

CMS Physics Days: Opportunities in special runs during Run 3

Proton-Oxygen collisions with forward detectors

08 November 2024 Michael Pitt (CERN)

michael.pitt@cern.ch

- Accelerating Oxygen ions at the LHC
- Forward proton and neutron tagging at the LHC
- Constraining models of hadronic interactions
- Determination of nuclear geometry

Accelerating Oxygen ions at the LHC

Motivation

Oxygen ions at the LHC

- Oxygen ions (^{16}O) will be accelerated at the LHC for the first time.
- p0 run is scheduled to take place in July 2025, with a run duration of a few days
- The main goal of the run is to provide input for cosmic ray modeling

 Jul

 25
 26
 27
 28

 16
 23
 30
 ZDCs out 7

 0 ion setting up
 VdM program

 T51
 VdM program

 MD 1
 0-0 & p-0 lons run

Constrain hadronic models with pO collisions

Opportunities of OO and pO collisions at the LHC

- Discussed in 2021 at a dedicated workshop at CERN (<u>http://cern.ch/OppOatLHC</u>)
- Summary available here 2103.01939
- The main interest for p-O collisions comes from LHCb and LHCf.

Constrain hadronic models with pO collisions

Extending current research program

 Besides the standard research program involving pO interactions, we suggest utilizing the forward proton and forward neutron detectors to expand the probed phase-space

Forward proton and neutron tagging at the LHC

Forward detectors at the LHC

 CMS experiment is equipped with both forward neutron & proton detectors at about 140 m / 220 m from the IP, respectively on both sides.

Forward neutron detector

- The Zero Degree Calorimeter (ZDC) aims to detect forward neutral particles produced during heavy ion (AA or pA) collisions
- Located in the Target Absorber for Neutrals (TAN) ~ 140 m from the IP

Granularity of the ECAL section will be reduced after Run3 (due to available space)

- Precision Proton Spectrometers (PPS):
- Intact protons lose a fraction of momentum ($\xi = \Delta p_Z/p$) and are scattered at small angles

 $(\theta_x^*, \theta_y^*) \rightarrow$ they are deflected away from the beam and measured by the spectrometers

• Detector performance rely on different parameters:

Crossing angle (the less the better)

• Detector performance rely on different parameters:

- Crossing angle (the less the better)
- Collimation scheme
 - TCL (open/closed)
 - Minimal distance to the beam

• Detector performance rely on different parameters:

- Crossing angle (the less the better)
- Collimation scheme
 - TCL (open/closed)
 - Minimal distance to the beam
- Intensity (LHCf requires mu~0.01
 and >2us bunch spacing, L~nb⁻¹)

Detector performance rely on different parameters:

Can be as low as we want Crossing angle (the less the better)

- Collimation scheme
 - TCL (open/closed)
 - Minimal distance to the beam
- Intensity (LHCf requires mu~0.01 and >2us bunch spacing, L~nb⁻¹)
- Pileup is determined by LHCf
- So far, the verticals are not considered

Constraining models of hadronic showers using pO collisions

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Warning

- Not all kinematic variables are modeled by the event generators
- Once the acceptances are determined, we should reach out to MC authors regarding the measured distributions and update predictions

• Event kinematics (like track multiplicity) constrain hadronic models

nTracks = *charged particles with pT*>1GeV *and* $|\eta|$ <2.5

• Event kinematics (like track multiplicity) constrain hadronic models

nTracks = *charged particles with pT*>1GeV *and* $|\eta|$ <2.5

- Event kinematics (like track multiplicity) constrain hadronic models
- Diffractive events, ~20%, (with forward protons) often lacks large central activity:

nTracks = *charged particles with pT*>1GeV *and* $|\eta|$ <2.5

- Event kinematics (like track multiplicity) constrain hadronic models
- Diffractive events, ~20%, (with forward protons) often lacks large central activity:
- Proton kinematics are weakly constrained in hadronic models

