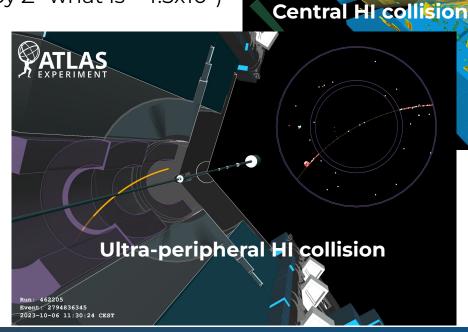
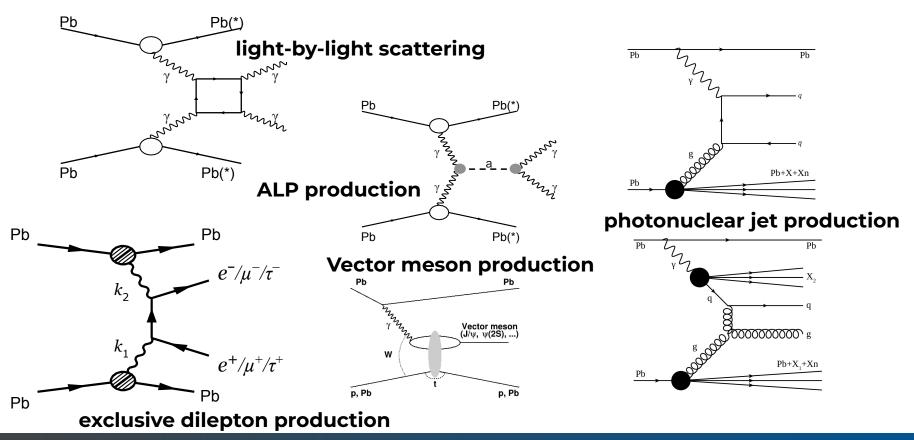
UPC physics in ATLAS


Agnieszka Ogrodnik (CU Prague)

24th Zimányi School Winter Workshop on Heavy Ion Physics, 02.12.2024


Ultra-peripheral collisions

- Advantages of UPC heavy-ion collisions:
 - Increased cross-sections wrt to pp collisions (cross-sections scale by Z^4 what is ~4.5x10⁷)
 - Very low hadronic pileup - exclusive selections possible
 - Low p_T particles can be triggered and reconstructed

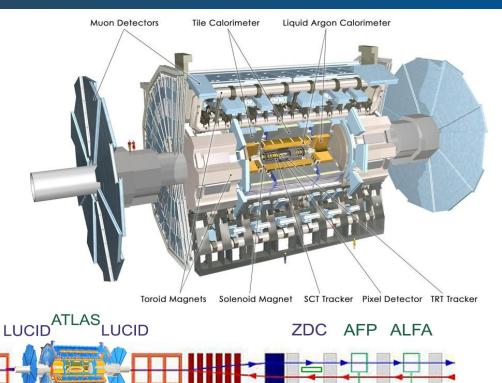
23-09-27 07:14:57 CES

What processes can we measure/search for?

ATLAS detector

- Large general-purpose detector with almost 4π coverage
- $\eta = -\log(\tan(\theta/2))$
- Inner detector $|\eta|$ < 2.5

ALFA AFP


Q6

- Muon system |η| < 2.7 (trig. 2.4)
- Calorimetry out to $|\eta|$ < 4.9
- Zero-Degree-Calorimeters capture neutral particles with |η| > 8.3

