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o Introduction and motivations

o Quasiparticles and their link to the Wigner formalism in 
quantum field theories

o Kinetic like method to extract second order viscous 
hydrodynamics, and its transport coefficients
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Motivations

What we do (now, mostly)

• Initial conditions
(Monte Carlo Glauber, 
color glass condensate, 
etc…)

• Pre-hydro smoothening
(gaussians, free-streaming 
partons, etc…)

• Hydrodynamics
(ideal, second-order, 
aHydro, etc…)

• Hadronization
(direct freeze-out or 
rescattering)



• The main equations are rather solid:

  𝜕𝜇𝑇𝜇𝜈 = 0 (also     𝜕𝜇𝐽𝜇 = 0 , BES high density systems?)

• The equation of state is enough for ideal hydrodynamics:

𝑇𝜇𝜈 =  ℰ 𝑢𝜇𝑢𝜈 − 𝒫Δ𝜇𝜈 𝐽𝜇 = 𝜌𝑢𝜇

(6 degrees of freedom, 5 conservation equations, 1 EOS)

• The viscous corrections are still needed (AdS-CFT, experiments…)
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Motivations
Hydrodynamics as an intermediate step between the initial and final stages

Δ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈
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Motivations
It would be nice to have a single, consistent way to extract hydrodynamics

𝑢𝜇𝑇𝜇𝜈 ≝ ℰ 𝑢𝜈

• General decomposition (ideal and non-ideal part):

𝑇𝜇𝜈 = ℰ 𝑢𝜇𝑢𝜈  − 𝒫 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈 𝐽𝜇 = 𝜌 𝑢𝜇 + 𝜈𝜇 

• Hydrodynamics ⇒ how to treat the rest,

eg 𝜏𝜋 ሶ𝜋 𝜇𝜈 + 𝜋𝜇𝜈 = 2𝜂 𝜎𝜇𝜈 + ⋯ (other second order terms)

• Complications using the same framework as the EOS (integrals of commutators)
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How to fix the transport coefficients?
(kinetic theory would be handy)

The relativistic Boltzmann equation
covariant momentum integral

𝑔

2𝜋 3
න𝑑4𝑝 2 Θ(𝑝0)𝛿(𝑝2 − 𝑚2) ≝ න

𝒑

 

𝑇𝜇𝜈 = න
𝒑

𝑝𝜇𝑝𝜈𝑓 

𝑢 ⋅ 𝜕𝑓 = ሶ𝑓 = −
𝑝 ⋅ ∇𝑓

𝑝 ⋅ 𝑢
 −

𝐶[𝑓]

(𝑝 ⋅ 𝑢) exact equations

many ways to extend, see G Denicol, J.Phys. G41 (2014) no.12, 124004  

𝑝 ⋅ 𝜕𝑓 = 𝒞 𝑓 = −
(𝑝 ⋅ 𝑢)

𝜏𝑒𝑞
𝛿𝑓 

RTA

𝛿𝑓 ≃ −
𝜏𝑒𝑞

𝑝 ⋅ 𝑢
𝑝 ⋅ 𝜕𝑓0

⇒ 𝜋𝜇𝜈 = න
𝒑

 

𝑝⟨𝜇𝑝𝜈⟩𝛿𝑓 ≃ −𝜏𝑒𝑞 න
𝒑

𝑝⟨𝜇𝑝𝜈⟩

𝑝 ⋅ 𝑢
𝑝 ⋅ 𝜕 𝑒−𝛽 𝑝⋅𝑢 = 2 𝜏𝑒𝑞 𝛽𝜋  𝜎𝜇𝜈also

after some algebra
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𝔣𝑟
𝜇1⋯𝜇𝑙 = න

