p1, p2), (19)

where �̃(s) refers to contributions to the total cross section mediated by the dressed
A propagator in the s channel. When A creates only one particle in the free theory,
this particle is unstable in the interacting theory. Veltman has shown in [27] that this
unstable particle is not an independent state of the Hilbert space and that the optical
theorem is satisfied, as long as the dressed propagator is used, without including it
as a final state in the total cross section. In that familiar particular case, it is easy
to see that (19) holds in the A1 approximation if we only include the final states
X = |'̄(q1)'(q2)i, corresponding to elastic scattering with final momenta qi. Then �̃(s)

is proportional to |M(s)
' |2. In general, the s-channel amplitude is

M(s)
'
(s, t) = �g2G(s+ i0+). (20)

This gives the quadratic s-channel contribution of the '̄' final state to the total cross
section

�̃(s)'̄'
'

(p1, p2) =
g4

8⇡

1

|⇧(s+ i0+) + ⌃(s+ i0+)|2 (21)

9
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Figure 2: Diagram contributing to M' with dressed A propagator in the s channel; the
cut extracts the discontinuity across the real axis.

the same diagrams) to the cross section. The A1 approximation actually violates the
optical theorem, which requires including box and vertex subdiagrams and also higher
loops. But we can get away with it by considering instead a partial optical theorem
involving only the contribution M(s)

' to the amplitude, given in this approximation by
the s-channel diagram displayed in Fig. 2, and restricting the number of particles in the
final state.

Let M'(s, t) = M ('̄(p1)'(p2) ! '̄(p3)'(p4)), with s = (p1+p2)2 and t = (p1�p3)2

the Mandelstam variables, be the on-shell amplitude of the process. The total cross
section with initial state '̄(p1)'(p2) is proportional to

�̃'(p1, p2) =
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4�(4)(p1 + p2 � pX)|M('̄(p1)'(p2) ! X)|2, (17)

with X any possible final state and d⇧X the corresponding Lorentz invariant phase
space measure. The optical theorem for this amplitude is the statement

ImM'(s, 0) =
1

2
�̃'(p1, p2). (18)

We concentrate on the partial optical theorem

ImM(s)
'
(s, 0) =

1

2
�̃(s)
'
(p1, p2), (19)

where �̃(s) refers to contributions to the total cross section mediated by the dressed
A propagator in the s channel. When A creates only one particle in the free theory,
this particle is unstable in the interacting theory. Veltman has shown in [27] that this
unstable particle is not an independent state of the Hilbert space and that the optical
theorem is satisfied, as long as the dressed propagator is used, without including it
as a final state in the total cross section. In that familiar particular case, it is easy
to see that (19) holds in the A1 approximation if we only include the final states
X = |'̄(q1)'(q2)i, corresponding to elastic scattering with final momenta qi. Then �̃(s)

is proportional to |M(s)
' |2. In general, the s-channel amplitude is

M(s)
'
(s, t) = �g2G(s+ i0+). (20)

This gives the quadratic s-channel contribution of the '̄' final state to the total cross
section

�̃(s)'̄'
'

(p1, p2) =
g4

8⇡

1

|⇧(s+ i0+) + ⌃(s+ i0+)|2 (21)
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and

ImM(s)
'
(s, 0) = g2⇡�(s)

= g2
✓
Im⇧(s+ i0+) +

g2

16⇡

◆
1

|⇧(s+ i0+) + ⌃(s+ i0+)|2 . (22)

We see that the partial optical theorem (19) is satisfied, including only the '̄' final
state, if and only if Im⇧(s + i0+) = 0. Therefore, it is satisfied in the discrete case,
just as for the case of a single unstable particle,7 but not in the continuum case. For
the latter, there is an excess in the imaginary part:

� ImM(s)
'
(s, 0) =

g2 Im⇧(s+ i0+)

|⇧(s+ i0+) + ⌃(s+ i0+)|2 > 0. (23)

In a unitary theory, this excess must correspond to other possible final states. One could
think of final states formed by two or more ''̄ pairs, but these processes correspond
to cuts in multi-loop diagrams beyond the A1 approximation. This means that in the
continuous case of the interacting theory, even if the states created by A can decay into
'̄', there exist asymptotic states that are not superpositions of multi-particle states of
' and '̄. This di↵ers drastically from the familiar situation of an unstable particle, and,
more generally, from the discrete case.8 Our main purpose in this paper is identifying
the extra asymptotic states within the e↵ective-theory description and understanding
their production mechanism. We also want to understand the discontinuity in the
continuum limit of (23): � ImM(s)

' (s, 0) vanishes for arbitrarily small values of the
spacings �m2

n
= m2

n+1 �m2
n
, but not in the continuum. We will throw light on these

issues by studying in detail the time evolution of the state created by the field A.

4 Energy eigenstates

In order to study the time evolution of the states in the theory, we first identify a basis
of generalized energy eigenvectors for both the free and the complete Hamiltonians,
using the corresponding spectral functions.

4.1 Free Hamiltonian

The Fock vacuum |0i is the (unique) eigenstate of H0 with vanishing eigenvalue. It is
also an eigenstate of ~P with vanishing eigenvalues. The Hilbert space of the theory

7
When g = 0 the infinitesimal imaginary parts in the discrete case give rise to the delta functions

in �
(0)

, but this does not happen when g 6= 0 because then the denominator does not vanish for any

real values of s.
8
In fact, in strict perturbation theory to order g

2
, the optical theorem is satisfied if we include the

particles or unparticle stu↵ created by A as a final state and calculate the cross section with Georgi’s

formula (which works both in the discrete and continuous case at the tree level):

�̃('̄' ! A)(p1, p2) =

Z
d
4
pA

(2⇡)4
✓(EA)2⇡�

(0)
(p

2
A)(2⇡)

4
�
(4)

(p1 + p2 � pA)g
2
+O(g

4
)

= 2g
2
⇡�

(0)
(s) +O(g

4
). (24)

This is not surprising because the particles or unparticle stu↵ in the final state of this process are

stable to order g
2
, and thus have asymptotic states in both the discrete and the continuous cases. But

all this is an artifact of strict perturbation theory.
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and

ImM(s)
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Im⇧(s+ i0+) +

g2

16⇡

◆
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|⇧(s+ i0+) + ⌃(s+ i0+)|2 . (22)

We see that the partial optical theorem (19) is satisfied, including only the '̄' final
state, if and only if Im⇧(s + i0+) = 0. Therefore, it is satisfied in the discrete case,
just as for the case of a single unstable particle,7 but not in the continuum case. For
the latter, there is an excess in the imaginary part:

� ImM(s)
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(s, 0) =

g2 Im⇧(s+ i0+)

|⇧(s+ i0+) + ⌃(s+ i0+)|2 > 0. (23)

In a unitary theory, this excess must correspond to other possible final states. One could
think of final states formed by two or more ''̄ pairs, but these processes correspond
to cuts in multi-loop diagrams beyond the A1 approximation. This means that in the
continuous case of the interacting theory, even if the states created by A can decay into
'̄', there exist asymptotic states that are not superpositions of multi-particle states of
' and '̄. This di↵ers drastically from the familiar situation of an unstable particle, and,
more generally, from the discrete case.8 Our main purpose in this paper is identifying
the extra asymptotic states within the e↵ective-theory description and understanding
their production mechanism. We also want to understand the discontinuity in the
continuum limit of (23): � ImM(s)

' (s, 0) vanishes for arbitrarily small values of the
spacings �m2

n
= m2

n+1 �m2
n
, but not in the continuum. We will throw light on these

issues by studying in detail the time evolution of the state created by the field A.

4 Energy eigenstates

In order to study the time evolution of the states in the theory, we first identify a basis
of generalized energy eigenvectors for both the free and the complete Hamiltonians,
using the corresponding spectral functions.

4.1 Free Hamiltonian

The Fock vacuum |0i is the (unique) eigenstate of H0 with vanishing eigenvalue. It is
also an eigenstate of ~P with vanishing eigenvalues. The Hilbert space of the theory

7
When g = 0 the infinitesimal imaginary parts in the discrete case give rise to the delta functions

in �
(0)

, but this does not happen when g 6= 0 because then the denominator does not vanish for any

real values of s.
8
In fact, in strict perturbation theory to order g

2
, the optical theorem is satisfied if we include the

particles or unparticle stu↵ created by A as a final state and calculate the cross section with Georgi’s

formula (which works both in the discrete and continuous case at the tree level):

�̃('̄' ! A)(p1, p2) =

Z
d
4
pA

(2⇡)4
✓(EA)2⇡�

(0)
(p

2
A)(2⇡)

4
�
(4)

(p1 + p2 � pA)g
2
+O(g

4
)

= 2g
2
⇡�

(0)
(s) +O(g

4
). (24)

This is not surprising because the particles or unparticle stu↵ in the final state of this process are

stable to order g
2
, and thus have asymptotic states in both the discrete and the continuous cases. But

all this is an artifact of strict perturbation theory.
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Unitary theory ⇒ missing final states in continuum

and

ImM(s)
'
(s, 0) = g2⇡�(s)

= g2
✓
Im⇧(s+ i0+) +

g2

16⇡

◆
1

|⇧(s+ i0+) + ⌃(s+ i0+)|2 . (22)

We see that the partial optical theorem (19) is satisfied, including only the '̄' final
state, if and only if Im⇧(s + i0+) = 0. Therefore, it is satisfied in the discrete case,
just as for the case of a single unstable particle,7 but not in the continuum case. For
the latter, there is an excess in the imaginary part:

� ImM(s)
'
(s, 0) =

g2 Im⇧(s+ i0+)

|⇧(s+ i0+) + ⌃(s+ i0+)|2 > 0. (23)

In a unitary theory, this excess must correspond to other possible final states. One could
think of final states formed by two or more ''̄ pairs, but these processes correspond
to cuts in multi-loop diagrams beyond the A1 approximation. This means that in the
continuous case of the interacting theory, even if the states created by A can decay into
'̄', there exist asymptotic states that are not superpositions of multi-particle states of
' and '̄. This di↵ers drastically from the familiar situation of an unstable particle, and,
more generally, from the discrete case.8 Our main purpose in this paper is identifying
the extra asymptotic states within the e↵ective-theory description and understanding
their production mechanism. We also want to understand the discontinuity in the
continuum limit of (23): � ImM(s)

' (s, 0) vanishes for arbitrarily small values of the
spacings �m2

n
= m2

n+1 �m2
n
, but not in the continuum. We will throw light on these

issues by studying in detail the time evolution of the state created by the field A.