Q5

ZDC

Q4 D2

D1

140 m

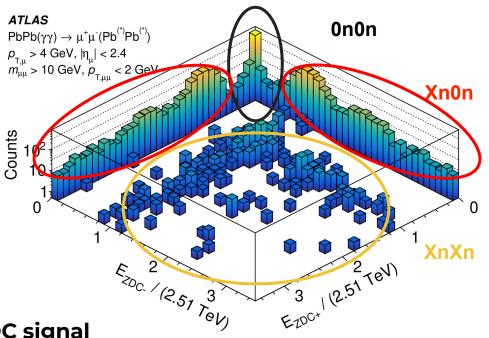
D2Q4 Q5

Q7

point

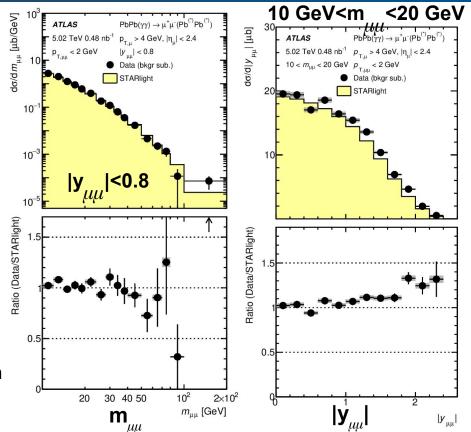
interaction Q1Q2Q3

Q3Q2Q1


140 m

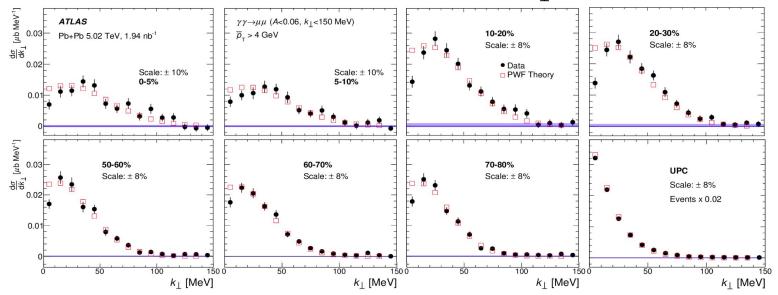
Q7

06


Signal categories - ZDC selection

- Different processes present different activity in the forward region:
 - photon-photon interaction
 - ions stay intact
 - Background events with nuclear breakup
- **Three classes** defined, based on the signal in the ZDC
- The association between given ZDC signal and given process is nontrivial
 - Migrations due to ion excitation and presence of EM pile-up

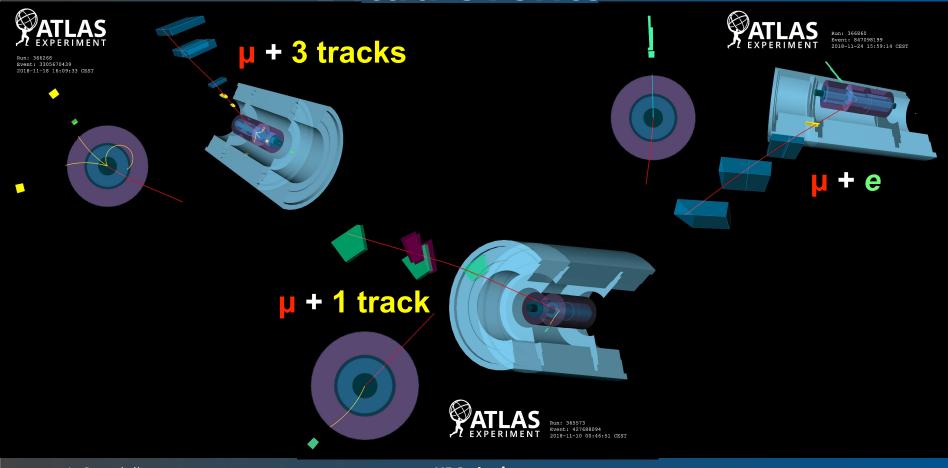
Dimuons - results


- The **cross-sections** are **measured** as a function of $m_{\mu\mu}$ (in 3 slices of $|y_{\mu\mu}|$) and $|y_{\mu\mu}|$ (in 3 slices of $m_{\mu\mu}$)
- Data is **compared with STARlight** MC simulation of $\gamma\gamma \rightarrow \mu^+\mu^-$ process w/o FSR
- The overall shape of the spectra is well described out to the highest masses
- \bullet Some hints of decreasing ratio for larger $m_{\mu\mu}$
- **Good agreemen**t is found in central region of rapidity distribution (small $|y_{\mu\mu}|$), but data to simulation ratio increases with $|y_{\mu\mu}|$

Phys. Rev. C 107 (2023) 054907

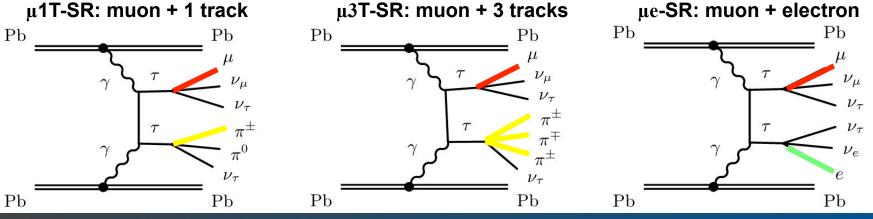
Non-UPC dimuons

- The dimuons originating from photon-photon interactions were also observed in non-UPC events by ATLAS <u>Phys. Rev. C 107 (2023) 054907</u>
- Studied α and $k_{\perp} (=\alpha \pi (p_{T1} + p_{T2})/2)$ distributions as a function of event centrality
- Observed depletion in cross-section in the region of low-k₁, not predicted by models


Dielectrons - results

- **Good agreement** with STARlight and SuperChic is observed, differences in the same regions as in detector-level plots
- Results for mass [qn] 140 ub/GeV compatible with ATLAS ATLAS dimuon 10 100measurement da da e 80 • Two lines for 60 Pb+Pb √s_{NN}=5.02 TeV 10 predictions in Pb+Pb √s_{NN}=5.02 TeV ⁺e 0n0n L=1.72 nb γγ→ e⁺e⁻ L=1.72 nb⁻ 40 Data 2018 OnOn category Inclusive ZDC STARlight 10^{-2} Data 2018 STARlight 0n0n show the STARlight SuperChic SuperChic 0.100 Data / MC 5.0 predicted ×1.2 cross-section 8.0at with f_{0n0n} varied 2.5 0.51.5 2 20 30 40 10 up and down ly_{ee} m_e [GeV]