𝒑

𝑝 ⋅ 𝑢 𝑟 𝑝 𝜇1 ⋯⟨𝜇𝑙⟩𝑓𝒪 𝜇1 ⋯⟨𝜇𝑙⟩ = Δ𝛼1

𝜇1 ⋯ Δ𝛼𝑙

𝜇𝑙 𝒪𝛼1⋯𝛼𝑙 a convenient basis

𝜕𝜇𝑢𝜈 = 𝑢𝜇 ሶ𝑢𝜈 + 𝜎𝜇𝜈 + 𝜔𝜇𝜈 +
1

3
𝜃Δ𝜇𝜈

 

ሶ𝒫⟨𝜇⟩⟨𝜈⟩ + 𝐶−1
⟨𝜇⟩⟨𝜈⟩

= 2 𝒫 + Π 𝜎𝜇𝜈 +
5

3
𝜃 𝒫 + Π Δ𝜇𝜈 −

5

3
𝜃𝜋𝜇𝜈 − 2𝜋𝛼

(𝜇
𝜎 

𝜈)𝛼
+ 2𝜋𝛼

(𝜇
𝜔 

𝜈)𝛼

    −∇𝛼𝔣−1
𝛼 𝜇 𝜈

− 𝜎𝛼𝛽 +
1

3
𝜃Δ𝛼𝛽 𝔣−2

𝛼𝛽𝜇𝜈

a popular decomposition of the degrees of freedom

lots of self interactions in the exact evolution

How to fix the transport coefficients?
(kinetic theory would be handy)

for instance ℰ = 𝔣2, න 𝒫⟨𝜇⟩⟨𝜈⟩ = − 𝒫 + Π Δ𝜇𝜈 + 𝜋𝜇𝜈 = 𝔣0
𝜇𝜈

,

L T, G Vujanovich, J Noronha, U Heinz, Phys. Rev. D 99, 016009           A Jaiswal, R Ryblewski,  M Strickland, Phys. Rev. C 90, 044908 



𝒫 = 
𝑖

 

𝒫𝑖 = 𝑇 
𝑖

 

𝒩𝑖
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Shortcomings of the relativistic kinetic theory 
(thermodynamic consistency)

L T, A Jaiswal,  R Ryblewski, Phys. Rev. D 95, 054007

Ideal equation of state

strongly interacting liquid??

(in the Boltzmann limit)

Quasiparticles instead (a historic look)

• Medium dependent mass(-es)

• Needs a bag (to fit the EOS)

• Non-equilibrium bag too
(local conservation of charges)

• Misunderstandings? (positivity of the 𝑓𝑖, 𝒑

 
𝑝𝜇 σ𝑖

 𝒞𝑖 = 0)

𝑇𝜇𝜈 = 𝑇kin
𝜇𝜈

+ 𝐵𝜇𝜈

𝑝𝜇𝜕𝜇𝑓𝑖 +
1

2
𝜕𝜇𝑀𝑖

2 𝜕𝑓

𝜕𝑝𝜇
= −

(𝑝𝜇𝑢𝜇)

𝜏𝑒𝑞
𝛿𝑓𝑖



𝑇𝜇𝜈 = tr ො𝜌 T𝜇𝜈 , J𝜇 = tr ො𝜌 መ𝐽𝜇
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Digression about quantum field theory 
(and how kinetic theory stems from it)

Quantum operators

• Relativistic Kinetic Theory. Principles and Applications - De Groot, S.R. et al. 
Amsterdam, Netherlands: North-Holland ( 1980)

From the 
Lagrangian density

መℒ  = 
𝑖

 
መℒ0,𝑖

 

+ መℒint
 

𝑇𝜇𝜈 = 
𝑖

 

𝑇0,𝑖
𝜇𝜈

+ 𝑇int
𝜇𝜈

one has

for scalars 𝑇0
𝜇𝜈

= න 𝑑4𝑝 𝑝𝜇𝑝𝜈 𝑊 𝑥, 𝑝 ,  𝐽𝜇 = 𝑞 න 𝑑4𝑝 𝑝𝜇W x, p ,

with 𝑊 𝑥, 𝑝 =
2

2𝜋 4
න 𝑑4𝑣 𝑒−𝑖𝑝⋅𝑣 tr ො𝜌 Φ†(𝑥 + 𝑣/2) Φ(𝑥 − 𝑣/2)
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Digression about quantum field theory 
(and how kinetic theory stems from it)