4 Energy eigenstates

In order to study the time evolution of the states in the theory, we first identify a basis
of generalized energy eigenvectors for both the free and the complete Hamiltonians,
using the corresponding spectral functions.

4.1 Free Hamiltonian

The Fock vacuum |0i is the (unique) eigenstate of H0 with vanishing eigenvalue. It is
also an eigenstate of ~P with vanishing eigenvalues. The Hilbert space of the theory

7
When g = 0 the infinitesimal imaginary parts in the discrete case give rise to the delta functions

in �
(0)

, but this does not happen when g 6= 0 because then the denominator does not vanish for any

real values of s.
8
In fact, in strict perturbation theory to order g

2
, the optical theorem is satisfied if we include the

particles or unparticle stu↵ created by A as a final state and calculate the cross section with Georgi’s

formula (which works both in the discrete and continuous case at the tree level):

�̃('̄' ! A)(p1, p2) =

Z
d
4
pA

(2⇡)4
✓(EA)2⇡�

(0)
(p

2
A)(2⇡)

4
�
(4)

(p1 + p2 � pA)g
2
+O(g

4
)

= 2g
2
⇡�

(0)
(s) +O(g

4
). (24)

This is not surprising because the particles or unparticle stu↵ in the final state of this process are

stable to order g
2
, and thus have asymptotic states in both the discrete and the continuous cases. But

all this is an artifact of strict perturbation theory.
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Unitary theory ⇒ missing final states in continuum

• Not multi-𝜑 particle states 
• Must be states in the hidden sector 
• Missed in the EFT? ➙ Not really! A interpolating field

Mysteries (from EFT point of view):
Nature of hidden asymptotic states 
A does decay… but not completely in continuum!
Decay law? 
Discretum to continuum transition: not continuous

and

ImM(s)
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(s, 0) = g2⇡�(s)

= g2
✓
Im⇧(s+ i0+) +

g2

16⇡

◆
1

|⇧(s+ i0+) + ⌃(s+ i0+)|2 . (22)

We see that the partial optical theorem (19) is satisfied, including only the '̄' final
state, if and only if Im⇧(s + i0+) = 0. Therefore, it is satisfied in the discrete case,
just as for the case of a single unstable particle,7 but not in the continuum case. For
the latter, there is an excess in the imaginary part:

� ImM(s)
'
(s, 0) =

g2 Im⇧(s+ i0+)

|⇧(s+ i0+) + ⌃(s+ i0+)|2 > 0. (23)

In a unitary theory, this excess must correspond to other possible final states. One could
think of final states formed by two or more ''̄ pairs, but these processes correspond
to cuts in multi-loop diagrams beyond the A1 approximation. This means that in the
continuous case of the interacting theory, even if the states created by A can decay into
'̄', there exist asymptotic states that are not superpositions of multi-particle states of
' and '̄. This di↵ers drastically from the familiar situation of an unstable particle, and,
more generally, from the discrete case.8 Our main purpose in this paper is identifying
the extra asymptotic states within the e↵ective-theory description and understanding
their production mechanism. We also want to understand the discontinuity in the
continuum limit of (23): � ImM(s)

' (s, 0) vanishes for arbitrarily small values of the
spacings �m2

n
= m2

n+1 �m2
n
, but not in the continuum. We will throw light on these

issues by studying in detail the time evolution of the state created by the field A.

4 Energy eigenstates

In order to study the time evolution of the states in the theory, we first identify a basis
of generalized energy eigenvectors for both the free and the complete Hamiltonians,
using the corresponding spectral functions.

4.1 Free Hamiltonian

The Fock vacuum |0i is the (unique) eigenstate of H0 with vanishing eigenvalue. It is
also an eigenstate of ~P with vanishing eigenvalues. The Hilbert space of the theory

7
When g = 0 the infinitesimal imaginary parts in the discrete case give rise to the delta functions

in �
(0)

, but this does not happen when g 6= 0 because then the denominator does not vanish for any

real values of s.
8
In fact, in strict perturbation theory to order g

2
, the optical theorem is satisfied if we include the

particles or unparticle stu↵ created by A as a final state and calculate the cross section with Georgi’s

formula (which works both in the discrete and continuous case at the tree level):

�̃('̄' ! A)(p1, p2) =

Z
d
4
pA

(2⇡)4
✓(EA)2⇡�

(0)
(p

2
A)(2⇡)

4
�
(4)

(p1 + p2 � pA)g
2
+O(g

4
)

= 2g
2
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(0)
(s) +O(g

4
). (24)

This is not surprising because the particles or unparticle stu↵ in the final state of this process are

stable to order g
2
, and thus have asymptotic states in both the discrete and the continuous cases. But

all this is an artifact of strict perturbation theory.
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Scattering in real life

connected  
interaction region

production region detection region

or

Wave packets ➙ Field smearing

with K the modified Bessel function of the second kind. We will refer to the smearing
with Eq. (82) f⌧ as a Cauchy smearing, because the square of its Fourier transform is a
Cauchy distribution (that is, a Breit-Wigner). For any f⌧ , we define the time-smeared
field

A⌧ (t, ~x) =

Z 1

�1
dt0f⌧ (t� t0)A(t0, ~x). (83)

It can be checked that A⌧ (t, ~x) = eitH0A⌧ (0, ~x)e�itH0 . This smeared field creates at
t = 0 a state

A⌧ (0, ~x)|0i =
Z

d3p

(2⇡)3
e�i~x·~p

Z 1

0

dµ2⇢(µ2)Z
1
2
µ e�

1
2 ⌧

2
!
2
µ,p

1

2!µ,p

|µ, ~pi0

=:

Z
d3p

(2⇡)3
e�i~x·~p|A0⌧

~p
i. (84)

The transition amplitude is then

hA0⌧
~p
|A0⌧

~q
, ti = (2⇡)3�3(~p� ~q)

Z 1

0

dµ2e�it!µ,p
�(0)
⌧ (µ2, ~p2)

2!µ,p

, (85)

with
�(0)
⌧
(µ2, ~p2) = f̃⌧ (!µ,p)�

(0)(µ2), (86)

where f̃⌧ is the square of the Fourier transform of f⌧ . For the Gaussian smearing,

f̃⌧ (E) = e�E
2
⌧
2

(87)

while for the Cauchy smearing,

f̃⌧ (E) =
1

1 + E2⌧ 2
. (88)

The generalized spectral function �(0)
⌧ is not Lorentz invariant, as a consequence of our

non-covariant smearing. Furthermore, we can write

hA0⌧
~p
|A0⌧

~q
, ti = (2⇡)3�3(~p� ~q)iG̃(0)

⌧
(t, ~p), (89)

where for the Gaussian smearing we have

iG̃(0)
⌧
(t, ~p) =

Z 1

�1

dE

2⇡
e�E

2
⌧
2 ⇥
F⌧ (t, E)Re(iG(0)(E, ~p)) + iH⌧ (t, E)Im(iG(0)(E, ~p))

⇤
,

(90)

where

F⌧ (t, E) = cos(Et), (91)

H⌧ (t, E) =
1

2


e�iEtErf

✓
t

2⌧
� iE⌧

◆
+ eiEtErf

✓
t

2⌧
+ iE⌧

◆�
, (92)

with Erf the error function. When t � ⌧ an excellent approximation to (90) is given
by the time smearing of the propagator,

iG̃(0)
⌧
(t, ~p) ' i

Z 1

�1

dE

2⇡
e�iEt�E

2
⌧
2
G(0)(E, ~p), t � ⌧. (93)

19



Plane waves

J
H
E
P
0
5
(
2
0
2
4
)
1
5
8

d iscre te , p lane wave

con tinuous , p lane wave

2 4 6 8 1 0
s

0 .0 1

0 .0 2

0 .0 3

0 .0 4

0 .0 5

!!s ,t "

d iscre te , incoheren t

d iscre te , coheren t

con tinuous , coheren t

2 4 6 8 1 0
s

0 .0 1

0 .0 2

0 .0 3

0 .0 4

0 .0 5

!!s ,t "

Figure 16. Probability P(s, t) in discrete (blue solid lines) and continuous cases (black dotted lines)
of ϕ̄ϕ → ϕ̄ϕ scattering as a function of the invariant mass s for fixed squared momentum transfer
t = −0.1µ2

0. Left panel: plane waves. Right panel: wave packets with Gaussian overlap function of
width 0.1µ0 (see eq. (8.7)) and incoherent Gaussian smearing of the same width (in discrete case only).
We have set g = 3, µ0 = 1, L = 40 and M = 1.

The scenario with a single interaction region corresponds to the case in which all g1, g2,
g′
1 and g′

2 have a strong overlap in a common space-time domain. Then, all the cross diagrams
in M will contribute to the amplitude of the physical process. The s-channel contribution to
the amplitude at leading order (with resummed A propagator) is

〈g′|S|g〉(s) = − ig2
∫ ( 2∏

i,j=1

d3pi
(2π)32ω0,pi

d3qj
(2π)32ω0,qj

g̃i($pi)[g̃′
j($qj)]∗

)

G (ω0,p1 + ω0,p2 , $p1 + $p2)

× (2π)4δ(3)($p1 + $p2 − $q1 − $q2)δ(ω0,p1 + ω0,p2 − ω0,q1 − ω0,q2). (8.3)

