Particle Production and Fluctuations at FAIR energies by using PHQMD model

Rudrapriya Das¹

Collaborators: Anjali Sharma¹, Susanne Glaessel², Supriya Das¹

Bose Institute, Kolkata, India¹, Goethe-Universität Frankfurt, Germany²

24th ZIMÁNYI SCHOOL, Budapest, Hungary, December 2-6, 2024

Introduction

Particle production

Fluctuations of net-proton and net-kaon from minimum bias events I. Using STAR acceptance and CBM acceptance **II.Energy dependence and Centrality dependence** III. Comparison between QGP ON and QGP OFF data for 7.7 GeV energy

()utline

Fluctuations in heavy-ion collisions

- Fluctuations are measured on event-by-event basis.
- The fluctuations are small, but measurable.
- Close to Gaussian, but non-Gaussianity is also measu
- If there is a critical point, fluctuation measures must b non-monotonic with collision energy (\sqrt{s}).
- Non-monotonic behavior is a necessary but not suffic • condition for the CEP.
- Correlation length diverges near critical point.

FAIR

GSI

CBM

What to expect?

Experimental_Observables

	 Higher-order cumulants of n 	et-particle multiplicities
irable.	• Proxies for conserved charges (B, Q, S)	
	• $\mu_r = \langle (N - \langle N \rangle)^r \rangle$: <i>r</i> th-order central moment	
be	• $C_1 = M = \langle N \rangle$	$= VT^3\chi_1^q$
cient	$\circ C_2 = \sigma^2 = \mu_2$	$= VT^3\chi_2^q \sim \xi^2$
	$\circ C_3 = S\sigma^3 = \mu_3$	$= VT^{3}\chi_{3}^{q} \sim \xi^{4.5}$
	$\circ C_4 = \kappa \sigma^4 = \mu_4 - 3\mu_2^2$	$= VT^3\chi_4^q \sim \xi^7$
	$^{\circ}C_5 = \mu_5 - 10\mu_3\mu_2$	$= VT^{3}\chi_{5}^{q} \sim \xi^{9.5}$
	$0C - \mu - 15\mu \mu - 10\mu^2 \pm$	$30u^3 - VT^3v^q \sim \xi^{12}$

 $C_6 = \mu_6 - 15\mu_4\mu_2 - 10\mu_3^2 + 30\mu_2^3 = VT^3\chi_6^4 \sim \xi$ • Sensitive to correlation length (ζ)

Lattice uses grand canonical ensemble

• Directly connected to susceptibilities (χ_r^q , q = B, Q, S) $\circ \frac{C_3^q}{C_2^q} = S\sigma = \frac{\chi_3^q}{\chi_2^q}, \frac{C_4^q}{C_2^q} = \kappa\sigma^2 = \frac{\chi_4^q}{\chi_2^q}$

Beam Energy

Baseline

Ref: M.A. Stephanov, PRL 102, 032301 (2009) Picture taken from Volker Koch, titled - "Exploring the QCD phase diagram with fluctuations and correlations" presented in 63rd Cracow School, Zakopane, Poland

- Study Net-Proton and Net-Kaon Number Fluctuations in the CBM energy range.
- Looking for the non-monotonicity of the moments of net-baryon number with collision energy which is suggested as a signature for QCD critical point.
- Higher-order cumulants will be studied for enhanced critical signals.
- Looking into the strangeness enhancement which is an indicator of QGP formation.

Motivation of our work

Facility for Antiproton and Ion Research (FAIR) and Compressed Baryonic Matter (CBM) Experiment

- 1. APPA (Atomic Pla Physics Application
- 2. PANDA (antiProto ANnihilation at DArmstadt)
- 3. CBM (Compresse Baryonic Matter)
- 4. NUSTAR (NUclear STructure, Astrophy and Reactions)

Ref: Christian Sturm, titled - "Towards CBM at FAIR" presented in MPACS, VECC, Kolkata

asma 1s) on	The CBM experiment setup * Equation-of-state (EOS) at high net baryon densities in neutron star cores.
ed	In-medium properties of hadrons.
r	Phase transitions from hadronic matter to quarkyonic or partonic matter at high net-baryon densities.
lysics	$^{\mbox{\ensuremath{\$}}}$ Study of strange dibaryons, hypernuclei, and massive strange objects.
a <u>6</u>	[®] Mechanisms of charm production, propagation, and in-medium properties in nuclear matter.

Parton-Hadron-Quantum-Molecular Dynamics (PHQMD)

Two approaches have been considered

- 1. multiplicity distribution.
- collisions are also generated for different energies.

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

PHQMD minimum bias events (2 Million) for Au+Au collisions; centrality is estimated from all particle

2. PHQMD data sets considering $b_{max}=3.2$ fm for Au+Au

Particle Ratio vs Energy

 K^-/K^+ , \bar{p}/p & π^-/π^+ ratio of PHQMD model at mid-rapidity considering $b_{max}=3.2$ fm and compared with 0-5% central mid-rapidity data

- K^-/K^+ at BES energies are significantly less than unity.
- Suppression of K^- occurs due to associated production with hyperons like Λ .
- Strangeness is conserved, but s quarks favor anti-kaons and hyperons, while *s* quarks primarily form kaons.

Ref: L. Adamczyk, et al., Phys. Rev. C, 96, 044904 (2017)

• With increasing $\sqrt{s_{NN}}$, the \bar{p}/p ratio rises, nearing unity at top RHIC energies. Higher beam energies lead to greater collision transparency, with mid-rapidity proton and antiproton production mainly from pair production.