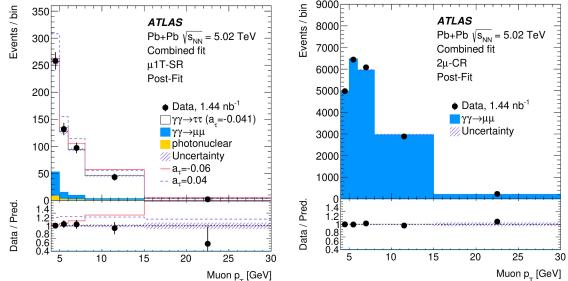
JHEP 06 (2023) 182


Ditau events

Signal categories

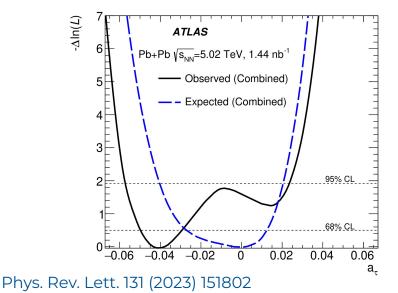
Phys. Rev. Lett. 131 (2023) 151802

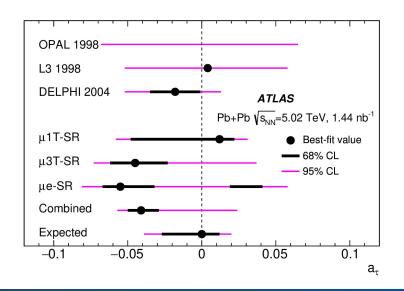
- First observation of γγ→ττ process in HI UPC using 1.44 nb⁻¹ of Pb+Pb data recorded by ATLAS in 2018
- Signal T-leptons are low-energetic, typically with p_{T} < 10 GeV
 - No standard ATLAS identification of τ-leptons is used
- Events classified based on the charged τ-lepton decay products
- Three signal categories:


Observation of exclusive ditau production

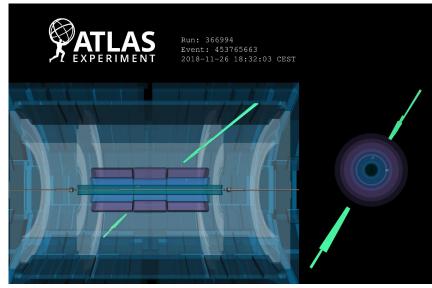
- The γγ → π signal strength and a, value is extracted using a profile likelihood fit using the muon p, distribution
- Simultaneous fit combining all signal regions and dimuon control region
 - Dimuon **control region** ($\gamma\gamma \rightarrow \mu\mu$ events) used to **reduce systematic**

uncertainty from the photon flux


- Calculations are based on the same parameterization as was used in previous LEP measurements
- Clear observation (> 5σ)
 of γγ → ττ process


Phys. Rev. Lett. 131 (2023) 151802

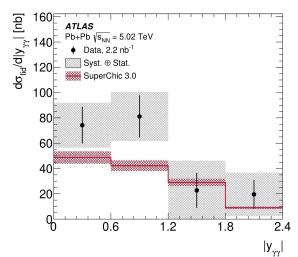
т-lepton g-2


- Constraints similar to DELPHI (EPJ C 35 (2004) 159)
- Expected 95% CL limits from combined fit: -0.039 < a, < 0.020
- The best fit value is a₁ = -0.041, with the corresponding 95% CL interval being (-0.057, 0.024)
- The result is largely limited by statistics, what will improve with Run-3 data

Light-by-light scattering

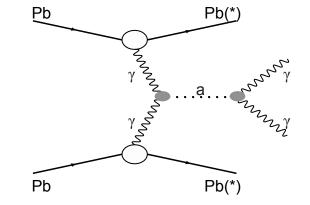
- Light-by-light (LbyL) scattering is a rare Quantum Electrodynamics (QED) process
- Several LbyL measurements done using Pb+Pb collision data at 5.02 TeV, collected by LHC experiments:
 - ATLAS: 2015: Nature Physics 13 (2017) 852,
 - 2018: Phys. Rev. Lett. 123 (2019) 052001
 - 2015+2018: JHEP 03 (2021) 243
 - CMS: 2015: Phys. Lett. B 797 (2019) 134826
- Signal selection:
 - Two photons with E_{T} > 2.5 GeV, identified with dedicated NN ID algorithm)
 - Diphoton mass above 5 GeV, low diphoton p_{T} , low diphoton acoplanarity: 1- $|\Delta \phi|/\pi < 0.01$
 - Veto on any extra low- p_{T} tracks