The t-channel contribution is the same, but with $p2 → −$q2 in the arguments of G. Let us
consider in particular the standard situation with g̃i and g̃′

j peaked at $pi and $qj , respectively.
Then, (peak) energy and momentum are approximately conserved: a non-vanishing amplitude
requires $p1+$p2 & $q1+$q2, ω0,p1+ω0,p2 & ω0,q1+ω0,q2 . Nevertheless, in the case of compressed
spectra, the finite spreads around the peak values can be very important. They must be
taken into account whenever the energy-momentum uncertainties are larger than the mass
spacing [17, 39]. Indeed, as shown on the left panel of figure 16, the cross section oscillates
strongly with the invariant mass s = (ω0,p1 + ω0,p2)2 − ($p1 + $p2)2 for discrete compressed
spectra in the plane-wave limit. Here we have taken width mixing into account [40]. The
effect on the cross section of a finite resolution in the wave functions is twofold. On the one
hand, the oscillations are averaged out. On the other, the destructive interference between
contributions with different momenta and energies gives rise to a suppression of the cross
section. As a result of these two effects, for large enough uncertainties the resulting cross
section for a compressed spectrum precisely mimics the one for the corresponding continuous
spectrum. This is illustrated on the right panel of figure 16 (black dotted and blue solid lines).
We also plot there the probability resulting from an incoherent smearing of the plane-wave
probability in the discrete case (red dashed line). In this case, the oscillations are only
averaged, with no suppression. The significant difference of the coherent and incoherent
smearings can be understood from our previous analysis of time evolution. For incoherent
smearing, the amplitude is calculated in the standard way with plane waves and the only
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Figure 2: Plots of the production cross section (in arbitrary units) for seven nearby Higgses equally coupled
to SM gauge bosons: the naive Breit-Wigner (blue-dashed) bump reduces to a row of seven dwarfs when
the exact mixing (red-solid) is taken into account. The mass of the first resonance is fixed to 400 GeV, the
splitting between the six Higgses respectively 10 and 5 GeV.

numerically negligible. The kinetic function for a vector V , in generic ξ-gauge, is

Kµν,0 = gµν(p
2 −M2

0 )− pµpν

(
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ξ
− 1

)

=

(
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. (3.1)

The propagator, is then defined as the inverse of the kinetic term:
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=
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0

. (3.2)

The first term of the propagator has a gauge-independent pole at the V mass, while the
other part has a gauge-dependent pole, which will cancel the pole given by the Goldstone
boson (whose mass is indeed ξM2

0 ). Therefore, at the pole we can neglect the contribution
of the second term, and the propagator simplifies to

i∆µν,0 "
(

gµν −
pµpν
p2

)

−i

p2 −M2
0

; (3.3)

which is equal to a Lorentz tensor times a scalar propagator.
Factorising out the Lorentz structure, loop corrections can be parameterised as

Πµν = ΠT gµν + ΠL pµpν , (3.4)

so that

Kµν,0 + Πµν =

(
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(p2 −M2
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pµpν
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(

p2
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)

. (3.5)
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Figure 16. Probability P(s, t) in discrete (blue solid lines) and continuous cases (black dotted lines)
of ϕ̄ϕ → ϕ̄ϕ scattering as a function of the invariant mass s for fixed squared momentum transfer
t = −0.1µ2

0. Left panel: plane waves. Right panel: wave packets with Gaussian overlap function of
width 0.1µ0 (see eq. (8.7)) and incoherent Gaussian smearing of the same width (in discrete case only).
We have set g = 3, µ0 = 1, L = 40 and M = 1.

The scenario with a single interaction region corresponds to the case in which all g1, g2,
g′
1 and g′

2 have a strong overlap in a common space-time domain. Then, all the cross diagrams
in M will contribute to the amplitude of the physical process. The s-channel contribution to
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The t-channel contribution is the same, but with $p2 → −$q2 in the arguments of G. Let us
consider in particular the standard situation with g̃i and g̃′

j peaked at $pi and $qj , respectively.
Then, (peak) energy and momentum are approximately conserved: a non-vanishing amplitude
requires $p1+$p2 & $q1+$q2, ω0,p1+ω0,p2 & ω0,q1+ω0,q2 . Nevertheless, in the case of compressed
spectra, the finite spreads around the peak values can be very important. They must be
taken into account whenever the energy-momentum uncertainties are larger than the mass
spacing [17, 39]. Indeed, as shown on the left panel of figure 16, the cross section oscillates
strongly with the invariant mass s = (ω0,p1 + ω0,p2)2 − ($p1 + $p2)2 for discrete compressed
spectra in the plane-wave limit. Here we have taken width mixing into account [40]. The
effect on the cross section of a finite resolution in the wave functions is twofold. On the one
hand, the oscillations are averaged out. On the other, the destructive interference between
contributions with different momenta and energies gives rise to a suppression of the cross
section. As a result of these two effects, for large enough uncertainties the resulting cross
section for a compressed spectrum precisely mimics the one for the corresponding continuous
spectrum. This is illustrated on the right panel of figure 16 (black dotted and blue solid lines).
We also plot there the probability resulting from an incoherent smearing of the plane-wave
probability in the discrete case (red dashed line). In this case, the oscillations are only
averaged, with no suppression. The significant difference of the coherent and incoherent
smearings can be understood from our previous analysis of time evolution. For incoherent
smearing, the amplitude is calculated in the standard way with plane waves and the only
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of ϕ̄ϕ → ϕ̄ϕ scattering as a function of the invariant mass s for fixed squared momentum transfer
t = −0.1µ2

0. Left panel: plane waves. Right panel: wave packets with Gaussian overlap function of
width 0.1µ0 (see eq. (8.7)) and incoherent Gaussian smearing of the same width (in discrete case only).
We have set g = 3, µ0 = 1, L = 40 and M = 1.

The scenario with a single interaction region corresponds to the case in which all g1, g2,
g′
1 and g′

2 have a strong overlap in a common space-time domain. Then, all the cross diagrams
in M will contribute to the amplitude of the physical process. The s-channel contribution to
the amplitude at leading order (with resummed A propagator) is
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The t-channel contribution is the same, but with $p2 → −$q2 in the arguments of G. Let us
consider in particular the standard situation with g̃i and g̃′

j peaked at $pi and $qj , respectively.
Then, (peak) energy and momentum are approximately conserved: a non-vanishing amplitude
requires $p1+$p2 & $q1+$q2, ω0,p1+ω0,p2 & ω0,q1+ω0,q2 . Nevertheless, in the case of compressed
spectra, the finite spreads around the peak values can be very important. They must be
taken into account whenever the energy-momentum uncertainties are larger than the mass
spacing [17, 39]. Indeed, as shown on the left panel of figure 16, the cross section oscillates
strongly with the invariant mass s = (ω0,p1 + ω0,p2)2 − ($p1 + $p2)2 for discrete compressed
spectra in the plane-wave limit. Here we have taken width mixing into account [40]. The
effect on the cross section of a finite resolution in the wave functions is twofold. On the one
hand, the oscillations are averaged out. On the other, the destructive interference between
contributions with different momenta and energies gives rise to a suppression of the cross
section. As a result of these two effects, for large enough uncertainties the resulting cross
section for a compressed spectrum precisely mimics the one for the corresponding continuous
spectrum. This is illustrated on the right panel of figure 16 (black dotted and blue solid lines).
We also plot there the probability resulting from an incoherent smearing of the plane-wave
probability in the discrete case (red dashed line). In this case, the oscillations are only
averaged, with no suppression. The significant difference of the coherent and incoherent
smearings can be understood from our previous analysis of time evolution. For incoherent
smearing, the amplitude is calculated in the standard way with plane waves and the only
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Time evolution: free theory

At time t=0, A creates from the vacuum a particular one-particle state

6 Time evolution for a free field

We have now all the tools we need to study the time evolution of states associated to
the field A. We will derive general results and will illustrate them using the holographic
theory presented in section 5. In this section we consider the free theory for the field
A, that is, we set g = 0 in (1) and neglect '. As we will see, already in this case the
time evolution is non-trivial. The two-point function in this free theory is [WRITE
BEFORE OR REMOVE?]

h0|TA(x)A(0)|0i =
Z

d4p

2⇡4
e�ixpiG(0)(p2 + i0+). (73)

At time t = 0 the field A(0, ~x) creates from the vacuum a one-particle state, which can
be expanded in the |µ, ~pi0 basis:

A(0, ~x)|0i =
Z 1

0

dµ2⇢(µ2)

Z
d3p

(2⇡)3
1

2!µ,p

0hµ, ~p|A(0, ~x)|0i|µ, ~pi0

=

Z 1

0

dµ2⇢(µ2)Z
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µ

Z
d3p

(2⇡)3
1

2!µ,p

e�i~x·~p|µ, ~pi0
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Z
d3p
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e�i~x·~p

Z 1

0

dµ2⇢(µ2)Z
1
2
µ

1

2!µ,p

|µ, ~pi0

=:

Z
d3p

(2⇡)3
e�i~x·~p|A0

~p
i. (74)

The state |A0
~p
i has well-defined spatial momentum, but not well-defined energy. There-

fore, it evolves non-trivially in time:

|A0
~p
, ti = e�itH0 |A0

~p
i

=

Z 1

0

dµ2⇢(µ2)Z
1
2
µ

1

2!µ,p

e�it!µ,p |µ, ~pi. (75)

The overlap with the initial state is given by

hA0
~p
|A0

~q
, ti = (2⇡)3�3(~p� ~q)

Z 1

0

dµ2e�it!µ,p
⇢(µ2)Zµ

2!µ,p

= (2⇡)3�3(~p� ~q)

Z 1

0

dµ2e�it!µ,p
�(0)(µ2)

2!µ,p

, (76)

where we have used the orthogonality relation (26) or (27) and the definition (30). Note
that hA0

~p
|A0

~q
,�ti = hA0

~p
|A0

~q
, ti⇤. This overlap is nothing but the two-point function in

the time-momentum representation: for t � 0,
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, ti =

Z
d3x

Z
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= (2⇡)3�3(~p� ~q)iG̃(0)(t, ~p), (77)
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Z 1

0

dµ2⇢(µ2)Z
1
2
µ

Z
d3p

(2⇡)3
1

2!µ,p

e�i~x·~p|µ, ~pi0

=

Z
d3p

(2⇡)3
e�i~x·~p

Z 1

0

dµ2⇢(µ2)Z
1
2
µ

1

2!µ,p

|µ, ~pi0

=:

Z
d3p

(2⇡)3
e�i~x·~p|A0

~p
i. (74)

The state |A0
~p
i has well-defined spatial momentum, but not well-defined energy. There-

fore, it evolves non-trivially in time:

|A0
~p
, ti = e�itH0 |A0

~p
i

=

Z 1

0

dµ2⇢(µ2)Z
1
2
µ

1

2!µ,p

e�it!µ,p |µ, ~pi. (75)

The overlap with the initial state is given by

hA0
~p
|A0

~q
, ti = (2⇡)3�3(~p� ~q)

Z 1

0

dµ2e�it!µ,p
⇢(µ2)Zµ

2!µ,p

= (2⇡)3�3(~p� ~q)

Z 1

0

dµ2e�it!µ,p
�(0)(µ2)

