BSM Forum, CERN

Dec 5, 2024

Undecay

Manuel Pérez-Victoria

Based on JHEP 05 (2024) 158, with Eugenio Megías (UGR) and Mariano Quirós (Institut de Física d'Altes Energies)

Continuous BSM

Unparticle physics = SM coupled to CFT Georgi, '07

Spectral density: $(1 < \Delta < 2)$

$$\sigma(\mu^2) \propto (\mu^2)^{\Delta - 2}$$

gapless continuum

For instance,

$$\langle \mathcal{O}(p)\mathcal{O}(-p)\rangle \propto (p^2 - \mu_0^2)^{\Delta - 2}$$

Pheno of charged continuum:

- UnHiggs scenario Stancato, Terning '08; Falkowski, MPV '08, '09
- SM + continuum Csaki et al '18

AdS/CFT

Cacciapaglia, Marandella, Terning '08

Falkowski, MPV '08

Schrödinger potential

Compressed BSM

Examples of BSM with compressed discrete spectrum:

Large extra dimensions

Arkani-Hamed, Dimopoulos, Dvali '98; Giudice, Rattazzi, Wells '98; Dudas, Dienes, Gherghetta '00

Clockwork models Kaplan, Rattazzi '15; Giudice, McCullough '16

To decay or not to decay

Does unparticle stuff with linear couplings to the SM fields decay?

- Yes Delgado, Espinosa, No, Quirós '08 🔶 Pole on 2nd Riemann sheet
- No Stephanov '07

$$\Delta_{\mathcal{U}} = \sum_{n} \frac{F_n^2}{q^2 - M_n^2 + i\varepsilon} \quad , \qquad F_n^2 \sim \Delta^2 \to 0,$$

 Yes and no! This talk (to be clarified)

Outline

- Setup
- Spectrum
- Unitarity
- Real processes
- Time evolution
- Holographic picture
- Conclusions

Typical scenario

Typical scenario

Typical scenario

Toy model

elementary field \longrightarrow massless complex scalar φ composite field (mediator) \longrightarrow real scalar A

$$\mathcal{L} = -\frac{1}{2}\mathbf{A}\Pi(-\partial^2)\mathbf{A} + \partial_\mu\varphi^\dagger\partial^\mu\varphi + g\mathbf{A}\varphi^\dagger\varphi$$

only two-point function Π for simplicity (large N)

dressed A
propagator:
$$iG(p^2) = \frac{i}{\Pi(p^2) + \Sigma(p^2)}$$

with selfenergy $\Sigma(p^2) = -\frac{g^2}{16\pi^2}\log\frac{-p^2}{M^2}$

Spectrum

Spectral density:
$$\sigma(\mu^2) = -\frac{1}{\pi} \operatorname{Im} G(\mu^2 + i0^+)$$

in free theory $\sigma^{(0)}(\mu^2) = -\frac{1}{\pi} \operatorname{Im} G^{(0)}(\mu^2 + i0^+)$
 $(g=0) = \frac{1}{\pi} \frac{\operatorname{Im} \Pi(\mu^2 + i0^+)}{|\Pi(\mu^2 + i0^+)|^2}.$

In all cases, σ is smooth (due to Σ in denominator)

Analytic structure of propagator

Discretum

Continuum

Equivalent "KK" form

$$\mathcal{L}' = \partial_{\nu} \varphi^{\dagger} \partial^{\nu} \varphi + \int_{0}^{\infty} d\mu^{2} \sigma^{(0)}(\mu^{2}) \left(\frac{1}{2} \partial_{\nu} B_{\mu} \partial^{\nu} B_{\mu} - \frac{\mu^{2}}{2} B_{\mu}^{2} + g B_{\mu} \varphi^{\dagger} \varphi\right)$$

with constraint
$$A = \int_0^\infty d\mu^2 \sigma^{(0)}(\mu^2) B_\mu$$

- ✤ A creates many (generalized) energy eigenstates with different masses
- (free fields) • Each B_{μ} creates a (generalized) energy eigenstate with well-defined mass

Unitarity

Veltman '63:

Unstable particles do not enter as final states in unitarity relations

Unitarity

$$\Delta \operatorname{Im} \mathcal{M}_{\varphi}^{(s)}(s,0) = \frac{g^2 \operatorname{Im} \Pi(s+i0^+)}{|\Pi(s+i0^+) + \Sigma(s+i0^+)|^2} > 0.$$