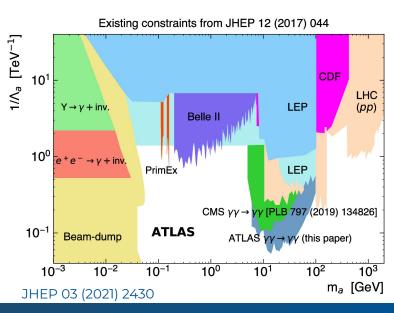
JHEP 03 (2021) 243


Differential cross sections

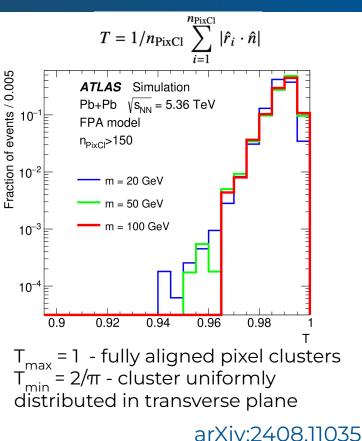
- Cross-section is measured in a fiducial phase space, defined by the requirements reflecting event selection
- The measured integrated fiducial cross-section is
 \$\sigma_{fid}\$ = 120 ± 17(stat.) ± 13(syst.) ±4 (lumi.) nb, while the predicted values are 80 ± 8 nb (Szczurek et al.) and 78 ± 8 nb (SuperChic3)
- Differential fiducial cross-sections are **unfolded to particle level** in the fiducial phase space to correct for bin migrations due to detector resolution effects
- The unfolded differential fiducial cross-sections are compared with the predictions from SuperChic v3.0
- No significant differences between predictions and data are seen

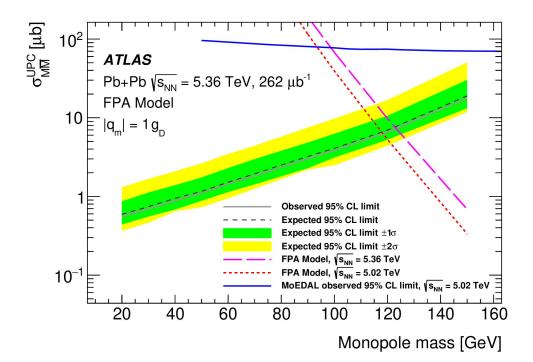
JHEP 03 (2021) 243





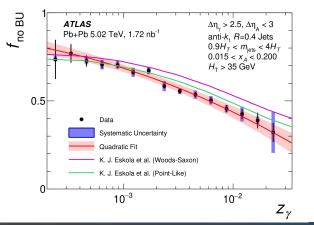
ALP limits

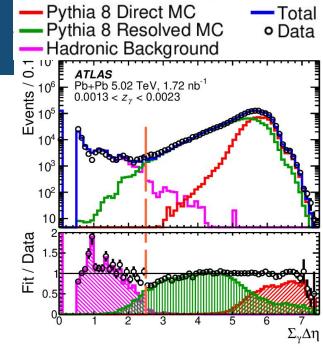

- Axion-like particles (ALP) are **hypothetical particles** that appear in many theories with a spontaneously broken global symmetry
- ALPs may decay to two photons, what might be visible as an excess in m_v distribution
- Simulated LbyL events are normalized to the data yield, after subtracting $\gamma\gamma \rightarrow e^+e^-$ and CEP gg $\rightarrow \gamma\gamma$ contributions and excluding the mass search region
- ALP contribution is fitted individually for every mass bin
- No significant deviation from the background-only hypothesis is observed
- The result is used to estimate the upper limit on the ALP cross-section and ALP coupling 1/A_a at 95% confidence level


Search for magnetic monopoles

- Magnetic monopoles are hypothetical particles
- Could be produced via Schwinger mechanism in presence of strong magnetic fields
- Data from 2023 Pb+Pb collisions @ 5.36 TeV was used (0.262/nb)
- Events selected with following criteria:
 - \circ N_{tracks} ≤ 1, N_{topoclusters} ≤ 1 → removes collision background
 - $\circ~~$ N $_{\rm PixelClusters}$ >150, including N $_{\rm IBLclusters}$ > 50
 - → suppress beam-induced background (BIB)
 - additional cut to remove noise Pixel modules
- Signal region definition:
 - transverse thrust T > 0.95

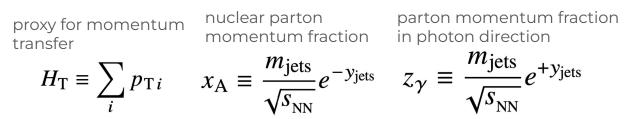
Results

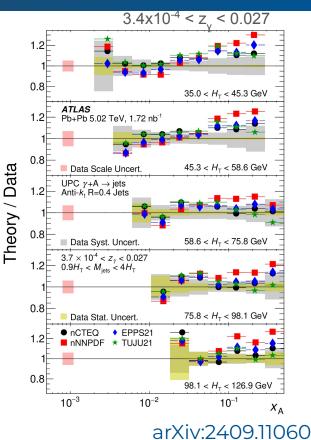

- 3 events in SR, consistent with background estimate
- Cross-section upper limits computed in mass range between 20 and 150 GeV
- Monopoles with a single
 Dirac magnetic charge and mass below 120 GeV are excluded


arXiv:2408.11035

Dijet production in UPC

- Photonuclear jet production was studied
 - direct photons or hadronic excitations of photons (resolved photons) striking the nucleus
- Requirement of rapidity gaps in the photon direction one of ions intact
 - detailed analysis of gaps gave relative proportion between direct and resolved photon events