2!µ,p

, (76)

where we have used the orthogonality relation (26) or (27) and the definition (30). Note
that hA0

~p
|A0

~q
,�ti = hA0

~p
|A0

~q
, ti⇤. This overlap is nothing but the two-point function in

the time-momentum representation: for t � 0,

hA0
~p
|A0

~q
, ti =

Z
d3x

Z
d3y e�i~x·~pei~y·~qh0|A(0, ~x)e�itH0A(0, ~y)|0i

=

Z
d3x

Z
d3y e�i~x·~pei~y·~qh0|A(t, ~x)A(0, ~y)|0i

=

Z
d3x

Z
d3y e�i~x·~pei~y·~qh0|TA(t, ~x)A(0, ~y)|0i

=

Z
d3x

Z
d3y e�i~x·~pei~y·~qh0|TA(t, ~x� ~y)A(0,~0)|0i

= (2⇡)3�3(~p� ~q)iG̃(0)(t, ~p), (77)
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Overlap with initial state:

Survival probability:

The reason is that in this case the region with opposite time ordering has negligible
contribution to the smearing. Using the symmetry properties of this function it is easy
to check that H⌧ , like F⌧ , is real. Moreover, H⌧ (0, E) = 0, so

iG̃(0)
⌧
(0, ~p) =

Z 1

�1

dE

2⇡
e�E

2
⌧
2
Re(iG(0)(E, ~p)), (94)

which is real and positive.13 This property is already apparent in Eq. (85) for arbitrary
f⌧ . We can thus define a normalized inital state

|A0⌧
h
i =

Z
d3p

(2⇡)3
h(~p)

1q
iG̃(0)

⌧ (0, ~p)
|A0⌧

~p
i

=:

Z
d3p

(2⇡)3
h(~p)|Ā0⌧

~p
i, (95)

where h is a wave function with
Z

d3p

(2⇡)3
|h(~p)|2 = 1. (96)

The survival probability of this state after a time t has elapsed is given by

P(t) = |hA0⌧
h
|A0⌧

h
, ti|2

=

�����

Z
d3p

(2⇡)3
|h(~p)|2 G̃

(0)
⌧ (t, ~p)

G̃(0)
⌧ (0, ~p)

�����

2

(97)

In particular, if we consider h strongly peaked at ~p0, we can approximate |h(~p)|2 '
(2⇡)3�3(~p� ~p0), and hence

P(t) '

�����
G̃(0)

⌧ (t, ~p0)

G̃(0)
⌧ (0, ~p0)

�����

2

=: N�2|G̃(0)
⌧
(t, ~p0)|2. (98)

For simplicity we consider such a wave function h in the following (dropping the
subindex in ~p0), unless otherwise stated.

Let us next discuss some basic features of the time dependence of the survival
probability in the free theory. We consider t � 0 in this discussion. At short times
we can expand the integrand in the right-hand side of Eq. (90) in powers of t, taking
advantage of the exponential damping at large energies. Then the linear term in t
cancels out and we find in all cases

P(t) = 1� t2

t2
Z

+O(t4), (99)

with
tZ =

⇥
hA0⌧

h
|(H0)

2|A0⌧
h
i � hA0⌧

h
|H0|A0⌧

h
i2
⇤� 1

2 (100)

the so-called Zeno time, which is the inverse of the energy uncertainty in the initial
state. In particular, the rate R(t) = dP(t)/dt vanishes at t = 0. This non-exponential
behaviour at short times is a very general behaviour of quantum systems. In our e↵ective
field theory the smearing is crucial for the series expansion at t = 0 to be valid.

The evolution at later times depends crucially on the nature of the spectrum.

13
This is not true with the approximation (93), which is not good at t = 0.
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For the particular case with one point on the UV boundary, we find

G(p2; 0, z) = K(p2, z)
Π(p2) + Σ(p2) , (5.29)

which generalizes our previous result for z = z′ = 0. It can be readily checked that the free
5D propagator has the spectral representation

G(0)(p2; z, z′) =
∫ ∞

0
dµ2σ(0)(µ2)fµ(z)fµ(z

′)
p2 − µ2 . (5.30)

We will use the functions Π in eqs. (5.18) and (5.19) in our explicit calculations and
plots below.

6 Time evolution for a free field

We have now all the tools we need to study the time evolution of states associated to the
field A. We will derive general results and will illustrate them using the holographic theory
presented in section 5. In this section we consider the free theory for the field A, that is,
we set g = 0 in (2.1) and neglect ϕ. As we will see, already in this case the time evolution
is non-trivial. The two-point function in this free theory is

〈0|TA(x)A(0)|0〉 =
∫

d4p

2π4 e
−ixpiG(0)(p2 + i0+). (6.1)

At time t = 0 the field A(0, $x) creates from the vacuum a one-particle state, which can
be expanded in the |µ, $p〉0 basis:

A(0, $x)|0〉 =
∫ ∞

0
dµ2ρ(µ2)

∫
d3p

(2π)3
1

2ωµ,p
0〈µ, $p|A(0, $x)|0〉|µ, $p〉0

=
∫ ∞

0
dµ2ρ(µ2)Z

1
2
0µ

∫
d3p

(2π)3
1

2ωµ,p
e−i!x·!p|µ, $p〉0

=
∫

d3p

(2π)3 e
−i!x·!p

∫ ∞

0
dµ2ρ(µ2)Z

1
2
0µ

1
2ωµ,p

|µ, $p〉0

=:
∫

d3p

(2π)3 e
−i!x·!p|A0

!p〉. (6.2)

The state |A0
!p〉 has well-defined spatial momentum, but not well-defined energy. Therefore,

it evolves non-trivially in time:

|A0
!p, t〉 = e−itH0 |A0

!p〉

=
∫ ∞

0
dµ2ρ(µ2)Z

1
2
0µ

1
2ωµ,p

e−itωµ,p |µ, $p〉. (6.3)

The overlap with the initial state is given by

〈A0
!p|A0

!q , t〉 = (2π)3δ3($p − $q)
∫ ∞

0
dµ2e−itωµ,p

ρ(µ2)Z0µ
2ωµ,p

= (2π)3δ3($p − $q)
∫ ∞

0
dµ2e−itωµ,p

σ(0)(µ2)
2ωµ,p

, (6.4)
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plots below.
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For the particular case with one point on the UV boundary, we find

G(p2; 0, z) = K(p2, z)
Π(p2) + Σ(p2) , (5.29)

which generalizes our previous result for z = z′ = 0. It can be readily checked that the free
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∫ ∞

0
dµ2σ(0)(µ2)fµ(z)fµ(z
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We will use the functions Π in eqs. (5.18) and (5.19) in our explicit calculations and
plots below.
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Figure 3: Survival probability of the state created by a free field for L = 2 (left) and
L = 10 (right). The inserted figure in the left panel is a zoom of the main plot in the
range of small t. We have considered g = 1, µ0 = 1, M = 10, and Gaussian smearing
with ⌧ = 0.1.

The relevance of these equations is that, for large de↵(⇢), the system stays most of the
time in states close to the equilibrium state ⇢. In particular,

hP(t)� 1

de↵(⇢)
it = hP(t)� Tr(⇢|A0⌧

h
ihA0⌧

h
|)it

 1

de↵(⇢)
, (105)

where the first identity follows from the calculation of the trace and in the second one
we have used a theorem about average expectation values in Ref. [?]. So, we expect
the time evolution of the system for large de↵(⇢) to be as follows: The system moves
away from the initial state and quickly reaches states close to the equilibrium state
⇢. In the case of evenly spaced !⌫,p the time scale for such equilibration is inversely
proportional to the splittings [?]. The system then fluctuates around the equilibrium
state, with larger fluctuations being more improbable than smaller ones. The average
recurrence time ⌧✏, in which the system goes from one state close to the initial state
(1 � P(t) < ✏) to another state close to the initial state (1 � P(t + ⌧✏) < ✏), grows
exponentially with de↵(⇢) [?]. Moreover, for t ⌧ 1/�!, with ! the largest gap between
consecutive !⌫,p (for terms in the sum with non-negligible contribution), the sum in ⌫
can be approximated by an integral over µ2 with a continuous interpolating function
�(0)
⌧ (µ2, ~p2). For such times, the survival probability follows closely the one in the theory

with the corresponding continuous spectrum, to be studied below.
When de↵(⇢) ! 1, the average survival probability vanishes and the recurrence

time is infinite. That is, in this limit the state asymptotically evolves inside a subspace
orthogonal to the initial state. This is actually the situation in the continuous case.
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For simplicity we consider such a wave function h in the following (dropping the subindex in
!p0), unless otherwise stated. Furthermore, although we will keep !p0 arbitrary in the equations,
in all the plots we will work in the reference frame with !p0 = 0.

Let us next discuss some basic features of the time dependence of the survival probability
in the free theory. We consider t ≥ 0 in this discussion. At short times we can expand the
integrand in the right-hand side of eq. (6.18) in powers of t, taking advantage of the exponential
damping at large energies. Then the linear term in t cancels out and we find in all cases

P(t) = 1 − t2

t2Z
+O(t4), (6.27)

with
tZ =

[
〈A0τ

h |(H0)2|A0τ
h 〉 − 〈A0τ

h |H0|A0τ
h 〉2

]− 1
2 (6.28)

the so-called Zeno time, which is the inverse of the energy uncertainty in the initial state. In
particular, the rate R(t) = dPsur(t)/dt vanishes at t = 0. This non-exponential behaviour
at short times is a very general behaviour of quantum systems. In our effective field theory
the smearing is crucial for the series expansion at t = 0 to be valid. The evolution at later
times depends crucially on the nature of the spectrum.