- Event kinematics (like track multiplicity) constrain hadronic models
- Diffractive events, ~20%, (with forward protons) often lacks large central activity:
- Proton kinematics are weakly constrained in hadronic models
- Even with small fiducial region (2.5%<ξ<15%), sizable differences in expected rates (±25%):

QGSJETII-04

Generatoracc.σ[mb]EPOS-LHC2.24%75.63Pythia81.40%498.0Sibyll2.90%76.66

2.60%

77.03

Forward neutrons in p-O collisions

- Neutrons can also be produced via pion exchange
- Forward neutron distributions in ZDC is an additional observable to study hadronic interactions

Pvthia8.3 Anganty

EPOS-LHC

— Sibyll 2.3d
— QGSJETII-04

Normalized

10

 10^{-2}

 10^{-3}

10⁻⁴

Ldt = 1 pb'

2000

1000

3000

4000

5000

6000

Had. Energy in ZDC [GeV]

7000

8000

5 0 0.5 1 1.5 2 2.5 3 Number of neutrons in ZDC+ (proton side)

Forward neutrons in p-O collisions

- Neutrons can also be produced via pion exchange
- Forward neutron distributions in ZDC is an additional observable to study hadronic interactions

Constraining ion geometry through its fragments

• Neutrons can be tagged also in the oxygen side

- Neutrons can be tagged also in the oxygen side
- Different ZDC energy spectra for diffractive and non diffractive events

- Neutrons can be tagged also in the oxygen side
- <u>https://pythia.org/latest-manual/Heavylons.html</u>

Nucleus Models - the nuclear geometry

• GLISSANDO Woods-Saxon (<u>0710.5731</u>, <u>1310.5475</u>):

$$\rho(r) = \frac{\rho_0}{1+e^{\frac{r-R}{a}}}$$
 with a=0.54fm, R=1.1A^(1/3) - 0.656 A^(-1/3)

- Neutrons can be tagged also in the oxygen side
- <u>https://pythia.org/latest-manual/Heavylons.html</u>

Nucleus Models - the nuclear geometry

• GLISSANDO Woods-Saxon (<u>0710.5731</u>, <u>1310.5475</u>):

$$\rho(r) = \frac{\rho_0}{1+e^{\frac{r-R}{a}}}$$
 with a=0.54fm, R=1.1A^(1/3) - 0.656 A^(-1/3)

Harmonic Ocsilator shell

$$\rho(r) = \frac{4}{\pi^{\frac{3}{2}}C^{3}} \left(1 + \frac{(A-4)r^{2}}{6C^{2}} \right) e^{-\frac{r^{2}}{C^{2}}} \text{ with } C = \left(\frac{5}{2} - \frac{4}{A}\right)^{-1} \left(\langle r^{2} \rangle_{A} - \langle r^{2} \rangle_{p} \right), \langle r^{2} \rangle_{A} = 0.77 \text{ fm}^{2}$$

- Neutrons can be tagged also in the oxygen side
- https://pythia.org/latest-manual/Heavylons.html

Nucleus Models - the nuclear geometry

GLISSANDO Woods-Saxon (<u>0710.5731</u>, <u>1310.5475</u>):

$$\rho(r) = \frac{\rho_0}{1+e^{\frac{r-R}{a}}}$$
 with a=0.54fm, R=1.1A^(1/3) - 0.656 A^(-1/3)

Harmonic Ocsilator shell

$$\rho(r) = \frac{4}{\pi^{\frac{3}{2}}C^{3}} \left(1 + \frac{(A-4)r^{2}}{6C^{2}} \right) e^{-\frac{r^{2}}{C^{2}}} \text{ with } C = \left(\frac{5}{2} - \frac{4}{A}\right)^{-1} \left(\langle r^{2} \rangle_{A} - \langle r^{2} \rangle_{p} \right), \langle r^{2} \rangle_{A} = 0.77 \text{fm}^{2}$$

Gaussian model

The Gaussian model parametrizes the nuclear radial density as a Gaussian distribution with Charge radius of 7.7fm (reasonable for O16)

