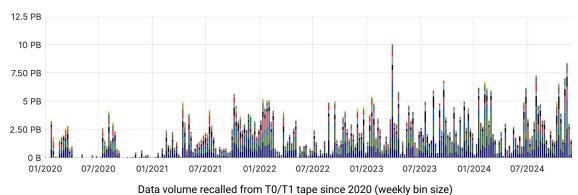
Updates on ATLAS Data Carousel

Xin Zhao (BNL), Alexei Klimentov (BNL), Mario Lassnig (CERN), Misha Borodin(Ulowa) DOMA, December 4th, 2024


Outline

- Introduction
- Current activities on tape smart writing
 - Demo with selected sites
 - Ongoing discussions and open questions (archival metadata and beyond)

* Team effort --- WFMS team, DDM team, Ops team, many other ADC experts, all T0 and T1 site experts and various storage service provider groups

ATLAS Data Carousel (1/2)

- Tape driven workflow
 - Jobs can get inputs directly from tape
 - To address the storage challenge of HL-LHC
- In production since 2020
 - Today major ATLAS production campaigns(reprocessing, derivation, MC simulation etc)) run in Data Carousel mode

Transfer Volume

ATLAS Data Carousel (2/2)

- Operationally, continuously address issues encountered in production, e.g. :
 - Alarm for long tail requests (GGUS tickets to sites)
 - Holding "T0 export" traffic till the end of a run, so T1s can get dataset size metadata for RAW
- A recent example in expectation of big runs/datasets (O(~PB)) coming out of the 2024-10 LHC p-p reference run, ADC had a plan in place to split big datasets among multiple T1s, to help release pressure on tape buffer at sites
 - This plan was not applied because the run didn't produce big fills.
 - For the long term, one suggestion is to have FTS automatically adjust the tape writing stream based on backpressure from sites (under discussion)
- While mitigating current operational issues, always focus on the key to our long term success optimal tape usage

Tape Smart Writing

- How to optimize tape usage?
 - to reduce tape (re)mounts and seek time
 - the "Reference" slide has an incomplete list of studies done by various sites/groups, from different perspectives, over the years on this topic
- Our key strategy to achieve optimal tape usage is to group files on tape according to access patterns so called "smart writing"
 - "Smart writing" is a catch-all phrase, encompassing various techniques for optimizing data layout on tape to improve read performance.
 - Reading should match how data is written on tape, the other side of the same coin, although we don't call it "smart reading"
- The following slides mainly focus on this topic ...

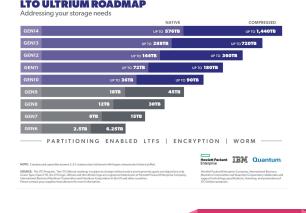
Aim to put our data on tape like a well-organized warehouse

Tape smart writing exercise with KIT (1/2)

- Together with KIT site experts (Haykuhi Musheghyan etc), did a dedicated tape test
- Result shows 80%+ tape bandwidth utilization, a factor of two improvements over their old TSM tape system (all use TS1160 tape drive w/ 400MB/s nominal rate)

 Berger 1903 <li< th=""><th>RAW data type</th><th>AOD data type</th><th>DAOD data type</th><th><u>skit</u></th></li<>	RAW data type	AOD data type	DAOD data type	<u>skit</u>
Interfer transport Interfer transport KIT HPSS tape monitoring (courtesy of Haykuhi Mushegu from KIT) Interfer transport Interfer transport Interfer transport	End: 25.10.2023 -10.00 Avg recall rate: -4500 MBB (-320 MBB (-32	End: 27.10.2023-09:30	rate: ~ 4700 MB/s (~340 End: 28.10.2023 ~04:00	Arg receil rate: - 1000 MB/s (-330 MB/s per lange drive; 3 Tape drive; 3
Iransfer rate for a 21B/295 files AOD dataset	Name			(courtesy of Haykuhi Musheghyan from KIT)

Tape smart writing exercise with KIT (2/2)


- KIT implementation of tape smart writing
 - Details on KIT presentations (<u>link1</u>, <u>link2</u>, <u>link3</u>)
- Some points of the KIT implementation I'd like to highlight
 - A flexible way to assign different number of tape drives to write a dataset to tape, depending on the size of the dataset
 - Information of dataset size is a metadata that ATLAS DDM (Rucio) passes along when transfer files to tape endpoint
 - Temporary solution from Rucio for passing metadata using URL parameters
- One discussion point about the KIT test result
 - How much of the factor two improvements (over the old TSM) is attributed to file grouping?
 - No detailed measurements to determine contributions of each factor
 - But, theoretically 80%+ bandwidth utilization would not be possible without good file placement on tape