6.1 Discrete case

In the discrete case,

iG̃(0)
τ (t, !p0) =

∑

ν

αν,pe
−itων,p , (6.29)

with αν,p = 1
2ων

ZνHν f̃τ (ων,p). In the familiar case in which A creates only a single mode,
there is only one term in the sum and the survival amplitude is a pure phase. Indeed, in this
case the initial state is an eigenstate of the free Hamiltonian and thus stationary, so Psur(t) = 1
at all times. (In this case, (6.27) holds with infinite tZ .) In general, eq. (6.29) corresponds
to an oscillation of the state of the system into time-dependent linear combinations. For
just two modes of squared masses m2

1 and m2
2, the system undergoes Rabi oscillations of

frequency Ω = |
√
m2

2 + !p2 −
√
m2

1 + !p2|/2. The period thus increases for decreasing spacing
δm2 = m2

2 − m2
1 and approaches infinity when δm2 → 0. For a general discrete spectrum,

if the different eigenvalues ων,p have conmesurable ratios (a perfectly fine-tuned situation
for !p &= 0), then (6.29) is a Fourier series, and Psur(t) is periodic, with frequency equal to
the greatest common divisor of the ων,p. In the natural case in which some modes do not
have commensurable ratios, the survival probability is no longer periodic and the system
never goes back to the initial state. However, Psur(t) is almost periodic,18 with 1 − Psur(t)
arbitrarily small after a finite time t. This result, proven by Bocchieri and Loinger [31], is
the quantum analogue of the Poincaré recurrence theorem in classical mechanics. Given this
recurrent behaviour, it makes sense to study time averages 〈f(t)〉t = limT→∞

∫ T
0 dtf(t)/T .

18Almost periodic functions were introduced and studied by Harald Bohr [30]. They are complex functions
f satisfying the following property: for any ε > 0, the set Tε of translation numbers τε, such that |f(t+ τε) −
f(t)| < ε, is relatively dense in R; that is, a number Lε > 0 exists such that any interval of size Lε has at least
one element of Tε.
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For h strongly peaked19 at fixed momentum !p, the time average state of the system (assuming
the mass eigenvalues are non-degenerate) is the “equilibrium” mixed state

ρ := 〈|A0τ
h , t〉〈A0τ

h , t|〉t

= 1
δ(0)

∫
d3p

(2π)3
h(!p)

√
iG̃(0)

τ (0, !p)

∫
d3q

(2π)3
h(!q)∗

√
iG̃(0)

τ (0, !q)

∑

ν

Zν f̃τ (ων,p)
N4

ν (2ων,p)2
δ(!p2 − !q2)|ν, !p〉00〈ν, !q|,

(6.30)

where the volume factor δ(0) := δ(!p2 − !p2) has mass dimension -2. The normalization is such
that Tr(ρ) = 1. The corresponding effective dimension is defined as

deff(ρ) = 1
Tr(ρ2) , (6.31)

This is a measure of how many pure states contribute to the mixture, that is, of the number
of degrees of freedom that are explored by the time evolution. We find

deff(ρ) =

[∑
ν

ZνHν f̃τ (ων,p)
ων,p

]2

∑
ν

[
ZνHν f̃τ (ων,p)

ων,p

]2 . (6.32)

The relevance of these equations is that, for large deff(ρ), the system stays most of the time
in states close to the equilibrium state ρ. In particular,

〈Psur(t) − 1
deff(ρ)〉t = 〈Psur(t) − Tr(ρ|A0τ

h 〉〈A0τ
h |)〉t

≤ 1
deff(ρ) , (6.33)

where the first identity follows from the calculation of the trace and in the second one we
have used a theorem about average expectation values in ref. [32]. So, we expect the time
evolution of the system for large deff(ρ) to be as follows: the system moves away from the
initial state and quickly reaches states close to the equilibrium state ρ. In the case of evenly
spaced ων,p the time scale for such equilibration is inversely proportional to the splittings [33].
The system then fluctuates around the equilibrium state, with larger fluctuations being more
improbable than smaller ones. The average recurrence time τε, in which the system goes
from one state close to the initial state (1 − Psur(t) < ε) to another state close to the initial
state (1 − Psur(t+ τε) < ε), grows exponentially with deff(ρ) [34]. Moreover, for t % 1/∆ω,
with ω the largest gap between consecutive ων,p (for terms in the sum with non-negligible
contribution), the sum in ν can be approximated by an integral over µ2 with a continuous
interpolating function σ(0)τ (µ2, !p2). For such times, the survival probability follows closely the
one in the theory with the corresponding continuous spectrum, to be studied below. The
behaviour of the survival probability in the discrete case is illustrated in figure 3.

When deff(ρ) → ∞, the average survival probability vanishes and the recurrence time is
infinite. That is, in this limit the state asymptotically evolves inside a subspace orthogonal
to the initial state. This is actually the situation in the continuous case.

19More precisely, we assume that ωµ,p != ων,q when µ2 != ν2 in the momentum region where h(#p) and h(#q)
are both non-negligible.
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where the volume factor δ(0) := δ(!p2 − !p2) has mass dimension -2. The normalization is such
that Tr(ρ) = 1. The corresponding effective dimension is defined as

deff(ρ) = 1
Tr(ρ2) , (6.31)

This is a measure of how many pure states contribute to the mixture, that is, of the number
of degrees of freedom that are explored by the time evolution. We find
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The relevance of these equations is that, for large deff(ρ), the system stays most of the time
in states close to the equilibrium state ρ. In particular,

〈Psur(t) − 1
deff(ρ)〉t = 〈Psur(t) − Tr(ρ|A0τ

h 〉〈A0τ
h |)〉t

≤ 1
deff(ρ) , (6.33)

where the first identity follows from the calculation of the trace and in the second one we
have used a theorem about average expectation values in ref. [32]. So, we expect the time
evolution of the system for large deff(ρ) to be as follows: the system moves away from the
initial state and quickly reaches states close to the equilibrium state ρ. In the case of evenly
spaced ων,p the time scale for such equilibration is inversely proportional to the splittings [33].
The system then fluctuates around the equilibrium state, with larger fluctuations being more
improbable than smaller ones. The average recurrence time τε, in which the system goes
from one state close to the initial state (1 − Psur(t) < ε) to another state close to the initial
state (1 − Psur(t+ τε) < ε), grows exponentially with deff(ρ) [34]. Moreover, for t % 1/∆ω,
with ω the largest gap between consecutive ων,p (for terms in the sum with non-negligible
contribution), the sum in ν can be approximated by an integral over µ2 with a continuous
interpolating function σ(0)τ (µ2, !p2). For such times, the survival probability follows closely the
one in the theory with the corresponding continuous spectrum, to be studied below. The
behaviour of the survival probability in the discrete case is illustrated in figure 3.

When deff(ρ) → ∞, the average survival probability vanishes and the recurrence time is
infinite. That is, in this limit the state asymptotically evolves inside a subspace orthogonal
to the initial state. This is actually the situation in the continuous case.

19More precisely, we assume that ωµ,p != ων,q when µ2 != ν2 in the momentum region where h(#p) and h(#q)
are both non-negligible.
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For h strongly peaked19 at fixed momentum !p, the time average state of the system (assuming
the mass eigenvalues are non-degenerate) is the “equilibrium” mixed state
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h , t〉〈A0τ
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= 1
δ(0)
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d3p

(2π)3
h(!p)

√
iG̃(0)

τ (0, !p)

∫
d3q

(2π)3
h(!q)∗

√
iG̃(0)

τ (0, !q)

∑

ν

Zν f̃τ (ων,p)
N4

ν (2ων,p)2
δ(!p2 − !q2)|ν, !p〉00〈ν, !q|,

(6.30)

where the volume factor δ(0) := δ(!p2 − !p2) has mass dimension -2. The normalization is such
that Tr(ρ) = 1. The corresponding effective dimension is defined as

deff(ρ) = 1
Tr(ρ2) , (6.31)

This is a measure of how many pure states contribute to the mixture, that is, of the number
of degrees of freedom that are explored by the time evolution. We find

deff(ρ) =
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ν

ZνHν f̃τ (ων,p)
ων,p

]2

∑
ν

[
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ων,p

]2 . (6.32)
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where the first identity follows from the calculation of the trace and in the second one we
have used a theorem about average expectation values in ref. [32]. So, we expect the time
evolution of the system for large deff(ρ) to be as follows: the system moves away from the
initial state and quickly reaches states close to the equilibrium state ρ. In the case of evenly
spaced ων,p the time scale for such equilibration is inversely proportional to the splittings [33].
The system then fluctuates around the equilibrium state, with larger fluctuations being more
improbable than smaller ones. The average recurrence time τε, in which the system goes
from one state close to the initial state (1 − Psur(t) < ε) to another state close to the initial
state (1 − Psur(t+ τε) < ε), grows exponentially with deff(ρ) [34]. Moreover, for t % 1/∆ω,
with ω the largest gap between consecutive ων,p (for terms in the sum with non-negligible
contribution), the sum in ν can be approximated by an integral over µ2 with a continuous
interpolating function σ(0)τ (µ2, !p2). For such times, the survival probability follows closely the
one in the theory with the corresponding continuous spectrum, to be studied below. The
behaviour of the survival probability in the discrete case is illustrated in figure 3.

When deff(ρ) → ∞, the average survival probability vanishes and the recurrence time is
infinite. That is, in this limit the state asymptotically evolves inside a subspace orthogonal
to the initial state. This is actually the situation in the continuous case.

19More precisely, we assume that ωµ,p != ων,q when µ2 != ν2 in the momentum region where h(#p) and h(#q)
are both non-negligible.
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that Tr(ρ) = 1. The corresponding effective dimension is defined as

deff(ρ) = 1
Tr(ρ2) , (6.31)
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≤ 1
deff(ρ) , (6.33)

where the first identity follows from the calculation of the trace and in the second one we
have used a theorem about average expectation values in ref. [32]. So, we expect the time
evolution of the system for large deff(ρ) to be as follows: the system moves away from the
initial state and quickly reaches states close to the equilibrium state ρ. In the case of evenly
spaced ων,p the time scale for such equilibration is inversely proportional to the splittings [33].
The system then fluctuates around the equilibrium state, with larger fluctuations being more
improbable than smaller ones. The average recurrence time τε, in which the system goes
from one state close to the initial state (1 − Psur(t) < ε) to another state close to the initial
state (1 − Psur(t+ τε) < ε), grows exponentially with deff(ρ) [34]. Moreover, for t % 1/∆ω,
with ω the largest gap between consecutive ων,p (for terms in the sum with non-negligible
contribution), the sum in ν can be approximated by an integral over µ2 with a continuous
interpolating function σ(0)τ (µ2, !p2). For such times, the survival probability follows closely the
one in the theory with the corresponding continuous spectrum, to be studied below. The
behaviour of the survival probability in the discrete case is illustrated in figure 3.

When deff(ρ) → ∞, the average survival probability vanishes and the recurrence time is
infinite. That is, in this limit the state asymptotically evolves inside a subspace orthogonal
to the initial state. This is actually the situation in the continuous case.

