Chemical freeze-out of hadrons within the advanced Hadron Resonance Gas Model

Elizaveta Zherebtsova

University of Wroclaw

2 December 2024 24th Zimányi School Winter Workshop

Motivation

Exploring of the QCD phase diagram:

- detect signals of colour deconfinement
- detect signals of chiral symmetry restoration
- locate critical endpoint of QCD phase diagram

In order to resolve these tasks we need a good tool to analyze the data.

Motivation

3

- Theoretical model should make feed-down corrections consistently with experimental analysis
- Particle ratios should be taken within the same centrality interval

Induced Surface Tension EOS

System of coupled equations between the pressure p and the induced surface tension coefficient Σ :

$$
p = \sum_{k=1}^{N} p_k^{Id}(T, v_k^P)
$$

$$
\Sigma = \sum_{k=1}^{N} R_k p_k^{Id}(T, v_k^S)
$$

$$
n_k^{Id}(T,\mu) = \frac{g_k}{2\pi^2\hbar^3} \int_{\infty}^{\infty} \frac{p^2 dp}{\exp[(E-\mu)/T] \pm 1}
$$

$$
p_k^{Id}(T,\mu) = \frac{g_k}{2\pi^2\hbar^3} \int_{0}^{\infty} \frac{p^4 dp}{3E} \frac{1}{\exp[(E-\mu)/T] \pm 1}
$$

V.V. Sagun et al., EPJ Web of [Conferences](https://www.epj-conferences.org/articles/epjconf/pdf/2017/06/epjconf_conf2017_09007.pdf) 137 (2017) 09007 K. A. Bugaev et al., Nucl. Phys. ^A ⁹⁷⁰ [\(2018\) 133-155](https://doi.org/10.1016/j.nuclphysa.2017.11.008) ⁴

Effective chemical potentials:

$$
v_k^S = \mu_k - pV_k - \alpha \Sigma S_k
$$

$$
\mathbf{v}_k^P = \mu_k - pV_k - \Sigma S_k
$$

Induced Surface Tension EOS

Particle number density of kth sort:

$$
n_k = \frac{a_{22}n_k^{ld}(T, v_k^{ld}) - a_{12}R_kn_k^{ld}(T, v_k^S)}{a_{11}a_{22} - a_{12}a_{21}}
$$

$$
a_{11} = 1 + \sum_{k=1}^{N} V_k n_k^{Id} (T, v_k^P)
$$

\n
$$
a_{22} = 1 + \alpha \sum_{k=1}^{N} S_k R_k n_k^{Id} (T, v_k^S)
$$

\n
$$
a_{12} = \sum_{k=1}^{N} S_k n_k^{Id} (T, v_k^P)
$$

\n
$$
a_{21} = \sum_{k=1}^{N} V_k R_k n_k^{Id} (T, v_k^S)
$$

Advantages

- 2 equations, its number does not depend on the number of different hard core radii
- Allow one to go beyond the Van der Waals approximation, since it reproduces 2nd, 3rd and 4th virial coefficients of the gas of hard spheres for $\alpha = 1.245$

V.V. Sagun et al., EPJ Web of [Conferences](https://www.epj-conferences.org/articles/epjconf/pdf/2017/06/epjconf_conf2017_09007.pdf) 137 (2017) 09007 K. A. Bugaev et al., Nucl. Phys. ^A ⁹⁷⁰ [\(2018\) 133-155](https://doi.org/10.1016/j.nuclphysa.2017.11.008) ⁵

IST EOS settings

Experimental data: STAR Collaboration Energies: **7.7 — 200 GeV** $\text{Local fit parameters: } \mathbf{T}, \boldsymbol{\mu}_{\mathbf{B}}, \boldsymbol{\mu}_{\mathbf{I3}}, \boldsymbol{\mu}_{\mathbf{S}}, \boldsymbol{\gamma}_{\mathbf{S}}$ Global fit parameters: \mathbf{R}_{π} , \mathbf{R}_{K} , $\mathbf{R}_{\text{mesons}}$, $\mathbf{R}_{\text{baryons}}$, \mathbf{R}_{Λ}

Global parameters were fixed as: $R_{\pi} = 0.15$ fm. $Rx = 0.395$ fm, R _{mesons} $= 0.42$ fm. Rbaryons $=0.365$ fm, $R_A = 0.085$ fm

A. Andronic et al., [Nucl. Phys.](https://www.sciencedirect.com/science/article/pii/S0375947409009890) A 834 (2010) 237c K. A. Bugaev et al., Ukr. J. Phys. 61 (2016) no. 8, 659 J. [Cleymans](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.73.034905) et al., Phys. Rev. C 73 (2006) 034905 S. [Borsanyi](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052001) et al., Phys. Rev. Lett. 125 (2020) 052001

IST EOS fit result of STAR data at 200 GeV

■ Inclusion of weak decays **greatly** improves the description of particle ratios in the experimental data (**50 times better** in this case). 7

Inclusion of weak decays for STAR data in the IST EOS

Fit by STAR Collaboration for \sqrt{s} > 200 GeV has T ~ 154 MeV

Inclusion of weak decays **decrease** temperature of chemical freeze-out **on 10 MeV**

A. Andronic et al., [Nucl. Phys.](https://www.sciencedirect.com/science/article/pii/S0375947409009890) A 834 (2010) 237c K. A. Bugaev et al., Ukr. J. Phys. 61 (2016) no. 8, 659 J. [Cleymans](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.73.034905) et al., Phys. Rev. C 73 (2006) 034905 S. [Borsanyi](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.052001) et al., Phys. Rev. Lett. 125 (2020) 052001

8

Results of the IST EOS with weak decays for $K^{\dagger}/\pi^{\dagger}$ ratio

- \bullet K⁺/ π ⁺ is the most problematic ratio for decription by different models
- Inclusion of weak decays greatly improves the description of particle ratios in the experimental data

Conclusions

- ❑ IST EOS is a good tool to decribe particle yields and to get chemical freeze-out parameters
- ❑ An updated version of this model allows the fitting of ratios, taking into account both inclusive and exclusive feed-down corrections consistently with experimental analysis
- ❑ Brings the chemical freeze-out temperature to the right track. It gets lower than LQCD predictions for pseudocritical T
- ❑ Provides a good description of the particle ratios from the existing experimental data
- ❑ The chemical freeze-out parameters from the IST EOS fits for STAR and NA49 data are close to the LQCD calculations.

Back up

Resonances width

 \blacksquare The resonance width is taken into account in thermal densities as it is crucial in a thermal model

■ For instance, description of pion yields cannot be achieved without it inclusion: $m_{\sigma} = 484 \pm 24$ MeV, width $\Gamma_{\sigma} = 510 \pm 20$ MeV

$$
n_X^{tot} = n_X^{thermal} + n_X^{decay} = n_X^{th} + \sum_{Y} n_Y^{th} Br(Y \to X)
$$

 $Br(Y \rightarrow X)$ – decay branching of Yth hadron into X

■ Fit of the particle ratios gives smaller systematic uncertainties than fitting of yields