Next Steps

- Work with more sites, do demo exercises when they feel ready
- Provide sites with tape grouping hints, a.k.a. archival metadata

Data grouping unit(s) on tape

- Dataset is a natural grouping unit for ATLAS (for some other experiments as well)
 - ATLAS can provide additional information like "number of files" and "total size" of a dataset (as we have done for KIT)
- As tape capacity and speed continue to grow in the future, grouping levels above dataset will become necessary, in order to keep the bandwidth utilization high
 - c.f. <u>BNL studies</u>

Archival metadata

- A generic solution being developed
 - Using HTTP header (in json format) in the transfer request
 - A flexible format proposed by <u>CTA/dCache group</u> (1KB size limit enforced)
 - Experiments need to fill in the contents of the metadata
- ATLAS provides the first archival metadata template (draft) for RAW data type, to be tested by <u>CTA@CERN</u>
 - Rucio passes these metadata to CTA, via FTS, during the recent LHC Heavy Ion run.
 - ATLAS still needs to work on metadata templates for the other data types (AOD etc)

Questions about Archival metadata templates

- What are a good grouping hierarchy for a data type ?
 - Ask experts (production managers, physics groups ...)
 - Sometimes not easy to converge among experts
 - Ask data ?
 - Analyze historical recall logs
 - Rucio has the full recall history for all files and datasets with tape origin.
 - Ask machine ?
 - Run the historical recall logs through ML models, let AI/ML learn recall patterns (e.g. what datasets are likely to be recalled together ?)
- It's hard (if not impossible) to know the size of a grouping unit above dataset level
 - Size info is important, refer to the KIT implementation
 - Ideas floating around ...
 - No need to know the real size of all RAW datasets belonging to a particular stream collected during 2024 run. Our purpose is to find grouping units that's big enough to ensure good bandwidth utilization in recall campaign
 - Rucio can create artificial retrieval groups within a level, e.g. put several physics_main stream (level 3) datasets into one container, and tell sites to co-locate them together.
 - we can call them "tape containers", a container type solely for tape grouping purpose
 - Definition of a "good size" is expected to grow as tape technology evolves, and may even be different per site.

Other open questions/discussions (1/2)

• Tape simulator

- Proposed and planned by some sites
 - For example, to replay tape write history, through a particular file placement scenario; then replay tape read history, and tell what's the expected (theoretical) tape drive bandwidth utilization and overall throughput
- Answer questions like :
 - which grouping scenario is better, under a certain condition, e.g. one dataset on one (or few) tape or stripped grouping among multiple tapes ?
 - how much performance improvements (theoretically) is expected from one grouping scenario over the others ?
 - what's the ideal size of grouping units, assuming certain conditions and tape technology ?
 - may point out things to improve also on the way tape write/read requests are sent to sites

Other open questions/discussions (2/2)

- Expected data volume and size, throughput targets etc for Run4?
 - These will come from experiments, closely related to what we do here.
 - \circ \quad They set the goal for any optimization we do
 - e.g. if a site feels comfortable with meeting the goals without changing the current tape operation model, it's perfectly fine.
 - They help provide guidance to the optimization
- Tape monitoring
 - Overall throughput delivered from tape
 - Bandwidth utilization
 - 0 ...
- Within ADC, we continue to evaluate our tape workflows, to leverage the strength of the tape system for optimal usage.

References

Below is an *incomplete* collection of various studies on optimizing tape usage (in no particular order)

- 1. https://iopscience.iop.org/article/10.1088/1742-6596/898/8/082024/pdf
- 2. <u>https://indico.cern.ch/event/823340/contributions/3558591/attachments/1918104/3171992/ATLA</u> <u>S-CTA.pdf</u>
- 3. <u>https://indico.cern.ch/event/915292/contributions/3848357/attachments/2039058/3414671/TRIU</u> <u>MF_Tape_Carosal_20200514.pdf</u>
- 4. <u>https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_04026.pdf</u>
- 5. https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_02016.pdf
- 6. <u>https://indico.cern.ch/event/1212249/contributions/5128663/subcontributions/404547/attachmen</u> ts/2563622/4419225/OptWriting-TIM-Dec-2022.pdf

7.