19More precisely, we assume that ωµ,p != ων,q when µ2 != ν2 in the momentum region where h(#p) and h(#q)
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Figure 4: Survival probability of the state created by a free field in the discrete (L = 10)
and continuous case. Comparison with power law for large time behaviour. We have
considered g = 1, µ0 = 1 and M = 10. We have used the Gaussian smearing with
⌧ = 0.1.

6.2 Continuous case

Indeed, in this case �(0)
⌧ is an absolutely integrable ordinary function in [0,1) and the

Riemann-Lebesgue lemma ensures that

lim
t!1

P(t) = 0. (106)

So, in this case the initial state decays into orthogonal continuous linear combinations of
the one-particle states associated to the free field A. The asymptotic decay rate depends
on the discontinuities of �(0)

⌧ and its derivatives. Let us assume, in this subsection,
that the only discontinuity is the one at the mass gap µ2

0. Let �(0)(µ2, ~p2)/2!µ,p =
✓(µ2 � µ2

0)�(µ
2), with continuous � and let �(µ2) ' C(µ2 � µ2

0)
�/2� near µ2

0, with 
some mass scale and � > �1 for convergence of the integral. For t � 1/!µ0,p the fast
oscillations wash out more strongly the contributions to the integral of regions with
larger values of µ2, so we can approximate (for Gaussian smearing)

iG̃⌧ (t, ~p) ' Ce�it!µ0,p

Z 1

µ
2
0

dµ2e
�it

(µ2�µ20)

2!µ0,p e�!
2
µ,p⌧

2

✓
µ2 � µ2

0

2

◆�

' Ce�!
2
µ0,p

⌧
2
e�i(�+1)⇡/2�(1 + �)�2�e�it!µ0,p

✓
2!µ0,p

t

◆1+�

. (107)

Note that the smearing does not a↵ect the large-time functional form, but it does give
rise to a global exponential suppression. We conclude that at large t the decay of the
initial state is given by the power law

P(t) /
✓
2!µ0,p

t

◆2+2�

(108)

Summarizing, in the free theory the system oscillates between di↵erent linear com-
binations of the free A one-particle states. The oscillations are quasi-periodic in the
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Figure 3. Survival probability of the state created by a free field for L = 2 (left) and L = 10 (right).
The inserted figure in the left panel is a zoom of the main plot in the range of small t. We have
considered g = 1, µ0 = 1, M = 10 and Gaussian smearing with τ = 0.1. Here and in all the plots
below we work in the reference frame with "p0 = 0.

6.2 Continuous case

In the continuous case σ(0)τ is an absolutely integrable ordinary function in [0,∞) and the
Riemann-Lebesgue lemma ensures that

lim
t→∞

Psur(t) = 0. (6.34)

So, in this case the initial state decays into orthogonal continuous linear combinations of
the one-particle states associated to the free field A. The asymptotic decay rate depends on
the discontinuities of σ(0)τ and its derivatives. Let us assume, in this subsection, that the
only discontinuity is the one at the mass gap µ2

0. Let σ(0)(µ2, "p2)/2ωµ,p = θ(µ2 − µ2
0)χ(µ2),

with continuous χ and let χ(µ2) # C(µ2 − µ2
0)γ/κ2(1+γ) near µ2

0, with κ some mass scale
and γ > −1 for convergence of the integral. For t $ 1/ωµ0,p the fast oscillations wash out
more strongly the contributions to the integral of regions with larger values of µ2, so we
can approximate (for Gaussian smearing)

iG̃τ (t, "p) # Ce−itωµ0,p
∫ ∞

µ2
0

dµ2e
−it

(µ2−µ2
0)

2ωµ0,p e−ω2
µ,pτ2

(
µ2 − µ2

0
κ2

)γ

# Ce−ω2
µ0,pτ2

e−i(γ+1)π/2Γ(1 + γ)κ−2(1+γ)e−itωµ0,p
(2ωµ0,p

t

)1+γ

. (6.35)

Note that the smearing does not affect the large-time functional form, but it does give rise
to a global exponential suppression. We conclude that at large t the decay of the initial
state is given by the power law

Psur(t) ∝ t−2(1+γ). (6.36)

In figure 4 we show the survival probability in the continuum case and compare it with
one in the discrete case and with the large-time approximation in (6.36), which is excellent
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Figure 3. Survival probability of the state created by a free field for L = 2 (left) and L = 10 (right).
The inserted figure in the left panel is a zoom of the main plot in the range of small t. We have
considered g = 1, µ0 = 1, M = 10 and Gaussian smearing with τ = 0.1. Here and in all the plots
below we work in the reference frame with "p0 = 0.

6.2 Continuous case

In the continuous case σ(0)τ is an absolutely integrable ordinary function in [0,∞) and the
Riemann-Lebesgue lemma ensures that

lim
t→∞

Psur(t) = 0. (6.34)

So, in this case the initial state decays into orthogonal continuous linear combinations of
the one-particle states associated to the free field A. The asymptotic decay rate depends on
the discontinuities of σ(0)τ and its derivatives. Let us assume, in this subsection, that the
only discontinuity is the one at the mass gap µ2

0. Let σ(0)(µ2, "p2)/2ωµ,p = θ(µ2 − µ2
0)χ(µ2),

with continuous χ and let χ(µ2) # C(µ2 − µ2
0)γ/κ2(1+γ) near µ2

0, with κ some mass scale
and γ > −1 for convergence of the integral. For t $ 1/ωµ0,p the fast oscillations wash out
more strongly the contributions to the integral of regions with larger values of µ2, so we
can approximate (for Gaussian smearing)

iG̃τ (t, "p) # Ce−itωµ0,p
∫ ∞

µ2
0

dµ2e
−it

(µ2−µ2
0)

2ωµ0,p e−ω2
µ,pτ2

(
µ2 − µ2

0
κ2

)γ

# Ce−ω2
µ0,pτ2

e−i(γ+1)π/2Γ(1 + γ)κ−2(1+γ)e−itωµ0,p
(2ωµ0,p

t

)1+γ

. (6.35)

Note that the smearing does not affect the large-time functional form, but it does give rise
to a global exponential suppression. We conclude that at large t the decay of the initial
state is given by the power law

Psur(t) ∝ t−2(1+γ). (6.36)

In figure 4 we show the survival probability in the continuum case and compare it with
one in the discrete case and with the large-time approximation in (6.36), which is excellent
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t → ∞. Moreover, the time evolution does not mix the one-particle with the two-particle
components of the state (nor with the vacuum). Indeed, let Qi be the orthogonal projector
into the subspace Hi, for i = 0, 1, 2 (with H0 the vacuum one-dimensional space). These
projectors commute with the Hamiltonian, which is diagonal in the basis of (orthogonal)
generalized eigenvectors. Therefore, e−iHtQi|A!p〉 = Qi|A!p, t〉 ∈ Hi. The overlap of the state
at time t with the initial state is

〈A!p|A!q, t〉 = (2π)3δ3(#p − #q)
[∫ ∞

0
dµ2e−itωµ,p

σ1(µ2)
2ωµ,p

+
∫

dΠ!p
Xe−itEX |〈X|A(0)|Ω〉|2

]

= (2π)3δ3(#p − #q)
[∫ ∞

0
dµ2e−itωµ,p

σ1(µ2)
2ωµ,p

+
∫ ∞

0
dµ2e−itωµ,p

σ2(µ2)
2ωµ,p

]

= (2π)3δ3(#p − #q)
∫ ∞

0
dµ2e−itωµ,p

σ(µ2)
2ωµ,p

= (2π)3δ3(#p − #q)
[
iG̃(t, #p)θ(t) +

(
iG̃(t, #p)

)∗
θ(−t)

]
. (7.2)

The first and second identities follow from (2.10) and (2.11) and a change of variables in
the first and second integrals, respectively. The fourth identity, with

G̃(t, #p) =
∫ ∞

−∞

dE

2π e−iEtG(E, #p), (7.3)

is obtained just as eq. (6.5), and we have similarly defined G(p0, #p) = G(p2+i0+). We see that

iG̃(t, #p) =
∫ ∞

0
dµ2e−i|t|ωµ,p

σ(µ2)
2ωµ,p

, (7.4)

which agrees with the Fourier transform of the spectral representation of G in eq. (2.8).
The smearing in time can proceed exactly as in the free case, and eqs. (6.8)–(6.26)

hold just by removing the (0) superindices and using the basis selected in this section. In
particular, the survival probability is given by

Psur(t) '
∣∣∣∣∣
G̃τ (t, #p0)
G̃τ (0, #p0)

∣∣∣∣∣

2

= N−2|G̃τ (t, #p0)|2, (7.5)

where
iG̃τ (t, #p) =

∫ ∞

0
dµ2e−itωµ,p

στ (µ2, #p2)
2ωµ,p

, (7.6)

with
στ (µ2, #p2) = f̃τ (ωµ,p)σ(µ2). (7.7)

We emphasize that Psur(t) is the probability of finding the system in the specific initial
state Aτ

h after a time t has elapsed, and not the probability of finding the system in a linear
combination of one-particle states. The latter will be considered in subsection 7.4.

The behaviour of the survival probability at very short times is always quadratic, just
as in the free theory, with Zeno time tZ given by (6.28), this time with the interacting
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Figure 3. Survival probability of the state created by a free field for L = 2 (left) and L = 10 (right).
The inserted figure in the left panel is a zoom of the main plot in the range of small t. We have
considered g = 1, µ0 = 1, M = 10 and Gaussian smearing with τ = 0.1. Here and in all the plots
below we work in the reference frame with "p0 = 0.