𝑇𝜇𝜈 = 
𝑖

 

𝑇0,𝑖
𝜇𝜈

+ 𝑇int
𝜇𝜈

𝑇0
𝜇𝜈

= න 𝑑4𝑝 𝑝𝜇𝑝𝜈 𝑊 𝑥, 𝑝 , 𝐽𝜇 = 𝑞 න 𝑑4𝑝 𝑝𝜇W x, p ,

𝑊 𝑥, 𝑝 =
2

2𝜋 4
න 𝑑4𝑣 𝑒−𝑖𝑝⋅𝑣 tr ො𝜌 Φ†(𝑥 + 𝑣/2) Φ(𝑥 − 𝑣/2)

• T. S. Biro and A. Jakovac, Emergence of Temperature in Examples and Related Nuisances in Field Theory, 

Springer Briefs in Physics (2019)
• Relativistic Kinetic Theory. Principles and Applications - De Groot, S.R. et al. Amsterdam, Netherlands: North-Holland 

( 1980)

Type equation here. ⋯
From the Klein-Gordon
equation

overdetermined system
 of equations
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Better to introduce quasiparticles here
(without assuming the kinetic limit)

Single weight
 for the current

𝑊𝑏 𝑥, 𝑝 =  
𝑔𝑞

2𝜋 3
2Θ 𝑝0 𝛿 𝑝2 − 𝑀2(𝑥)  𝑓𝑞(𝑥, 𝑝)

  +
𝑔𝑞

2𝜋 3
2Θ −𝑝0 𝛿 𝑝2 − 𝑀2(𝑥)  𝑓 ത𝑞(𝑥, −𝑝)

no approximation!

therefore 𝐽𝜇 = 𝑞 න 𝑑4𝑝 𝑝𝜇𝑊𝑏 = 𝑞
𝑔𝑞

2𝜋 3
න

𝑑3𝑝

𝐸𝑝
 𝑝𝜇 𝑓− , 𝑓− = 𝑓𝑞 − 𝑓 ത𝑞 .

Ansatz

න 𝑑4𝑝 𝑝𝜇𝒞𝑏
− = 0

𝑝 ⋅ 𝜕𝑓 
± +

1

2
𝜕𝜇𝑀 

2
𝜕𝑓±

𝜕𝑝𝜇
= −

(𝑝 ⋅ 𝑢)

𝜏𝑒𝑞
𝛿𝑓 

±

From the baryon number conservation

the first approximation
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Better to introduce quasiparticles here
(without assuming the kinetic limit)

not only baryon
carriers, also

𝑊 𝑥, 𝑝 =  
𝑔

2𝜋 3
2Θ 𝑝0 𝛿 𝑝2 − 𝑚2(𝑥)  𝑓1(𝑥, 𝑝)

  +
𝑔

2𝜋 3
2Θ −𝑝0 𝛿 𝑝2 − 𝑚2(𝑥)  𝑓2(𝑥, −𝑝)

𝑇𝜇𝜈 = 𝑞 න 𝑑4𝑝 𝑝𝜇𝑝𝜈 𝑊 + 𝑊𝑏  + 𝐵𝜇𝜈 = න
𝒑

 

𝑝𝜇𝑝𝜈 𝑓  + න
𝒒

 

𝑝𝜇𝑝𝜈 𝑓+ + 𝐵𝜇𝜈

and also

𝜕𝜇𝐵𝜇𝜈 +
𝑢𝜇

𝜏𝑒𝑞
𝛿𝐵𝜇𝜈 + 𝑚𝜕𝜈𝑚 න

𝒑

 

𝑓 + 𝑀𝜕𝜈𝑀 න
𝒒

 

𝑓+ = 0

𝑝 ⋅ 𝜕𝑓 +
1

2
𝜕𝜇𝑚 

2
𝜕𝑓  

𝜕𝑝𝜇
= −

(𝑝 ⋅ 𝑢)