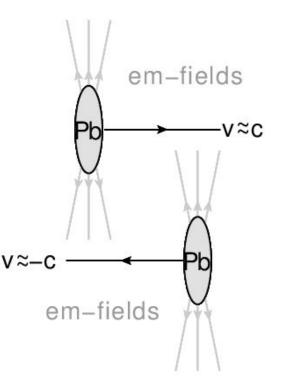

- measured fraction of events with no nuclear breakup
 - needed to compare to correctly compare to predictions

Dijet production in UPC

- Measured triple differential cross-sections
- Ratios wrt to various nPDF fits
- Typically the best agreement with nCTEQ
- TUJU agrees better at higher H_T
- nNNPDF overpredicts cross-sections at high H_{T} and x_{A}
- Conclusions may change when NLO predictions available, and photon flux modelling uncertainties taken into account

Summary

- The UPC physics covers a broad range of processes
- Results from dielectrons and dimuons provide valuable constraints for theoretical approaches in the modeling of the initial photon flux
 Very important to make correct predictions for more rare processes
- The **light-by-light scattering** was observed by ATLAS and provided constraints on the ALP production
- The measurement of the τ-lepton anomalous magnetic moment using exclusive ditau events is competitive with previous measurements
 Improvement in precision expected with more data
- Improvemed constraints on magnetic monopole production cross-section
- Measurement of jets in photonuclear collisions provide unique constraints on nuclear parton distributions



Ultra-peripheral collisions

- Heavy-ion collisions primarily for studies of quark-gluon plasma
- But... in **ultra-peripheral heavy-ion collisions (UPC)** we observe photon-photon interactions

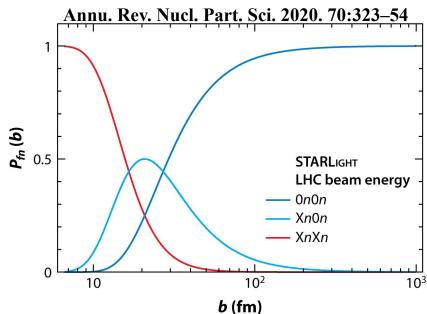
New research opportunities

- Electromagnetic (EM) fields of relativistic ions considered as **fluxes of photons** (they scale with ~ Z²)
- Described in a **Equivalent Photon Approximation** (EPA) formalism
- Reaction cross-section calculated by convolving the respective photon flux with the elementary cross-section for the process

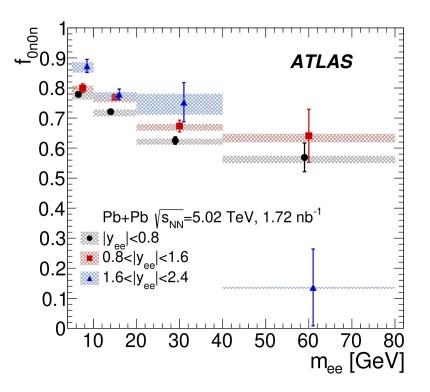
Trigger system

- The LHC provides pp collisions at the rate of 40 MHz and ion collisions up to about 10 MHz
- Only some events are interesting for further analysis and others has to be filtered out online this is done by the trigger system
- For every process there is a need for a dedicated trigger
- In ATLAS experiment trigger system consist of hardware (Level-1) and software (High Level Trigger, HLT) component
- At first step event rate is reduced to 100 kHz, in the next step down to few kHz
- Ideal trigger provides high efficiency and high purity
- One of the methods to measure the trigger efficiency is to use signal events selected by other, independent trigger

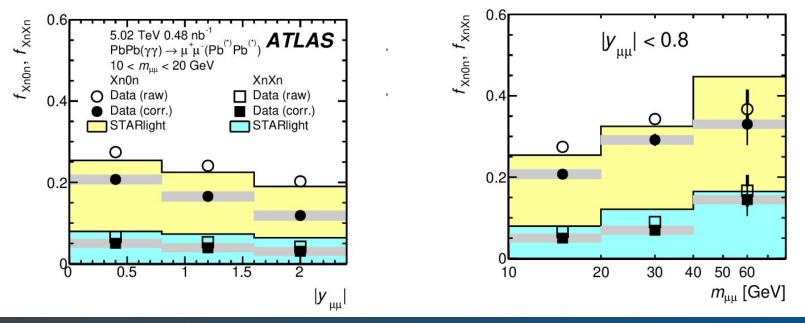
Events selected by both triggers


Events selected by independent trigger

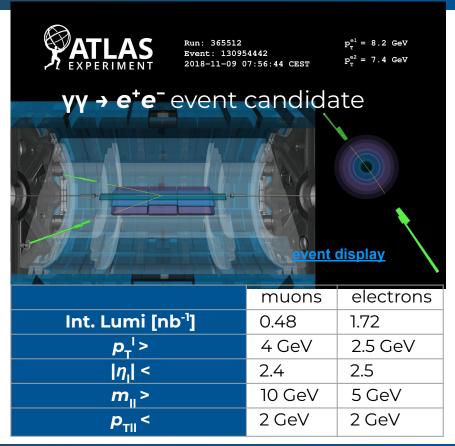
• Then, efficiency =


ZDC fractions - b dependence

- The probability of producing a given ZDC category depends on the value of the impact parameter, b (based on the Coulomb excitation probabilities ~ 1/b²)
 Annu. Rev. Nucl. Part. Sci. 2020. 70:323–54
- With different selections on the ZDC topology, we probe different ranges of dilepton mass and impact parameters, as photon fluxes vary with b