6.2 Continuous case

In the continuous case σ(0)τ is an absolutely integrable ordinary function in [0,∞) and the
Riemann-Lebesgue lemma ensures that

lim
t→∞

Psur(t) = 0. (6.34)

So, in this case the initial state decays into orthogonal continuous linear combinations of
the one-particle states associated to the free field A. The asymptotic decay rate depends on
the discontinuities of σ(0)τ and its derivatives. Let us assume, in this subsection, that the
only discontinuity is the one at the mass gap µ2

0. Let σ(0)(µ2, "p2)/2ωµ,p = θ(µ2 − µ2
0)χ(µ2),

with continuous χ and let χ(µ2) # C(µ2 − µ2
0)γ/κ2(1+γ) near µ2

0, with κ some mass scale
and γ > −1 for convergence of the integral. For t $ 1/ωµ0,p the fast oscillations wash out
more strongly the contributions to the integral of regions with larger values of µ2, so we
can approximate (for Gaussian smearing)

iG̃τ (t, "p) # Ce−itωµ0,p
∫ ∞

µ2
0

dµ2e
−it

(µ2−µ2
0)

2ωµ0,p e−ω2
µ,pτ2

(
µ2 − µ2

0
κ2

)γ

# Ce−ω2
µ0,pτ2

e−i(γ+1)π/2Γ(1 + γ)κ−2(1+γ)e−itωµ0,p
(2ωµ0,p

t

)1+γ

. (6.35)

Note that the smearing does not affect the large-time functional form, but it does give rise
to a global exponential suppression. We conclude that at large t the decay of the initial
state is given by the power law

Psur(t) ∝ t−2(1+γ). (6.36)

In figure 4 we show the survival probability in the continuum case and compare it with
one in the discrete case and with the large-time approximation in (6.36), which is excellent
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Figure 7. Integration contours to evaluate the propagator G̃ as a function of time in the interacting
continuum case. The green wavy line represents the branch cut of G associated to Σ (branch cut of
G1), while the wider red wavy line represents the branch cut of G associated to Π (branch cut of
G2). The contours C1, C2 and C3 on the complex plane are infinitesimally close to the real axis (their
distance to it has been amplified for clarity). The roman numbers I, II and III in squares designate
the Riemann sheet on which G is to be evaluated on the indicated piece of the contours. The dotted
semicircle can be used to close the curve C1 on the second Riemann sheet. See the text for more
details.

the different contributions in an example in which the propagator has no pole on the second
Riemann sheet (c < 0). In this case, the only contribution to G̃C1

τ comes from the smearing
and it is apparent that it is indeed negligible for t > τ . Therefore, the survival probability
is very well described by G̃C3

τ alone, except for the small oscillations from its interference
with G̃C2

τ , and at very late times, when it is already very small and the contribution of G̃C2
τ

becomes dominant. Again, the same results hold also for other smearings, as the Jacob-Sachs
theorem [36] also applies to the continuum case.

Summarizing, in the continuous case we can write22

iG̃τ ! iG̃C1,pole
τ + iG̃C2

τ + iG̃C3
τ , t " τ. (7.21)

We have neglected the contribution from the smearing, G̃C1,smearing
τ , as it is suppressed by

e−t/τ and thus very small when t " τ .
It is interesting to compare the results in the continuum case with the continuum limit

of the discrete case. In the discrete case, the contour C2 is far from the poles. Therefore,
when the spacings between modes become small, G̃C2

τ approaches smoothly the result of the
same integral in the continuum case. When t # 1/∆ω, with ∆ω the largest gap between
consecutive ωn, the widths Λn approach zero, except for the one associated with the lowest
ωn, which as we have observed in some cases stays finite. Hence, we can approximate G̃C1,poles

τ

by an integral over µ2 with a continuous interpolating function σ̄τ 1(µ2, $p2) (with support
22The remark in footnote 21 also applies here.
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while piece II is on the second Riemann sheet:20

G̃C2
τ (t, !p) =

∫ √
"p2

−∞

dE

2π e−iEtf̃τ (E)
[
G((E − i0+)2 − !p2) − GII((E − i0+)2 − !p2)

]
. (7.10)

We observe that

G(p2) − GII(p2) = ΣII(p2) − Σ(p2)
(Π(p2) + Σ(p2))(Π(p2) + ΣII(p2)) , (7.11)

and in our model

ΣII(p2) = Σ(p2) + 2i g2

16π . (7.12)

Hence, for weak coupling G̃C2
τ gives a subleading contribution at intermediate times. On the

other hand, this contribution is important for the time behaviour at asymptotic times, once
the exponential contributions, to be discussed below, are negligible. For Cauchy smearing, the
term G̃C1

τ can be directly evaluated with the residue theorem by closing the curve as shown
in figure 5. The contour C1 lies entirely on the lower half of the second sheet. Therefore,
all the poles of the dressed propagator contribute to the integral. In addition, there is a
contribution of a pole on the negative imaginary axis in the Cauchy distribution f̃τ :

iG̃C1,smearing
τ (t, !p) = i

2τG
II(− 1

τ2
+ !p2)e−t/τ . (7.13)

This contribution is negligible for not very small time, t # τ , as we were already assuming
in this paragraph. The contribution from the propagator poles is

iG̃C1,poles
τ (t, !p) =

∑

n

Zn

2En

1
1 + E2

nτ
2 e

−itEn , (7.14)

where En = ωn − iΛn/2 is the position of the nth pole and Zn = 2EnResEn

(
GII(E, !p)

)
. We

have left implicit the |!p| dependence of the poles and their residues. The widths Λn are of
order g2. When g → 0, eq. (7.14) reduces to eq. (6.29), with normalization Hν = 1. For
finite g we have a sum of terms proportional to complex exponentials, with an oscillating
and a decaying part. For intermediate times, we expect G̃τ = G̃C1,poles

τ to be an excellent
approximation. This is corroborated in explicit examples, see figure 6. In the particular
case of only one unstable particle (only one pole), we recover in this approximation the
standard Weisskopf-Wigner exponential decay law [35]. For more than one pole, we need to
take into account the interference of the different terms in (7.14). The behaviour is then
a power law from t % τ to t % 2/L, followed by an exponential modulated by oscillations.
For very long times, the contribution of G̃C2

τ becomes dominant, as shown in the right plot
of figure 6.21 Even if we have used Cauchy smearing to prove them, all these results at

20The contour C2 can further be deformed to be parallel to the imaginary axis. The exponent in the
exponential e−iEt on this alternative path is real and negative, up to a constant, which is convenient for
numerical evaluation.

21Let us mention in passing that for extremely long times, the contribution of the tachyon (which is not
physical and we have completely ignored in the discussion) may become visible. But this is irrelevant for all
purposes, since the survival probability is already extremely small at those times.
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Figure 10. Survival probability in the interacting discrete and continuous cases. For comparison,
we display also the standard result for a single particle of mass µ0 = 1. We have considered µ0 = 1,
L = 10, M = 10, and g = 1 (left) and g = 2.3 (right). We have used Gaussian smearing with τ = 0.1.

with the contribution G̃C2
τ . They are more apparent in the right plot because their amplitude

is larger for larger coupling, as G̃C2
τ is of order g2.

7.3 Visible decay

The description of time evolution in terms of the asymptotic states, which we have used
above, is precise, but arguably not very intuitive. In this sort of “exact” description, a
muon, for instance, is at any time a particular multi-particle state formed by an electron, a
muon neutrino and an electron antineutrino. However, for practical purposes it is usually
more convenient to think of the muon as an independent degree of freedom: a particle of
charge −1 with mass 105.7MeV and mean lifetime 2.2µs. In this familiar picture, based
on perturbation theory, a muon with well-defined momentum is a one-particle eigenstate
of the free Hamiltonian. To gain more intuition about time evolution in our problem, we
next apply such a “perturbative” description to our model. For this, we need to consider the
“free” states |A0〉 ∼ A(0)|0〉 and |ϕϕ̄〉0 ∼ ϕ†(0)ϕ(0)|0〉, where |0〉 is the Fock vacuum. We
would then like to compute the probabilities of finding, in a measurement at time t, that
the system is in the one-particle state |A0〉 or in any free two-particle state |ϕϕ̄〉0, given
that it was in the state |A0〉 at time 0. The time evolution is still to be calculated with the
complete Hamiltonian. The interest of these probabilities is that they allow us to distinguish
how much of the depletion of the initial state is due, at each instant, to decay into the
elementary particles, which we call visible decay.

These probabilities involving free states are unfortunately more difficult to calculate than
the ones involving asymptotic states. The reason is that energy is not conserved in the vertices
of the corresponding diagrams, which in turn happens because there appear integrals over finite
or semi-infinite time intervals.23 Then it is highly non-trivial, if possible at all, to resum the
diagrams contributing to the required modified propagator, 〈0|A(0, #p)e−itHA(0, #q)|0〉. For this
reason we will approximate |A0〉 by |A〉 and use the usual propagator 〈Ω|A(0, #p)e−itHA(0, #q)|Ω〉

23This is similar to what happens in the in-in formalism.
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as an approximation to the survival probability of |A0〉 (which will then be the same as the
survival probability of |A〉 considered so far) and also as an approximation to the propagator
that appears in the perturbative evaluation of the decay probability. This approximation
is only good up to corrections of order g2/(16π2). The instantaneous probability of decay
into a pair of elementary particles precisely at time t, which we will call visible decay rate,
is then approximated by

dPϕ̄ϕ

dt
(t1) " g2

8π
1

|G̃τ (0,"0)|

∣∣∣G̃τ (t1, "p0)
∣∣∣
2
. (7.22)

This is the probability density associated to a measurement of the time delay in a displaced
vertex, up to details to be discussed in section 8. Within our approximation, it is proportional
to the survival probability. The probability of visible decay, that is, the probability of finding
at time t that the initial state has decayed into elementary particles is well approximated
by the accumulated probability

Pvis(t) "
∫ t

0
dt1

dPϕ̄ϕ

dt
(t1). (7.23)

This simple expression, which justifies the notation for the instantaneous probability, is the
result of (i) choosing |A0〉 as the initial state, so that the visible decay probability vanishes
at t = 0, in agreement with the perturbative intuition, and (ii) neglecting the interference
between the decay amplitudes at different values of t1. A more precise expression that takes
into account this interference is

Pvis(t) =
g2

16π2
1

|G̃τ (0,"0)|

∫ ∞

0
dEf

∣∣∣∣
∫ t

0
dt1e

it1Ef G̃τ (t1,"0)
∣∣∣∣
2
. (7.24)

The outer integral accounts for the final-state phase space, with Ef the total (free) energy of
each momentum configuration. But using this expression in a explicit calculation is more
complicated than using (7.23), as we need to compute numerically three iterated integrals
(the two integrals explicit in (7.24) and the Fourier transform (7.8)) instead of two. The
convenient approximation (7.23) is obtained from (7.24) by extending the integration in Ef

to the interval (−∞,∞). Indeed, working in the center-of-mass frame,

Pvis(t) " g2

16π2
1

|G̃τ (0,"0)|

∫ ∞

−∞
dEf

∫ t

0
dt1

∫ t

0
dt2e

i(t1−t2)Ef G̃τ (t1,"0)G̃τ (t2,"0)∗

= g2

16π2
1

|G̃τ (0,"0)|

∫ t

0
dt1

∫ t

0
dt22πδ(t1 − t2)G̃τ (t1,"0)G̃τ (t2,"0)∗

= g2

8π
1

|G̃τ (0,"0)|

∫ t

0
dt1

∣∣∣Gτ (t1,"0)
∣∣∣
2
. (7.25)