𝜏𝑒𝑞
𝛿𝑓 

now, instead

the second one

convenient,
non necessary
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Thermodynamics fixes the equilibrium bag 

density fixes one mass

L T, A Jaiswal,  R Ryblewski, Phys. Rev. D 95, 054007

𝑓0
± = 𝑒𝑞𝛼 ± 𝑒−𝑞𝛼 𝑒−𝛽(𝑝⋅𝑢)

𝑓0
± = 𝑒−𝛽(𝑝⋅𝑢)

𝜌 = 𝜌0 =
𝑞𝑔𝑞

𝜋2
 sinh q𝛼

𝛽2M2 𝛼, 𝛽

𝛽3
K2 𝛽𝑀 𝛼, 𝛽 = 𝜌𝑒𝑞(𝛼 = 𝜇/𝑇, 𝛽 = 1/𝑇)

the sum of energy and pressure fixes the other, their subtraction fixes the equilibrium bag

ℰ0(𝛼, 𝛽) + 𝒫0(𝛼, 𝛽) = ℰ𝑒𝑞(𝛼, 𝛽) + 𝒫𝑒𝑞(𝛼, 𝛽)
1

𝛽3 𝐵𝑒𝑞
𝜇𝜈

= 𝐵0 𝛼, 𝛽 𝑔𝜇𝜈
1

𝛽3

ℰ𝑒𝑞 𝛼, 𝛽 − 𝒫𝑒𝑞 𝛼, 𝛽 = ℰ0 𝛼, 𝛽 − 𝒫0 𝛼, 𝛽 + 2 𝐵0(𝛼, 𝛽)
1

𝛽3 after the mases are fixed
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Dynamics fixes the non-equilibrium bag 

𝜕𝜇𝐵𝜇𝜈 +
𝑢𝜇

𝜏𝑒𝑞
𝛿𝐵𝜇𝜈 + 𝑚𝜕𝜈𝑚 න

𝒑

 

𝑓 + 𝑀𝜕𝜈𝑀 න
𝒒

 

𝑓+ = 0

L T, A Jaiswal,  R Ryblewski, Phys. Rev. D 95, 054007

choosing the specific non-equilibrium bag

ሶ𝑏0 +
𝑏0

𝜏𝑒𝑞 
= 𝑏 ⋅ ሶ𝑢 − 𝜕 ⋅ 𝑏 + 𝑚 ሶ𝑚 න

𝒑

 

𝛿𝑓 + 𝑀 ሶ𝑀 න
𝒑

 

𝛿𝑓 
+ = 0

ሶ𝑏⟨𝜇⟩ +
𝑏 

𝜇

𝜏𝑒𝑞 
= −∇𝜇𝑏0 − 𝜃𝑏𝜇 − 𝑏 ⋅ 𝜕 𝑢𝜇 + 𝑚 ∇𝜇𝑚 න

𝒑

 

𝛿𝑓 + 𝑀∇𝜇𝑀 න
𝒑

 

𝛿𝑓 
+ = 0

𝛿𝐵 
𝜇𝜈 = 𝑏0𝑔𝜇𝜈 + 𝑏𝜇𝑢𝜈 + 𝑏𝜈𝑢𝜇 , 𝑏 ⋅ 𝑢 = 0

1

𝛽3

four-momentum
conservations

while, from the 
Gibbs-Duhem relations 

𝜕 
𝜈𝐵0

 + 𝑚𝜕𝜈𝑚 න
𝒑

 

𝑓0 + 𝑀𝜕𝜈𝑀 න
𝒒

 

𝑓0
+ = 0

second 
order
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Second order viscous hydrodynamics
(like the previous paper)

L T, A Jaiswal,  R Ryblewski, Phys. Rev. D 95, 054007

Keeping all the native self-interactions from the generalization of 

as well as the 𝝂𝝁evolution, plugging an approximation for the𝒇and 𝒇± 
in the non-hydrodynamic tensors. Namely