- Neutrons can be tagged also in the oxygen side
- https://pythia.org/latest-manual/Heavylons.html

Nucleus Models - the nuclear geometry

• GLISSANDO Woods-Saxon (<u>0710.5731</u>, <u>1310.5475</u>):

$$\rho(r) = \frac{\rho_0}{1+e^{\frac{r-R}{a}}}$$
 with a=0.54fm, R=1.1A^(1/3) - 0.656 A^(-1/3)

Harmonic Ocsilator shell

$$\rho(r) = \frac{4}{\pi^{\frac{3}{2}}C^{3}} \left(1 + \frac{(A-4)r^{2}}{6C^{2}} \right) e^{-\frac{r^{2}}{C^{2}}} \text{ with } C = \left(\frac{5}{2} - \frac{4}{A}\right)^{-1} \left(\langle r^{2} \rangle_{A} - \langle r^{2} \rangle_{p} \right), \langle r^{2} \rangle_{A} = 0.77 \text{fm}^{2}$$

Gaussian model

The Gaussian model parametrizes the nuclear radial density as a Gaussian distribution with Charge radius of 7.7fm (reasonable for O16)

• Alpha clustering

Ab initio calculations <u>CERN-TH-2024-021</u> can be implemented in Pythia (Work in progress)

- Neutrons can be tagged also in the oxygen side
- https://pythia.org/latest-manual/Heavylons.html

Many observables are sensitive to nuclear geometry

- Neutrons can be tagged also in the oxygen side
- https://pythia.org/latest-manual/Heavylons.html

Many observables are sensitive to nuclear geometry

How distinguish differences between hadronic interactions and nuclear geometry?

Ion tagging at the LHC

- Calculations has been made for Oxygen case but can be extended to any other ion species.
- Ion tagging was discussed in the past (<u>1903.09498</u>, <u>1405.4555</u>)
- In *pO* collisions Oxygen ion breakup into protons, neutrons and nuclei fragments

- Pomeron and pion exchange can be tagged by **proton / neutron** detectors
- On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.

- Pomeron and pion exchange can be tagged by **proton / neutron** detectors
- On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.

- Pomeron and pion exchange can be tagged by **proton / neutron** detectors
- On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.

- Pomeron and pion exchange can be tagged by proton / neutron detectors
- On the ion side, oxygen ions will disintegrate, protons and neutrons will carry half of the beam momentum and ion remnants can form various isotopes.

Physics with Ion tagging – α clusters

- Can we tag alphas? $\xi_{RP,\alpha} = 1 \left(\frac{Z_O}{A_O}\right) \left(\frac{A_\alpha}{Z_\alpha}\right) = 0$
- Several channels exists, one example:
 - > 160 \rightarrow 11C + 3n + 2p
 - \succ 160 \rightarrow 11C + 1n + α
 - (11C has half-life 20 min, ξ ~8.3%)

Physics with Ion tagging – α clusters

- Can we tag alphas? $\xi_{RP,\alpha} = 1 \left(\frac{Z_O}{A_O}\right) \left(\frac{A_\alpha}{Z_\alpha}\right) = 0$
- Several channels exists, one example:
 - > 160 \rightarrow 11C + 3n + 2p
 - $> 160 \rightarrow 11C + 1n + \alpha$
 - (11C has half-life 20 min, ξ ~8.3%)
 - $160 \rightarrow 150 + 1n$ with $\xi=6\%$

Physics with lon tagging – α clusters

- Can we tag alphas? $\xi_{RP,\alpha} = 1 \left(\frac{Z_O}{A_O}\right) \left(\frac{A_\alpha}{Z_\alpha}\right) = 0$
- Several channels exists, one example:
 - > 160 \rightarrow 11C + 3n + 2p
 - \geq 160 \rightarrow 11C + 1n + α
 - (11C has half-life 20 min, ξ~8.3%)
 - $160 \rightarrow 150 + 1n$ with $\xi=6\%$
 - $160 \rightarrow 7Be + 1n + 2\alpha \xi = 12.5\%$