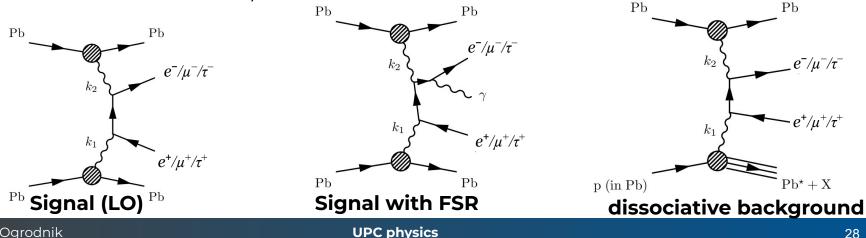

f0n0n fractions - dielectrons

- The **OnOn category** should in principle be very **pure**, at least in terms of dissociative background
- To select 0n0n sample, events are required to have **low energy** deposits in the **ZDC** (below 1 TeV on each side)
- There is no ZDC simulation in the MC samples, so a dedicated approach, correcting also for **EM pileup** is used
- To be able to compare data with the prediction, the weight is applied as a function of truth variables for the MC samples


fXnOn and fXnXn fractions - dimuons

- The raw (open points) fractions higher than corrected (full markers)
- The corrected f_{Xn0n} and f_{XnXn} fractions are compared with the **STARlight** predictions — the latter are systematically higher for f_{Xn0n} and f_{XnXn} fractions

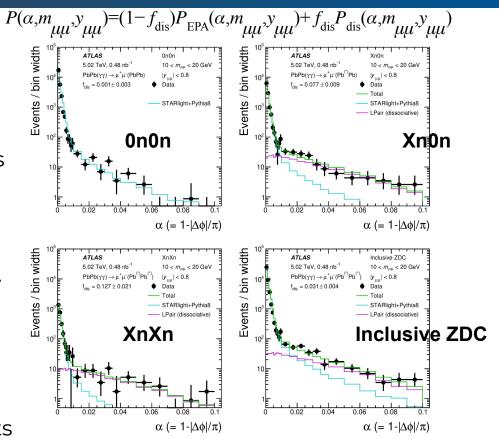
Event characteristics & selection


- Exclusive dilepton events are characterized by :
 - Two low-p_T opposite sign leptons (of the order of a few GeV) and otherwise empty detector
 - Leptons are produced **back-to-back** in azimuthal angle (described by low dilepton transverse momentum, $p_{T_{II}}$)
- ATLAS optimized to detect high-energy particles
 - careful estimation of trigger and particle reconstruction efficiency in low energy region

A. Ogrodnik

Background sources for µµ/ee

- Several background sources are considered:
 - **dissociative** production of I⁺I⁻ pairs estimated with data-driven method (template taken from LPair/SuperChic4+Pythia8 in pp collisions)
 - **Upsilon(nS)** production estimated with STARlight+Pythia8 MC samples (only in dielectron measurement)
 - exclusive ditau production estimated with STARlight+Pythia8 MC samples (only in dielectron measurement)

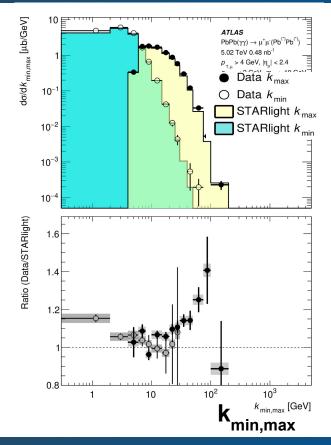


Dimuons

Phys. Rev. C 104 (2021) 024906

Dimuons - background

- Based on number of neutrons detected in ZDC, events are categorized in OnOn, XnOn and XnXn classes
- The differences between these classes are strongly pronounced in acoplanarity distribution
- The data is compared with STARlight+Pythia8 simulation for γγ → μ⁺μ⁻ process with FSR and LPair for dissociative events (for pp collisions)
- The **simultaneous fit** is performed in all ZDC topology classes to estimate fraction of dissociative events

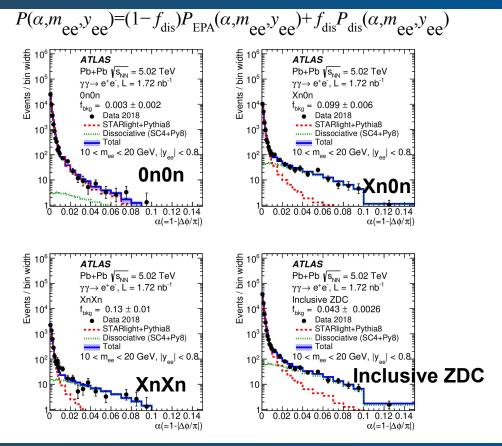

A. Ogrodnik

What can we learn about initial photon fluxes?