ሶ𝒫⟨𝜇⟩⟨𝜈⟩ + 𝐶−1
⟨𝜇⟩⟨𝜈⟩

= 2 𝒫 + Π 𝜎𝜇𝜈 +
5

3
𝜃 𝒫 + Π Δ𝜇𝜈 −

5

3
𝜃𝜋𝜇𝜈 − 2𝜋𝛼

(𝜇
𝜎 

𝜈)𝛼
+ 2𝜋𝛼

(𝜇
𝜔 

𝜈)𝛼

    −∇𝛼𝔣−1
𝛼 𝜇 𝜈

− 𝜎𝛼𝛽 +
1

3
𝜃Δ𝛼𝛽 𝔣−2

𝛼𝛽𝜇𝜈

• First order approximation in the gradients (from 𝛿𝑓 ≃ −𝜏𝑒𝑞[𝑝 ⋅ 𝜕𝑓0 + 𝑚𝜕𝑚𝜕 𝑝 𝑓0](𝑝 ⋅ 𝑢))

• Make the substitution (first order equations)

(the latter is to avoid mathematical instabilities)

𝜎𝜇𝜈 →
𝜋𝜇𝜈

2𝜂
, 𝜃 → −

Π

𝜁
,  ∇𝜇𝛼 →

𝜈𝜇

𝜅𝑏
.



15

Second order viscous hydrodynamics
Obtaining

All the transport coefficients sensitive to the equation of state 

ሶ𝜋⟨𝜇𝜈⟩ +
1

𝜏𝑒𝑞
𝜋𝜇𝜈  =

2𝜂

𝜏𝑒𝑞
 𝜎𝜇𝜈 − 2𝜋𝜆

⟨𝜇
 𝜔𝜈⟩𝜆 + 𝜏𝜋𝜋 𝜋𝜆

⟨𝜇
 𝜎𝜈⟩𝜆 + 𝛿𝜋𝜋 𝜃 𝜋𝜇𝜈 + 𝜆𝜋Π Π 𝜎𝜇𝜈

               +𝜏𝜋𝜈 𝜈⟨𝜇 ሶ𝑢𝜈⟩ - 𝛾𝜋𝜈  𝜈⟨𝜇 ∇𝜈⟩𝛼 − Δ𝛼𝛽
𝜇𝜈

∇𝜆 𝑙𝜋𝜈 Δ𝜆𝛼 𝜈𝛽 +Δ𝜆𝛽  𝜈𝛼

 

ሶΠ +
1

𝜏𝑒𝑞
Π = −

𝜁

𝜏𝑒𝑞
 𝜃 + 𝛿ΠΠ 𝜃Π + 𝜆Π𝜋 𝜎: 𝜋 − 𝜏Π𝜈 ሶ𝑢 ⋅ 𝜈 + lΠ𝜈 𝜕 ⋅ 𝜈

 +𝑛Π𝜈 𝜈 ⋅ ∇ 𝛼 +
5

3
 ∇ ⋅ 𝑙𝜋𝜈  𝜈

 

ሶ𝜈⟨𝜇⟩ +
1

𝜏𝑒𝑞
 𝜈𝜇 = −

 𝜅𝑏

𝜏𝑒𝑞
 ∇𝜇𝛼 + 𝜏𝜈Π Π ሶ𝑢𝜇 + 𝑐𝜋Π ∇𝜇Π − Δ𝛼

𝜇
𝜕𝛽𝜋𝛼𝛽 + 𝛿𝜈𝜈 𝜃𝜈𝜇

                                           +𝑐𝜈Π Π∇𝜇𝛼 + Δ𝛼
𝜇

∇𝛽 𝑙𝜈Π ΠΔ𝛼𝛽 − 𝜋𝜇𝜈 − 𝜆𝜈𝜈 𝜎𝜇𝜆𝜈𝜆 + 𝜔𝜇𝜆𝜈𝜆 



Summary and outlook
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• We generalized the quasiparticle treatment for 𝜇 ≠ 0 

• Second order transport coefficients, thermodynamic consistency

• Link to quantum field theory, and possible further generalizations

Thank you for your attention!