In 1n channel, when alphas are emitted more isotopes with 1n detected

Physics with lon tagging – α clusters

- Can we tag alphas? $\xi_{RP,\alpha} = 1 \left(\frac{Z_O}{A_O}\right) \left(\frac{A_\alpha}{Z_\alpha}\right) = 0$
- Several channels exists, one example:

Full clustering

0.16

- Fragment composition can be
 160 measured with some uncertainties
- (11Ch · Ion breakup at high energy currently
- ¹⁶⁰ lacks sufficient experimental input
- $160 \rightarrow 7Be + 1n + 2\alpha \xi = 12.5\%$

In 1n channel, when alphas are emitted more isotopes with 1n detected

Physics with Ion tagging – α clusters

• Can we access ion geometry through elastic proton scattering?

Physics with Ion tagging – α clusters

• Can we access ion geometry through elastic proton scattering?

Participation of PPS in pO/OO runs

(alignment during the O setup days?)

Physics with Ion tagging – \alpha clusters

- Can we access ion geometry through elastic proton scattering?
 - Participation of PPS in pO/OO runs (alignment during the O setup days?)
 - Which LHC optics will allow acceptance of elastic protons?

Physics with Ion tagging – \alpha clusters

- Can we access ion geometry through elastic proton scattering?
 - Participation of PPS in pO/OO runs (alignment during the O setup days?)
 - Which LHC optics will allow acceptance of elastic protons?
 - Calibration of verticals (it can be done in elastic pp collisions, but how to do it in pO)

Summary

Proton/Neutron tagging

- Participation of forward proton/neutron detectors in p-O / O-O collisions improves modeling of (in)elasticity in proton – Air collisions
- Proton/Neutron tagging in pO covers a complementary phase-space to the standard program (diffraction, pion exchange, ...)

Probing nuclear geometry through ion tagging

- Forward proton detectors are sensitive to ion remnants.
- Can a combined measurement of forward proton/neutron shade light on ion disintegration?
- Can elastic interaction be measured? Photons from the lowest Oxygen exited state (8.8 MeV <u>NNDC</u>)?
- Challenges tracking with high Q, multiple scattering, have the LHC with the right settings

Feedback is welcomed: feel free to contact

Forward detectors – commissioning

Precision Proton Spectrometer

 Only if LHC optics changes (e.g. high beta*), a special alignment run is required (2-3 bunches / beam) to approximately 12h, where vertical detectors are used with horizontal to measure the beam center

Zero Degree Calorimeter

- ZDC is not installed during standard pp runs
- Before data taking: Need access, installation often takes
 ~ 1 day (usually after MD/TS)
- After data taking access is needed to deinstall the detectors (offer done during the YETS)

Forward neutrons in p-O collisions

- Photons can be produced in non-diffractive events
- Forward photon distributions in ZDC is additional observable to study hadronic interactions

Forward protons / neutrons in p-O collisions

- High energy protons and neutrons emerge from p-O interactions
- By measuring the production rates, and event kinematics one can constrain their modeling

Example of forward detectors performance

Proton Detectors (PPS)

- Operated during standard *pp* runs (high PU)
 - Measured proton momentum loss ($\xi = \Delta p_Z/p$) in range between 2.5% 15% with unprecedented resolution
- In CMS, an additional vertical detectors can be inserted at very low PU, and mostly efficient for high β^* LHC optics ($\xi \sim 0$)

Zero Degree Calorimeter

- Operated at very low pileup can sustain integrated luminosity up to ~ 1fb⁻¹ and at pileup rate up to μ ~ several
 - Measures neutral particles with |η|>8.3 (can resolve single neutrons)
 - Neutron peaks are fitted with 28% width (res. + smearing)
 - EM has 5 horizontal divisions (can be up to 3 in Run 4)

Protons vs geometry

- Diffraction and ion geometry we can tag diffractive protons in pO collisions and to look at event kinematics or oxygen remnants
- From the simulation it seems that diffraction is similarly modeled with respect to different geometries

LHC Run schedule

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

Last update: November 24