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Probability space & stochastic process .

= sample space ({2): the set of all possible outcomes

= event space (F): a collection of events to be considered (subsets of (2)

= probability measure (P): a function that returns an event's probability

4 )

The probability space is the mathematical triplet ({2, F, P) that presents a
model for a particular class of real-world situations.
\ %

A stochastic or random process x(t) is a collection of random variables
{x;} with index t defined on a common probability space (12, F, P).




Stochastic process

= g collection of random variables

= random variables are indexed by some mathematical set, the index set
(each random variable of the stochastic process is uniquely associated
with an element in that set, e.g., N)

= each random variable in the collection takes values from the same
mathematical space known as the state space (e.g., Z)

" jncrement: the amount that a stochastic process changes between two
index values (e.g., between two points in time).

= sample function or realization: a single outcome of a stochastic process



Random walk as a stochastic process

1D Random Walk

X1, Xp, .. are independent random 2 | ——
varaibles, where each variable is either 1 z;s;téct)gt'igstveaﬁug_%(s )= 0
or -1, with a 50% probability for either a variance: E(52) 0
‘ n
value; S, =0 and S, =X7_0X; . 15 -
The series {S,,} is called the simple o
random walk on Z.
=t 2,21 a=1 2 5
da=-1 di=+1 £ 0 -
——F—F——+—1—+—+—+—P
4 -3 2 -1 0 1 2 3 4 ] M
sample space: 2 = {—1,1} ~10 -
event space: F = {—1,1}
V1000 ~ 31.6
probability measure: P; P(—1) =1/2,P(1) =1/2 -15 4
”jcdtex set: N . 0 200 400 600 800 1000
State Space. Steps
increment: —1 or1 Sample function / realization of a one-

dimensional simple random walk (n=1000). 4



Homoscedasticity & heteroscedasticity

“Skedasticity” comes from the Ancient Greek word “skedannymi”, meaning “to scatter”.

homoscedasticity
at each value of x, the y-value of the data
points has about the same variance

y 100+ R
* ’f +*
. s
L) -
a0 bl
u#‘
. ot
L *
EU— . *'f'ﬁ' -
f“'* *
.
#4*:
40 '4*
1“1 ‘#4*‘
- -
L
. bl
20 L
-
+
1‘*
*
U “ T T T T 1
0 20 40 60 a0 100

B0 —

40 —

20 —

heteroscedasticity
the variance of the y-values of the dots
increases with increasing values of x.
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ARCH processes/models
4 )

A stochastic process with nonconstant variances conditional on the
past, but constant unconditional variances, i.e., with autoregressive
conditional heteroskedasticity is an ARCH(p) process of order p.

- J

4 )
ARCH models are discrete-time stochastic models for which the variance
attimet, i.e., atz depends, conditionally, on some past values of the

square value of the random signal itself.

2 2 2
Of =00+ o X;_y X, (10.1)
Here «,,21,...,0, are positive variables and x; is a random variable with

zero mean and variance o7, characterized by a conditional pdf f;(x). Usually
fi(x) is taken to be a Gaussian pdf, but other choices are possible.



Conditional distributions, memory

for some set of times ¢, > £,y > ... > t;. In general, this condi-
tional distribution will depend upon values of Xy . X; .. .. Xy

However, we shall focus particularly in this module on processes that
satisfy the Markov property. which says that

Pl' (th |th_1: th TEERE th) = Pl' (thlth—l) .

The Markov property is named after the Russian probabilist Andre1
Andreyevich Markov (1856-1922). An informal mnemonic for remem-
bering the Markov property is this. ‘Given the present (X;_;). the
future (Xj) is independent of the past (Xj_o, Xp_3,...,X1).” The
Markov property is sometimes referred to as the ‘lack of memory’
property.



ARCH processes/models

67 =g+ oxi_ |+ + %xf_p. (10.1)

By varying the number p of terms 1n Eq. (10.1), one can control the amount
and the nature of the memory of the variance 7. Moreover, the stochastic
nature of the ARCH(p) process is also changed by changing the form of the
conditional pdf f,(x). An ARCH(p) process 1s completely determined only
when p and the shape of f;(x) are defined.

ARCH models are simple models able to describe a stochastic process
which is locally nonstationary but asymptotically stationary: the
parameters controlling the conditional probability density function

f:(x) at time t are fluctuating; the stochastic process has a well-
defined asymptotic PDF P(x)



Numerical simulations of ARCH(1) processes

simplest ARCH process, ARCH(1) 400
process with Gaussian conditional 300 |
PDF: o0
2 2 &
0, = 0o -+ 11X D
] 0
=1
S(t) = Z X, 100
i—1 600
= 0.45 and o; = 0.55 a0 |
Although the conditional pdf is chosen to be "o o0 |

Gaussian, the asymptotic pdf presents a

given degree of leptokurtosis (fatter tails)
because the variance o; of the conditional 0
pdfis itself a fluctuating random process.
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Asymptotic ‘unconditional’ variance, kurtosis

2 2
g, = o) + %1 X;_q

An ARCH(1) process with Gaussian conditional pdf is characterized by a

finite ‘unconditional’ variance (the variance observed on a long time interval
3
provided

I —oy #0 0<o <1 (10.4)

The value of the variance 1s

g2 = 0 (10.5)

N 1—9(1.