Back up slides
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Type equation here.

Exact solutions in 1+1 dimensions
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Type equation here.

Simplest case: free streaming

Proper classical limit

𝑤 = 𝑧𝑘0 − 𝑡𝑘𝑧

10.1103/PhysRevD.108.076022

https://doi.org/10.1103/PhysRevD.108.076022


Type equation here.

Classical limit of the exact solutions
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Simplest case: free streaming

𝜀 =
ℏ

𝐴
 𝑤 =

𝑤

𝐴

Type equation here.Proportional to the real (hence even in 𝒘)
and imaginary (odd) part of the Fourier transform

10.1103/PhysRevD.108.076022

https://doi.org/10.1103/PhysRevD.108.076022


Type equation here.

Classical limit of the exact solutions
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Type equation here.

Simplest case: free streaming

Particles
 (similar for the antiparticles)𝜒 = 2

𝑘2 − 𝑚2

𝑘2 − 𝑚𝑇
2

𝜀 =
ℏ

𝐴
 𝑤 =

𝑤

𝐴 Type equation here.

10.1103/PhysRevD.108.076022

https://doi.org/10.1103/PhysRevD.108.076022


Type equation here.

Numerical results
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Simplest case: free streaming

𝜀 =
ℏ

𝐴
, 𝑤 =

𝑤

𝐴

Type equation here.

Type equation here.

10.1103/PhysRevD.108.076022

𝐴 = 𝑇0𝜏0 ,𝜒 = 2
𝑘2 − 𝑚2

𝑘2 − 𝑚𝑇
2  ,

https://doi.org/10.1103/PhysRevD.108.076022


Numerical results
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Simplest case: free streaming

The (non-trivial part of the)  integrand of 𝓟𝑳

10.1103/PhysRevD.108.076022

https://doi.org/10.1103/PhysRevD.108.076022


Numerical results
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Simplest case: free streaming

The (non trivial part of the)  integrand of 𝓟𝑳

10.1103/PhysRevD.108.076022

https://doi.org/10.1103/PhysRevD.108.076022


Numerical results

24

Simplest case: free streaming

The (non trivial part of the)  integrand of 𝓟𝑳

10.1103/PhysRevD.108.076022

https://doi.org/10.1103/PhysRevD.108.076022
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• Conformal equation of state (equilibrium), W𝑒𝑞. =
2𝛿 𝑘2

2𝜋 3 𝑒
−

1

𝑇 𝜏
𝑘𝑇

2+
𝑤 

2

𝜏2

•  Constant shear-viscosity over entropy ratio: 𝜏𝑅 = 5 ҧ𝜂/T

• ҧ𝜂 = 3/(4𝜋)

• 𝜏0 = 1/4 fm/c, T0 = 0.6 GeV, two possible initial conditions:

𝑊0
𝑖𝑠𝑜 =

2

2𝜋 3 2𝜋𝜎
e

−
𝑣2

2𝜏0
2𝜎 𝑒

−
1
𝑇0

𝜎=𝑘𝑇
2+

𝑤2

𝜏0
2

𝑊0
𝑎 =

2

2𝜋 3 2𝜋𝜎
e

−
𝑣2

2𝜏0
2𝜎 𝑒

−
1
𝑇0

𝜎=𝑘𝑇
2+

𝑤2

𝜏0
2

[1 − 3𝑃2

𝑤

𝜏0 𝜎 
]

𝒫0 = 𝒫eq. =
1

3
 ℰ

𝒫𝑇
0 =

8

5
𝒫eq. 

𝒫𝐿
0 = −

1

5
𝒫eq. 