We have checked that the approximation (7.23) is very good, for not too large g, when
t ! 1/µ0. So, it will be used in the plots. In figure 11 we plot the probabilities of survival
and of visible decay in the continuous and discrete cases for different values of L and g,
using the approximation (7.23). The slope of the visible decay is proportional to the survival
probability, as implied by (7.23). Therefore, the visible decay probability and the visible
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as an approximation to the survival probability of |A0〉 (which will then be the same as the
survival probability of |A〉 considered so far) and also as an approximation to the propagator
that appears in the perturbative evaluation of the decay probability. This approximation
is only good up to corrections of order g2/(16π2). The instantaneous probability of decay
into a pair of elementary particles precisely at time t, which we will call visible decay rate,
is then approximated by

dPϕ̄ϕ

dt
(t1) " g2

8π
1

|G̃τ (0,"0)|

∣∣∣G̃τ (t1, "p0)
∣∣∣
2
. (7.22)

This is the probability density associated to a measurement of the time delay in a displaced
vertex, up to details to be discussed in section 8. Within our approximation, it is proportional
to the survival probability. The probability of visible decay, that is, the probability of finding
at time t that the initial state has decayed into elementary particles is well approximated
by the accumulated probability

Pvis(t) "
∫ t

0
dt1

dPϕ̄ϕ

dt
(t1). (7.23)

This simple expression, which justifies the notation for the instantaneous probability, is the
result of (i) choosing |A0〉 as the initial state, so that the visible decay probability vanishes
at t = 0, in agreement with the perturbative intuition, and (ii) neglecting the interference
between the decay amplitudes at different values of t1. A more precise expression that takes
into account this interference is

Pvis(t) =
g2

16π2
1

|G̃τ (0,"0)|

∫ ∞

0
dEf

∣∣∣∣
∫ t

0
dt1e

it1Ef G̃τ (t1,"0)
∣∣∣∣
2
. (7.24)

The outer integral accounts for the final-state phase space, with Ef the total (free) energy of
each momentum configuration. But using this expression in a explicit calculation is more
complicated than using (7.23), as we need to compute numerically three iterated integrals
(the two integrals explicit in (7.24) and the Fourier transform (7.8)) instead of two. The
convenient approximation (7.23) is obtained from (7.24) by extending the integration in Ef

to the interval (−∞,∞). Indeed, working in the center-of-mass frame,

Pvis(t) " g2

16π2
1

|G̃τ (0,"0)|

∫ ∞

−∞
dEf

∫ t

0
dt1

∫ t

0
dt2e

i(t1−t2)Ef G̃τ (t1,"0)G̃τ (t2,"0)∗

= g2

16π2
1

|G̃τ (0,"0)|

∫ t

0
dt1

∫ t

0
dt22πδ(t1 − t2)G̃τ (t1,"0)G̃τ (t2,"0)∗

= g2

8π
1

|G̃τ (0,"0)|

∫ t

0
dt1

∣∣∣Gτ (t1,"0)
∣∣∣
2
. (7.25)

We have checked that the approximation (7.23) is very good, for not too large g, when
t ! 1/µ0. So, it will be used in the plots. In figure 11 we plot the probabilities of survival
and of visible decay in the continuous and discrete cases for different values of L and g,
using the approximation (7.23). The slope of the visible decay is proportional to the survival
probability, as implied by (7.23). Therefore, the visible decay probability and the visible
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Figure 11. Survival probability and visible decay probability in the interacting discrete and continuous
cases. The inserted figure in the right panel is the visible decay rate in the interacting continuous
case up to t = 200, a range in which an approximately constant behaviour can be observed. We have
considered µ0 = 1, M = 10, and (g = 1, L = 10) (left) and (g = 3, L = 1) (right). We have used
Gaussian smearing with τ = 0.1.

decay rate in the discrete case are well approximated by the ones in the continuous case
for t < 2L, as can be appreciated in the plots. Note that the sum of both probabilities is
smaller than 1 at all times. In the discrete case, Pvis(t) → 1 as t → ∞, as can be seen in
the right panel (in the plot it actually gets a bit larger than 1, but this is an error due to
our approximations). On the other hand, when t ! 2L the probability of visible decay is
significantly smaller in the continuum case. As it can be appreciated in the inserted figure
in the right panel, it asymptotes to a value smaller than 1. Since the survival probability
approaches 0 when t → ∞, this indicates the presence of extra asymptotic states in the
continuous case. Note that the reason for a smaller visible decay in the continuum when
t → ∞ is not the asymptotic behaviour, dominated by a similar G̃C2 in both cases, but the
smaller visible decay rate at intermediate times.

7.4 Oscillations and invisible decay

In the free theory, the complement of the event of survival of the initial state is its oscillation
into free one-particle states orthogonal to it. In the interacting theory, we can keep using the
free basis and distinguish four exclusive events in the A1 approximation: the measured final
state can be i) |A0

!p〉, ii) an arbitrary |ϕϕ̄〉0 free two-particle state, iii) an arbitrary orthogonal
combination of free A one-particle states, and iv) the Fock vacuum.24 The last possibility has
finite probability when g $= 0 because 〈0|U(t)A(0)|0〉 $= 〈Ω|A(0)|Ω〉 = 0, but it will be small if
g has perturbative values, and we neglect it in the following. The first and second possibilities
have been discussed above. In this subsection, we study the third one: oscillations.

Even if a general analysis is in principle possible, we restrict ourselves here to the
holographic theory in section 5. This will be computationally convenient and will provide
an intuitive picture of the oscillations. For this, we first consider the propagation of the

24For simplicity we neglect here the effects of time and spatial smearing.

– 35 –

<latexit sha1_base64="94tX5DkZ057woNfm3EFILBvmWek="></latexit>

lim
t!1

Pvis < 1 in continuous case!



J
H
E
P
0
5
(
2
0
2
4
)
1
5
8

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

t

!sur!t"

!osc!t"

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

t

!sur!t"

!1 p!t"

!vis!t"

!1 p!t" ! !vis!t"

Figure 14. Left panel: oscillation probability in the interacting discrete case, compared with
survival probability. Right panel: we display Psur(t), P1p(t) and Pvis(t), as well as the summation
P1p(t) + Pvis(t). We have considered g = 1, µ0 = 1, L = 10 and M = 10. We have used Gaussian
smearing with τ = 0.1.
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Figure 15. Left panel: oscillation probability in the interacting continuous case, compared with
survival probability. Right panel: we display Psur(t), P1p(t) and Pvis(t), as well as the summation
P1p(t) + Pvis(t). We have considered g = 1, µ0 = 1 and M = 10. We have used Gaussian smearing
with τ = 0.1.

8 Physical processes

In sections 6 and 7 we have studied in detail the time evolution of a state created at some
instant by the field A. The physical way of (approximately) creating such an unstable state is
by scattering of stable particles. So, the complete scattering process of stable particles must
be considered in order to make predictions for observable quantities that can be compared to
experiments. In this section, we discuss these physical processes and their relation to the
previous analysis of the propagator. As external stable particles we can use the light particles
ϕ themselves, or, in extended models, any other particles that couple to A. In particular,
we could consider the possibility of additional probe particles ψ with coupling much smaller
than g, such that their contributions to the self-energy can be neglected.
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8 Physical processes

In sections 6 and 7 we have studied in detail the time evolution of a state created at some
instant by the field A. The physical way of (approximately) creating such an unstable state is
by scattering of stable particles. So, the complete scattering process of stable particles must
be considered in order to make predictions for observable quantities that can be compared to
experiments. In this section, we discuss these physical processes and their relation to the
previous analysis of the propagator. As external stable particles we can use the light particles
ϕ themselves, or, in extended models, any other particles that couple to A. In particular,
we could consider the possibility of additional probe particles ψ with coupling much smaller
than g, such that their contributions to the self-energy can be neglected.
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Discretum Continuum

Δm = 0.1

(𝒫1P = 𝒫sur + 𝒫osc)𝒫1P(t) + 𝒫vis(t) = 1Unitarity:

Summary of time evolution

(possible decoherence not included in the plots)



Psur → 0 in all cases 

Discretum:

Decay is slower than exponential

• Correlated oscillations in Psur and Pvis 
• Pvis → 1     

Unitarity: Psur(t) + Pvis(t) + Posc(t) = 1  

Continuum: • Pvis → 1         
• Posc → 0    invisible decay

For                , discretum behaves like continuum 
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Figure 13: Survival probability Psur(t, z) in the interacting discrete case at di↵erent
times, cf. Eq. (137). We have considered g = 1, µ0 = 1, L = 5 and M = 10. We have
used the Gaussian smearing with ⌧ = 0.1.
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Figure 14: Survival probability Psur(t, z) in the interacting continuous case at di↵erent
times, cf. Eq. (137). We have considered g = 1, µ0 = 1 and M = 10. We have used the
Gaussian smearing with ⌧ = 0.1.
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Discretum:

Holographic picture
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Figure 13: Survival probability Psur(t, z) in the interacting discrete case at di↵erent
times, cf. Eq. (137). We have considered g = 1, µ0 = 1, L = 5 and M = 10. We have
used the Gaussian smearing with ⌧ = 0.1.
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Figure 14: Survival probability Psur(t, z) in the interacting continuous case at di↵erent
times, cf. Eq. (137). We have considered g = 1, µ0 = 1 and M = 10. We have used the
Gaussian smearing with ⌧ = 0.1.
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t = 0 Continuum:

Holographic picture



Conclusions: pheno / model building

• Continuous spectra are ubiquitious in QFT 

• Cannot treat each mode separately 

• No resonant peaks ➙ more elusive, different searches 

• Suppressed visible BR 

• Non-standard decay law (far detectors)  

• Stable or nearly-stable stuff 

• Dark matter without Z2  symmetry?

(for both continuum and compressed discretum)

(continuous dark matter with Z2  : Csaki et al ’21)