• The muon kinematics can be used to estimate **initial photon energies**

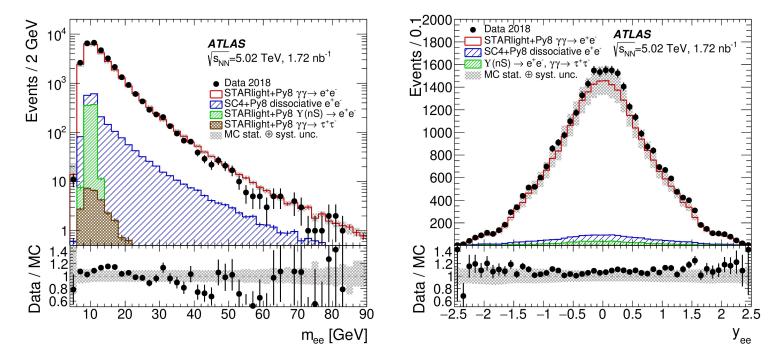
$$k_{\min, \max} = (1/2)m_{\mu\mu} \exp(\pm y_{\mu\mu})$$

- The **cross section** is presented as a function of maximum and minimum photon energies
- The STARlight predictions are correct in intermediate region 5-20 GeV
- Disagreement between the data and MC for lower k_{\min} and higher k_{\max}
- Further developments needed to better model photon fluxes



Dielectrons

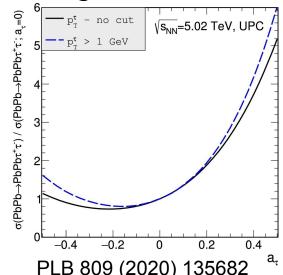
JHEP 06 (2023) 182


Dielectrons - background

- The background samples for single dissociation from SuperChic4+Pythia8 are used instead of LPair
- Fitting procedure similar to the one used in dimuon measurement
- Small background contributions from ditau and Upsilon(nS) production also estimated

Detector-level control plots

The data sample is ~93% pure, with about 10% more counts in data than in the MC prediction

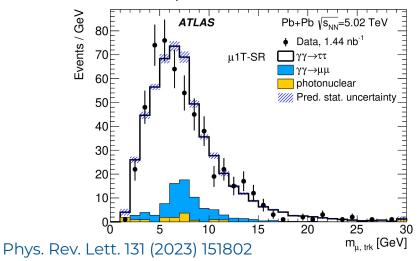


Phys. Rev. Lett. 131 (2023) 151802

a₋ - measurement strategy

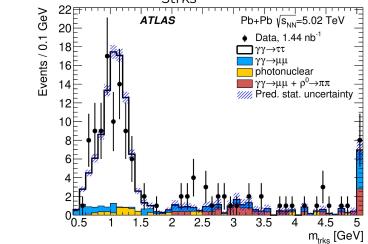
- Magnetic moment of the particle and its spin are related by g-factor: μ =g q/2m S
- Dirac's equation predicts g=2 for charged leptons, higher-order corrections result in $g\neq 2$,
- These discrepancies are quantified by the lepton **anomalous magnetic moments** $a_1 = (g-2)_1/2$ $\widehat{g}_{T} = \frac{6}{1-p_T^t - no \ cut}$
- Currently the best constraints for a₁ are from DELPHI experiment: -0.052<a₁<0.013 (95% CL) <u>EPJC 35 (2004) 159</u>
- Measurement of a_r in HI UPC collisions using γγ→ττ events proposed in several publications:
 - F. del Águila, F. Cornet, J.I. Illana, <u>PLB 271 (1991) 256</u>
 - L. Beresford, J. Liu, PRD 102 (2020) 113008
 - M. Dyndal, M. Schott, M. Klusek-Gawenda,

A. Szczurek, PLB 809 (2020) 135682



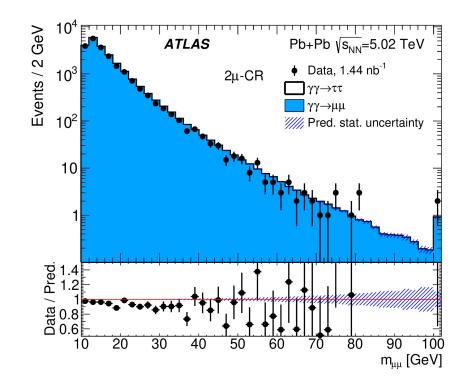
Ditau event selection

- Single muon trigger recording events having muon with $p_{T} > 4$ GeV
- Veto on forward neutron activity (based on ZDC signal) -> MC samples reweighed