Strangeness enhancement

 K^+/π^+ ratio of PHQMD model at mid-rapidity considering b_{max} =3.2 fm and compared with 0-5% central mid-rapidity data

- K^+/π^+ ratio within 6-10 GeV.
- **QGP OFF scenario:** No "horn" structure observed, highlighting the impact of QGP on particle ratios.

Ref: L. Adamczyk, et al., Phys. Rev. C, 96, 044904 (2017)

A clear distinction is observed between QGP ON and OFF states in the **QGP ON scenario:** K^+/π^+ ratio aligns well with experimental data.

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

Energy Dependence of $s\sigma$ and $\kappa\sigma^2$ for Protons and Kaons for STAR acceptance

Proton

Kaon

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

Energy Dependence of $s\sigma$ and $\kappa\sigma^2$ for Protons and Kaons for CBM acceptance

Proton

Kaon

STAR Results

CENTRALITY DEPENDENCE AND COMPARISON WITH BES-I

Centrality Dependence of so and ko² for Kaons **PHQMD Results**

STAR Results

STAR acceptance

Centrality Dependence of $s\sigma$ and $\kappa\sigma^2$ of Protons for QGP OFF and QGP ON

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

15

STAR acceptance

Summary

- and net-kaon fluctuations.
- $\kappa\sigma^2$ of proton matches well with the published data from the STAR whereas $S\sigma$ of proton differs.
- Similarly kaon $S\sigma$ of PHQMD data is in good agreement with the STAR data however $\kappa\sigma^2$ shows significant difference for higher energies (14.5, 19.6 GeV).
- No difference is observed for net-proton and net-kaon fluctuations between QGP ON and QGP OFF cases although statistics for this study is ~.1 Million events.

Future plan

Fluctuation analysis after passing through the CBM detector setup and identifying hadrons after reconstruction.

• For the first time, PHQMD model has been applied to study for net-proton

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

Thank you for your attention :)

Particle Ratio vs Energy

 K^{-}/π^{-} ratio of PHQMD model at mid-rapidity considering b_{max} =3.2 fm and compared with 0-5% central mid-rapidity data

• PHQMD K^-/π^- ratio increases monotonically with collision energy and match with the data.

Ref: L. Adamczyk, et al., Phys. Rev. C, 96, 044904 (2017)

- A frequency distribution is said to be skewed if the frequencies are not equally distributed on both the sides of the central value
- Kurtosis is another measure of the shape of a frequency curve. It signifies the extent of asymmetry, measures the degree of peakedness of a frequency distribution.

20

FAIR

Skewness and Kurtosis

How to measure derivative

$$Z = tr \, e^{-\hat{E}/T + \mu/T\hat{N}_B}$$

$$\langle E \rangle = \frac{1}{Z} \operatorname{tr} \hat{E} e^{-\hat{E}/T + \mu/T\hat{N}_B} = -\frac{\partial}{\partial 1/T} \ln(Z)$$

$$\langle (\delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \left(-\frac{\partial}{\partial 1/T} \right)^2 \ln(Z) = \left(-\frac{\partial}{\partial 1/T} \right) \langle E \rangle$$

$$\langle (\delta E)^n \rangle = \left(-\frac{\partial}{\partial 1/T} \right)^{n-1} \langle E \rangle$$

Cumulants of Energy measure the temperature derivatives of the EOS

Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

Cumulants of (Baryon) Number

$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}} \langle N \rangle$$

$$K_1 = \langle N \rangle, \ K_2 = \langle N - \langle N \rangle \rangle^2, \ K_3 = \langle N - \langle N \rangle \rangle^3$$

Cumulants scale with volume (extensive): $K_n \sim V$

Volume not well controlled in heavy ion collisions

Cumulant Ratios:

$$\left| rac{K_2}{\langle N
angle}, \ rac{K_3}{K_2}, \ rac{K_4}{K_2}
ight|$$

CBM acceptance @ 4.9 GeV

22

centrality is estimated from all particle multiplicity distribution.

Centrality Selection

PHQMD minimum bias events (2 Million); Then applied STAR or CBM acceptance cut and created modified root files; then

PHQMD minimum bias events (2 Million); Then applied STAR or CBM acceptance cut and produced modified root files; then centrality is estimated from all particle multiplicity distribution.

STAR acceptance @ 3.5 GeV

Centrality	N_mult
0-5%	165
5-10%	128
10-20%	83
20-30%	52
30-40%	32
40-50%	18
50-60%	10
60-70%	5

STAR acceptance @ 19.6 GeV

Centrality	N_mult
0-5%	269
5-10%	217
10-20%	145
20-30%	94
30-40%	58
40-50%	33
50-60%	18
60-70%	9

Net-proton & Net-kaon fluctuations calculation of PHQMD data sets considering b_{max}=3.2 fm

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

Second Approach

Net-proton number fluctuations in STAR acceptance

STAR Results

PHQMD Results Statistics - 0.1 Million events

Ref: Phys.Rev.Lett. 126 (2021) 9, 092301

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

Ref: L. Adamczyk et al., Phys. Lett. B, 785, 551-560 (2018)

Net-kaon number fluctuations in STAR acceptance

Rudrapriya Das | 24th ZIMÁNYI SCHOOL | Budapest, Hungary- December 2-6, 2024

PHQMD Results Statistics - 0.1 Million events