Unitary theory \Rightarrow missing final states in continuum

$$\Delta \operatorname{Im} \mathcal{M}_{\varphi}^{(s)}(s,0) = \frac{g^2 \operatorname{Im} \Pi(s+i0^+)}{|\Pi(s+i0^+) + \Sigma(s+i0^+)|^2} > 0.$$

Unitary theory \Rightarrow missing final states in continuum

- Not multi- φ particle states
- Must be states in the hidden sector
- Missed in the EFT? → Not really! A interpolating field

Mysteries (from EFT point of view):

- Nature of hidden asymptotic states
- *** A** does decay... but not completely in continuum!
- * Decay law?
- Discretum to continuum transition: not continuous

Wave packets -> Field smearing

$$A_{\tau}(t,\vec{x}) = \int_{-\infty}^{\infty} dt' f_{\tau}(t-t') A(t',\vec{x})$$

(width mixing taking into account by resummed propagator)

Plane waves

S

10

rete, plane wave

6

inuous, plane wave

8

Time evolution: free theory

At time t=0, A creates from the vacuum a particular one-particle state

$$\begin{split} A(0,\vec{x})|0\rangle &= \int \frac{d^3p}{(2\pi)^3} e^{-i\vec{x}\cdot\vec{p}} \int_0^\infty d\mu^2 \rho(\mu^2) Z_{0\mu}^{\frac{1}{2}} \frac{1}{2\omega_{\mu,p}} |\mu,\vec{p}\rangle_0 \\ & |\mathcal{A}_{\vec{p}}^0\rangle \end{split}$$
Non-trivial evolution
$$|\mathcal{A}_{\vec{p}}^0,t\rangle = e^{-itH_0} |\mathcal{A}_{\vec{p}}^0\rangle$$

Overlap with initial state:

Discretum

$$i\tilde{G}^{(0)}_{\tau}(t,\vec{p}_0) = \sum_{\nu} \alpha_{\nu,p} e^{-it\omega_{\nu,p}}$$

Survival probability is almost periodic... but fast equilibration:

 $\rho := \langle |\mathcal{A}_h^{0\tau}, t \rangle \langle \mathcal{A}_h^{0\tau}, t | \rangle_t \qquad d^{\text{eff}}(\rho) = \frac{1}{\text{Tr}(\rho^2)}$ $\langle \mathcal{P}_{\text{sur}}(t) - \frac{1}{d^{\text{eff}}(\rho)} \rangle_t \leq \frac{1}{d^{\text{eff}}(\rho)}$

Continuum

Riemann-Lebesgue lemma $\Rightarrow \lim_{t \to \infty} \mathcal{P}_{sur}(t) = 0$ In the free theory, the initial state **decays** into orthogonal linear combinations of continuous modes created by A

"invisible decay"

Time evolution with interactions

$$i\tilde{G}_{\tau}(t,\vec{p}) = \int_0^\infty d\mu^2 e^{-it\omega_{\mu,p}} \frac{\sigma_{\tau}(\mu^2,\vec{p}^2)}{2\omega_{\mu,p}}$$

$$\mathsf{RL} \; \Rightarrow \; \lim_{t \to \infty} \mathcal{P}_{\mathrm{sur}}(t) = 0$$

in both continuum and discrete cases

Survival of initial state

(discrete case agrees with axion oscillations in Dudas, Dienes, Gherghetta '00)

Visible decay

Summary of time evolution

(possible decoherence not included in the plots)

 $P_{sur} \rightarrow 0$ in all cases Decay is slower than exponential Unitarity: $P_{sur}(t) + P_{vis}(t) + P_{osc}(t) = 1$

Discretum: • Correlated oscillations in
$$P_{sur}$$
 and P_{vis}
• $P_{vis} \rightarrow 1$

Continuum:
$$P_{vis} \neq 1$$

• $P_{osc} \neq 0$ invisible decay

For $t \lesssim \frac{1}{\Delta m}$, discretum behaves like continuum

Holographic picture

Holographic picture

Conclusions: pheno / model building (for both continuum and compressed discretum)

- Continuous spectra are ubiquitious in QFT
- Cannot treat each mode separately
- No resonant peaks → more elusive, different searches
- Suppressed visible BR
- Non-standard decay law (far detectors)
- Stable or nearly-stable stuff
- Dark matter without Z₂ symmetry? (continuous dark matter with Z₂ : Csaki et al '21)