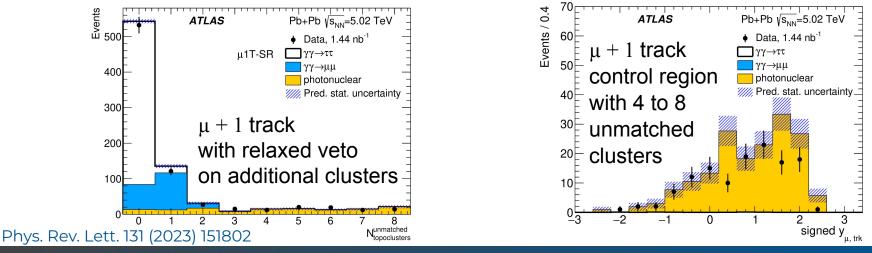

Kinematic selection:

- muons: p_{T} > 4 GeV, $|\eta|$ < 2.4
- electrons: $p_{T} > 4 \text{ GeV}, |\eta| < 2.47$
- tracks: $p_{\rm T}$ > 100 MeV, $|\eta|$ < 2.5

Other requirements:


- veto on additional low- p_T clusters (for μ 1T-SR and μ 3T-SR) and low- p_T tracks
- For μ 1T-SR: $p_T^{\mu,trk} > 1 \text{ GeV}$
- For µ3T-SR: $m_{_{3trks}}^{'} < 1.7 \text{ GeV}$

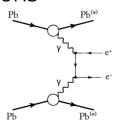
A. Ogrodnik

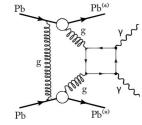

Backgrounds

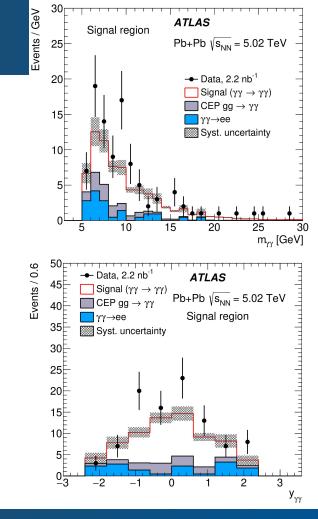
- Main background contributions from dimuon production and diffractive photonuclear interactions
- Background from γγ → μμ(γ) production estimated using MC simulation (STARLight+Pythia8, Madgraph5), constrained by a data CR
- Already pre-fit distributions in the 2µ-CR show good agreement of data and MC

Backgrounds

- **Diffractive photonuclear** in µIT-SR and µ3T-SR signal regions, estimated with **data-driven** technique
- Control regions defined with additional track with $p_T < 500$ MeV and allowing events from XnOn category
- Event yields extrapolated from control to signal region by relaxing the veto on additional (unmatched) clusters from 0 to 8
- Normalisation done to the event yield in the region with 4 to 8 unmatched clusters



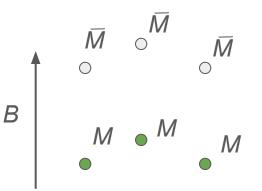

JHEP 03 (2021) 243



Backgrounds

- Various background sources considered, the largest contributions from:
 - Exclusive dielectron production γγ→ e⁺e⁻
 - Central Exclusive Production (CEP) gg → γγ
- Main background sources are estimated using data-driven techniques
- Shapes of the distributions are **in good agreement** but data excess visible in both distributions

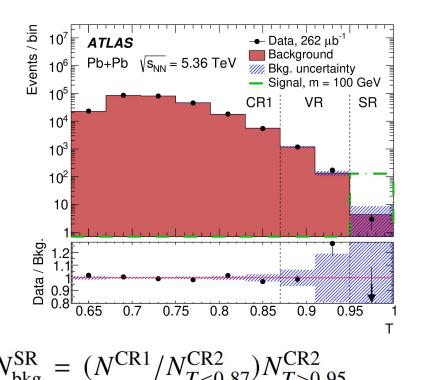
A. Ogrodnik


JHEP 03 (2021) 243

magnetic monopoles

Search for magnetic monopoles

- Magnetic monopoles are hypothetical particles
- Could be produced via Schwinger mechanism in presence of strong magnetic fields
 - Such fields present in UPC up to B ~ 10¹⁶ T at LHC Pb+Pb collisions
- Cross-section for magnetic monopoles production in HI UPC can be computed nonperturbatively using semiclassical models
 - not possible for production in pp
 - however models working well only down to monopole mass of 20 GeV


Signal characteristics

- Event signature checked with the MC simulation
- Monopoles with $p_T < 300$ GeV won't reach calorimeter, below p_T of 30 GeV, they don't reach the SCT
- Focus on signals in the Pixel detector
- Only XnXn category (however only fraction of signal there)
- Dedicated trigger strategy with
 - ZDC A+C coincidence
 - veto on total transverse energy in calorimeter (< 10 GeV)
 - more than 100 hits in Pixel detector

monopole mass	spl.
20GeV,	
р _т = 50 GeV	
	IBL PIX1 PIX2 PIX3

Background

- Collisional background reduced with event selection
- Residual background originating from beam-induced effects
 - characterised by particles almost parallel to the beam line
- Fully data-driven method for background estimation
- Background shape from CR2
 - ZDC_XOR-triggered events with 1-3 (soft) calorimeter clusters, incl. at least one out-of time (t<-10 ns), no T cut
- Estimated bkg in SR: 4 ± 4 events