10.1103/PhysRevD.108.036015

https://doi.org/10.1103/PhysRevD.108.036015


Resummed moments

𝜙𝑛
𝜇1⋯𝜇𝑠 𝑥, 𝜁 = න

𝑑4𝑘

2𝜋 4 𝑘 ⋅ 𝑢 𝑛 𝑒−𝜁 𝑘⋅𝑢 2
𝑘 𝜇1 ⋯ 𝑘 𝜇𝑠 𝑊 𝑥, 𝑘

Making use of regularized moments

Particularly convenient, their version in the Bjorken (0+1)-d symmetric expansion, 
with RTA  𝑘 ⋅ 𝜕 𝑊 = −(𝑘 ⋅ 𝑢)/𝜏𝑅 𝛿𝑊

2610.1103/PhysRevD.108.036015

well defined set of equations

𝐿𝑛 = 𝜙2
𝜇1⋯𝜇2𝑛𝑧𝜇1

⋯ 𝑧𝜇2𝑛 
, 𝑇𝑛 = 𝜙2

𝜇1⋯𝜇2𝑛𝛼𝛽
𝑧𝜇1

⋯ 𝑧𝜇2𝑛 
𝑥𝛼𝑥𝛽

ሶ𝐿𝑛 +
1

𝜏𝑅
(𝐿𝑛 − 𝐿𝑛

𝑒𝑞.
) = −

2𝑛 + 1

𝜏
𝐿𝑛 +

1

𝜏
መℒ𝐿𝑛+1

ሶ𝑇𝑛 +
1

𝜏𝑅
(𝑇𝑛 − 𝑇𝑛

𝑒𝑞.
) = −

2𝑛 + 1

𝜏
𝑇𝑛 +

1

𝜏
መℒ𝑇𝑛+1

መℒ 𝑓 = 2𝜁 𝑓 𝜁 − න
𝜁

∞

𝑑𝜁′𝑓(𝜁′)

one can integrate the equations in 𝜁

https://doi.org/10.1103/PhysRevD.108.036015
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ℛ𝑇
(𝑛)

= න
0

∞

𝑑𝜁 መℒ
𝑛

𝑇𝑛 ,  ℛ𝐿
(𝑛)

= න
0

∞

𝑑𝜁 መℒ
𝑛

𝐿𝑛+1 

ሶℛ𝑇
(𝑛)

+
1

𝜏𝑅
𝛿ℛ𝑇

(𝑛)
= −

2𝑛 + 1

𝜏
ℛ𝑇

(𝑛)
+

1

𝜏
ℛ𝑇

(𝑛+1)

ሶℛ𝐿
(𝑛)

+
1

𝜏𝑅
𝛿ℛ𝑇

(𝑛)
= −

2𝑛 + 3

𝜏
ℛ𝐿

(𝑛)
+

1

𝜏
ℛ𝐿

(𝑛+1)

Hydrodynamic expansion

ሶℰ= −
ℰ+Ƥ𝐿

𝜏

ሶƤ𝐿 +
1

𝜏𝑅
(Ƥ𝐿 − Ƥ) = −

3

𝜏
Ƥ𝐿 +

1

𝜏
ℛ𝐿

(1)

ሶƤ𝑇 +
1

𝜏𝑅
(Ƥ𝑇 − Ƥ) = −

1

𝜏
Ƥ𝑇 +

1

𝜏
ℛ𝑇

(1)

systematically improvable 
set of scalar equations…

Hydrodynamics
መℒ 𝑓 = 2𝜁 𝑓 𝜁 − න

𝜁

∞

𝑑𝜁′𝑓(𝜁′)

…to test against the exact solutions

10.1103/PhysRevD.108.036015

ℰ= 𝐿0(𝜏, 𝜁 = 0)

Ƥ𝐿 = න
𝜁

∞

𝑑𝜁′ 𝐿1(𝜏, 𝜁′)

Ƥ𝑇 = න
𝜁 

∞

𝑑𝜁′ 𝑇0(𝜏, 𝜁′)

https://doi.org/10.1103/PhysRevD.108.036015
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Hydrodynamics

ሶℰ= −
ℰ+Ƥ𝐿

𝜏

ሶƤ𝐿 +
1

𝜏𝑅
(Ƥ𝐿 −

1

3
ℰ) = −

3

𝜏
Ƥ𝐿 +

1

𝜏
ℛ𝐿

1
ቚ
𝑒𝑞

ሶƤ𝑇 +
1

𝜏𝑅
(Ƥ𝑇 −

1

3
ℰ) = −

1

𝜏
Ƥ𝑇 +

1

𝜏
ℛ𝑇

1
ቚ
𝑒𝑞

R𝐿
𝑒𝑞.