The kurtosis of the ARCH(1) process is [50]

(x*) 6o
K= > =3+ \ (10.6)
(x2)? | — 307
which 1s finite 1f
1
0< oy < —. (10.7)
J3

Hence, by varying oy and «;, it is possible to obtain stochastic processes with

the same unconditional variance but with different values of the kurtosis. 10
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Fig. 10.2. Numerical simulations of ARCH(1) processes with the same unconditional
variance (6> = 1) and different values of the unconditional kurtosis. Top: oy = 1,
o = 0 (so k = 3 by Eq. (10.6)). Middle: ag = o7 = 0.5 (so k = 9). Bottom: ap = 0.45,
o1 = 0.55 (so k = 23).
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Fig. 10.3. Successive increments of the simulations shown in Fig. 10.2. Events outside
three standard deviations are almost absent when x = 3 (top), are present when
k =9 (middle), and are more intense when x = 23 (bottom).
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GARCH processes .

In many applications using the linear ARCH(p) model, a large value of p is
required. This usually poses some problems in the optimal determination of
the p + 1 parameters o, %1, ..., %,, Which best describe the time evolution of
a given economic time series. The overcoming of this difficulty leads to the
introduction of generalized ARCH processes, called GARCH(p, g) processes,
introduced by Bollerslev in 1986 [20].

This class of stochastic processes i1s defined by the relation

2 2 2 2 2
o = o0 +ouxi o ogxi, + o+ o+ Ppoi,. (10.8)

where o, %1,..., 9% f1,....fp are control parameters. Here x; 1s a random
variable with zero mean and variance o7, and is characterized by a condi-
tional pdf f;(x), which 1s arbitrary but is often chosen to be Gaussian.
We consider the simplest GARCH process, namely the GARCH(1.1)
process, with Gaussian conditional pdf. It can be shown [9] that

2 %0

o = , 10.9
I —oy — B (10)
and the kurtosis 1s given by the relation
607
=3 1 10.10
T3 2 — B (10-10)

14



Mean and autocorrelation

The statistical observables characterizing a stochastic process can be writ-
ten 1n terms of nth-order statistical properties. The case n = 1 1s sufficient to
define the mean.

o0

Xf(x,t)dx, (6.1)

E{x(t)} = /

where f(x.t) gives the probability density of observing the random value x
at time t. The case n = 2 1s used to define the autocorrelation function

E{x(t)x(t2)} E/ / X1X2f (X1, X235 t1, t2)dx dxa, (6.2)
—00 o —00

where f(xj,x>:11.1t2) 1s the joint probability density that x; 1s observed at time
t; and x, 1s observed at time 7. To fully characterize the statistical properties
of a stochastic process, knowledge of the function f(x.x2,.... X, 1,00, .., 1))
1s required for every x;, t; and n. Most studies are limited to consideration of
the ‘two-point” function, f(xi,x2:t1.12).

R(t1,t2) = R(7) 1s a function of 1 =1t; — 14

Autocorrelation, also known as serial correlation, refers to the degree of correlation of the same variables
between two successive time intervals. The value of autocorrelation ranges from -1 to 1. 15



Memory

Now we focus on the kind of time memory that can be observed In
stochastic processes. An important question concerns the typical scale (time
memory) of the autocorrelation function. For stationary processes, we can
answer this important question by considering the integral of R(t). The area
below R(t) can take on three possible values (Fig. 6.2).

¥ ( finite

/ R(7)dt = { infinite | (6.9)
0 . .

( Indeterminate

When [;” R(t)dz is finite, there exists a typical time memory 7. called the
correlation time of the process.

16



Properties of GARCH(1,1) with Gaussian conditional pdf

ol =og+ oyx>_ + pio’. (10.11)

The random variable x;, can be written in term of ¢, by defining

X; = ;0. (10.12)

where 5, 1s an 11.d. random process with zero mean. and unit variance.
Under the assumption of Gaussian conditional pdf, 5, 1s Gaussian. By using
Eq. (10.12), one can rewrite Eq. (10.11) as

JE = o + (:x]f;rf_l — ﬁ]]af_l. (10.13)

Equation (10.13) shows that GARCH(1,1) and, more generally, GARCH(p. q)
processes are essentially random multiplicative processes. The autocorrela-
tion function of the random variable x;, R(t) = (x;x,..) is proportional to a
delta function o(7).

17



GARCH(1,1) as a Markovian process

What about the higher-order correlation of the process?|Following Boller-
slev [20], we will see that in a GARCH(1,1) process, x7 is a Markovian
random variable characterized by the time scale t = | In(o; + f1)|~!. Hence a
GARCH(1,1) process provides an interesting example of a stochastic process
X, that 1s second-order uncorrelated, but is higher-order correlated.