=
1

5
 ℰ R𝐿

0 = −
1

5
 ℰ

R𝑇
𝑒𝑞.

=
1

15
 ℰ R𝑇

0 = −
1

15
 ℰ

What can we say for the isotropic case

𝛿Ƥ𝐿 = න
𝜏0

𝜏

𝑑𝑠 𝛿 ሶƤ𝐿 ⇒
𝛿Ƥ𝐿

Ƥ𝐿
=

 𝛿 ሶƤ𝐿

Ƥ𝐿
⇒ Maximum if 0 = 𝜕𝜏

𝛿Ƥ𝐿

Ƥ𝐿
=

𝛿 ሶƤ𝐿

Ƥ𝐿
 −

𝛿Ƥ𝐿

Ƥ𝐿

ሶƤ𝐿

Ƥ𝐿
⇒

𝛿Ƥ𝐿

Ƥ𝐿
=

𝛿 ሶƤ𝐿
ሶƤ𝐿

𝛿 ሶƤ𝐿

ሶƤ𝐿
ቚ
0

= −
1

3
 

𝛿 ሶƤ𝑇

ሶƤ𝑇
ቚ
0

= −
1

3
 

𝛿ℰ

ℰ
=

𝛿 ሶℰ

ሶℰ
= 

𝛿ℰ+𝛿Ƥ𝐿

ℰ+Ƥ𝐿
⇒

𝛿ℰ

ℰ
≃

𝛿Ƥ𝐿

Ƥ𝐿

…but for the trace anomaly ℰ − 2Ƥ𝑇 − Ƥ𝐿 = −3Π
𝛿 ሶΠ

ሶΠ
= −1
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Comparisons with the exact solutions 

(ℰ − 2𝒫𝑇  − 𝒫𝐿)/ℰ = −
3Π

ℰ
= −

Π

𝒫
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Comparisons with the exact solutions 

fast convergence for the
pressure anisotropy too
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Comparisons for the anisotropic initial conditions

similar conclusions
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Comparisons for the anisotropic initial conditions

similar conclusions

reasonable approximation
for the pressure anisotropy
from the start
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න
 

𝑔 𝑥 + ℎ(𝑥)  𝑑𝑥 ≠ න
 

𝑔(𝑥)𝑑𝑥 + න
 

ℎ(𝑥)𝑑𝑥

න
 

lim
𝜀→0

𝑓 𝜀, 𝑥 𝑑𝑥 ≠ lim
𝜀→0

න
 

𝑓 𝜀, 𝑥 𝑑𝑥

1

𝛽
= න

0

∞

−𝜕𝛽

𝑒−𝛽𝑥

𝑥
𝑑𝑥 ≠ −𝜕𝛽 න

0

∞ 𝑒−𝛽𝑥

𝑥
𝑑𝑥 ≡ ∞  

1

𝑥
= න

0

∞

𝑒−𝛼𝑥𝑑𝛼

1

𝛼 + 𝛽 2
= න

0

∞

 𝑑𝑥 −𝜕𝛽 𝑒− 𝛼+𝛽 𝑥 = −𝜕𝛽 න
0

∞

𝑑𝑥 𝑒− 𝛼+𝛽 𝑥 =
1

𝛼 + 𝛽
,

න
0

∞

𝑑𝛼
1

𝛼 + 𝛽 2
= 𝜕𝛼 −

1

𝛼 + 𝛽 
=

1

𝛽
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Particles interacting with external fields

Boltzmann-Vlasov equation

Immediate (but problematic) generalization

Moments with large negative r needed, infrared catastrophe!
arXiv:1808.06436

https://arxiv.org/abs/1808.06436v1
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Δ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈
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