From Eq. (10.17), we see that the autocovariance of the square of the process
x; is described by the exponential form

cov(x7,x7,) = Ae ", (10.20)

where 4 = oy/(1 —B) and t = [In B!, and B = «; + f;. In a GARCH(1,1)

process the square of the process x? is a Markovian process characterized

by the time scale .

18



Properties of GARCH(1,1) with Gaussian conditional pdf

the variance of returns is characterized by a power-law correlation. Since
the correlation of the square of a GARCH(I.1) process 1s exponential, a
GARCH(I1,1) process cannot be used to describe this empirically observed
phenomenon properly. In spite of this limitation, GARCH(1,1) processes
are widely used to model financial time series. The limitation 1s overcome by
using values of B close to one in empirical analysis [1]. Values of B close to
one imply a time memory that could be of the order of months. The model's
values for the «y and [/} parameters — obtained in the period 1963 to 1986
by analyzing the daily data of stock prices of the Center for Research in
Security Prices (CRSP) — give oy = 0.07906 and f; = 0.90501 [1]. The sum
B = o + fy is then 0.98407, which implies a memory of x? corresponding
to t = 62.3 trading days. Such a long time memory in the square of returns
mimics in an approximate way the power-law correlation of this variable in
a finite time window.

19



Properties of GARCH(1,1) with Gaussian conditional pdf

Another key aspect of the statistical properties of the GARCH(1,1) process
1s 1ts behavior for different time horizons. For finite variance GARCH(1,1)
processes, the central limit theorem applies and one expects that the tempo-
ral aggregation of a GARCH(1.1) process progressively implies a decrease
in the leptokurtosis of the process. Drost and Niyman [43] carried out a
quantitative study ot this problem. They were able to show that a ‘tempo-
ral aggregation” of a GARCH(1,1) process is still a GARCH(1,1) process,
but 1t 1s characterized by different control parameters. Specifically, when a

20



Aggregated GARCH(1,1)

GARCH(1,1) x; 1s ‘aggregated’ as

m—1

™= x (10.21)
i=0

[t can be shown that St(”” is also a GARCH(1,1) process characterized by

the control parameters [43]

| —B™

I—B | (10.22)
or(]m) = B™ — pim

where ™ € (0, 1) is the solution of the quadratic equation

ﬁ(m} [51Bm—l

=~ = _ . 10.23
1 + [ﬁ[m]]l 1+ i%[l _ Bzm—z]/[l _ BZ] 1 ﬁ]szm—z ( )

21
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Fig. 10.5. Aggregation of GARCH(1,1). Marks indicate the parameters %; and [

of a GARCH(1.1) model generated by doubling or halving the sampling interval.
The starting GARCH(1,1) processes are characterized by ff; = 0.8 and «; = 0.05,

0.1, 0.15, 0.19, 0.199, and 0.1999 (from bottom to top, respectively).

the attractor for all the GARCH(1,1) processes with finite
variance is the process characterized by o™ = 0, f™ = 0 — namely a

Gaussian process.
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Properties of GARCH(1,1) with Gaussian conditional pdf

In summary, for any GARCH(1,1) process, temporal aggregation implies

that the unconditional pdf of the process presents a degree of leptokurtosis
that decreases when the time horizon between the variables increases. Unfor-

tunately, the knowledge of the behavior of o™ and ™ for any value of m
1s not sufficient to determine the behavior of the probability of return to the
origin of a GARCH(1,1) process. We investigate this function numerically
in the next section, where we compare empirical findings and GARCH(1.,1)
simulations.

23
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Fig. 10.6. Comparison of the empirical pdf measured from high-frequency S&P 500
data with At = | minute with the unconditional pdf of a GARCH (1.1) process
characterized by o, = 2.30 X 1072, 2y = 0.09105, and p1 = 0.9 (Gaussian conditional
probability density). The agreement is good for more than four decades.
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Fig. 10.7. Scaling properties of a GARCH(1,1) stochastic process (black squares),
with the same control parameters as in Fig. 10.6. The scaling of the GARCH(1.1)
process fails to describe the empirical behavior observed in the S&P 500 high-
frequency data (which are also shown for comparison as white circles). Note that
the slope 0.53 1s extremely close to the Gaussian value of 0.5, indicating that the
scaling 1s close to the scaling of a Gaussian process.



Summary

ARCH and GARCH processes are extremely interesting classes ot stochastic
processes. They are widely used in finance, and may soon be used in other
disciplines. Concerning high-frequency stock market data, ARCH/GARCH
processes with Gaussian conditional pdf are able to describe the pdf of price
changes at a given time horizon, but fail to describe properly the scaling
properties of pdfs at different time horizons.

Open questions concerning this class of stochastic processes include:

(1) What 1s the form of the asymptotic pdf of the ARCH and GARCH pro-
cesses characterized by a given conditional probability density function
fe(x)?

(11) What is the nature of the scaling property of the probability of return
to the origin as a function of the values of the control parameters and
of the shape of the conditional probability density function?



Thank you for your attention!
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